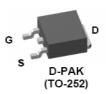
FAIRCHILD

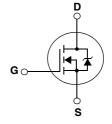
SEMICONDUCTOR®

FDD8451 N-Channel PowerTrench[®] MOSFET 40V, 28A, 24m Ω

Features

- Max $r_{DS(on)} = 24m\Omega$ at $V_{GS} = 10V$, $I_D = 9A$
- Max $r_{DS(on)}$ = 30m Ω at V_{GS} = 4.5V, I_D = 7A
- Low gate charge
- Fast Switching
- High performance trench technology for extremely low r_{DS(on)}
- RoHS compliant


April 2006


General Description

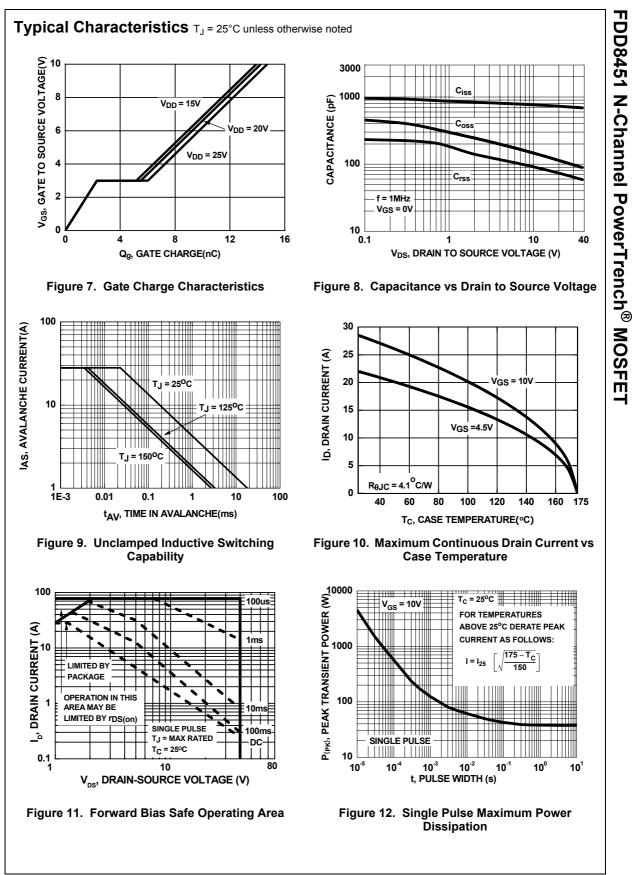
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, fast switching speed and extremely low $r_{DS(on)}$.

Application

- DC/DC converter
- Backlight inverter

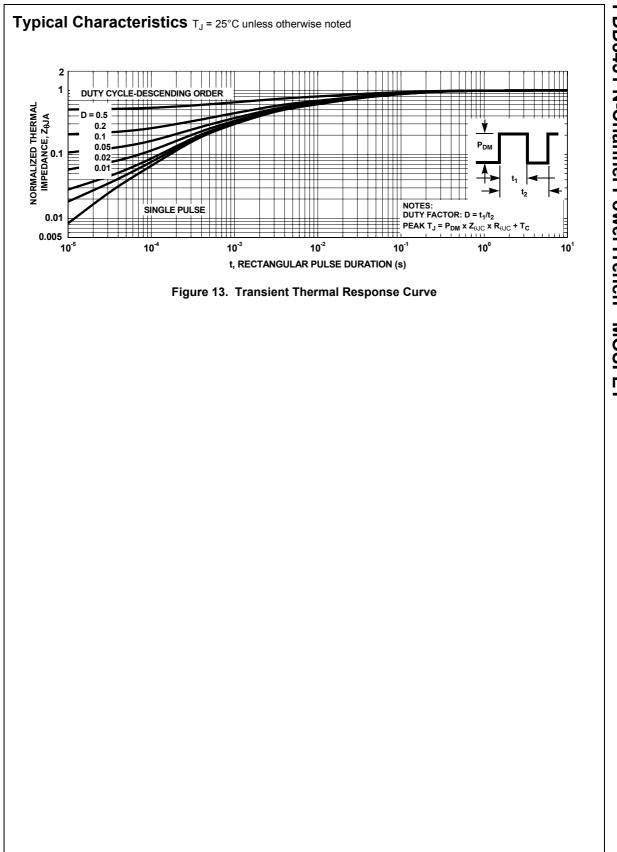


MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter				Ratings	Units
V _{DS}	Drain to S	Drain to Source Voltage			40	V
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous @T _C =25°C				28	
D	-Continuous @T _A =25°C				9	A
_		-Pulsed	-Pulsed (Note 1) 7			
E _{AS}	Single Pulse Avalanche Energy (Note 2)			(Note 2)	20	mJ
P _D	Power Di	Power Dissipation			37	W
T _J , T _{STG}	Operating	ating and Storage Temperature			-55 to 150	°C
Thermal	Chara	cteristics				
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case				4.1	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient				40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient			96	°C/W	
Package	Marki	ng and Orderin	g Information			i.
Device N	larking	Device	Package	Reel Size	Tape Width	Quantity
FDD8451		FDD8451	D-PAK(TO-252)	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	40			V	
ΔBV_{DSS} $\Delta T_{,l}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		33.5		mV/°C	
DSS	Zero Gate Voltage Drain Current	V _{DS} = 32V, V _{GS} = 0V			1	μA	
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20V, V_{DS} = 0V			±100	nA	
	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1	1.7	3	V	
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage	$I_{D} = 250 \mu A$, referenced to		1.7		-	
ΔT_J	Temperature Coefficient	25°C		-5.7		mV/°C	
r _{DS(on)}	Drain to Source On Resistance	V _{GS} = 10V, I _D = 9A		19	24		
		V _{GS} = 4.5V, I _D = 7A		23	30	mΩ	
		V _{GS} = 10V, I _D = 9A T _J = 150°C		32	41		
9 _{FS}	Forward Transcondductance	V _{DS} = 5V, I _D = 9A		29		S	
C _{iss}	Characteristics Input Capacitance	$V_{22} = 20 V V_{22} = 0 V$		742	990	pF	
C _{oss}	Output Capacitance	V _{DS} = 20V, V _{GS} = 0V, f = 1MHz		112	150	pF	
C _{rss}	Reverse Transfer Capacitance			72	110	pF	
R _g	Gate Resistance	f = 1MHz		1.1		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			7	14	ns	
t _r	Rise Time	$V_{DD} = 20V, I_D = 1A$		2	10	ns	
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10V, R_{GS} = 6 Ω		19	34	ns	
l _f	Fall Time			5	10	ns	
Q _q	Total Gate Charge at 10V			14	20	nC	
Q _g	Total Gate Charge at 5V	V _{DS} = 20V, I _D = 9A		7.7	11	nC	
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10V		2.3		nC	
Q _{gd}	Gate to Drain "Miller"Charge			3.2		nC	
Drain-Sou	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 9A$		0.87	1.2	V	
t _{rr}	Reverse Recovery Time	$I_{\rm F} = 9$ A, di/dt = 100A/µs		25	38	ns	
		1 P P P P P P P P P P P P P P P P P P P			1		

2: Starting $T_J = 25^{\circ}C$, L = 0.1mH, $I_{AS} = 20A$, $V_{DD} = 36V$, $V_{GS} = 10V$.



FDD8451 N-Channel PowerTrench[®] MOSFET

FDD8451 Rev. B

4

TRADEMARKS				
	red and unregistered trade tive list of all such tradem		ductor owns or is authorize	ed to use and is not
ACEx™	FAST [®]	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™
DOME™	HiSeC™	MSX™	Quiet Series [™]	TinyLogic [®]
EcoSPARK™	l ² C™	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX™	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect [™]	OCXPro™	µSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC [®]	ScalarPump™	UltraFET®
FACT Quiet Series [™]		OPTOPLANAR™	SILENT SWITCHER [®]	UniFET™
Across the board. Around the world.™ The Power Franchise [®] Programmable Active Droop™		PACMAN™ POP™ Power247™	SMART START™ SPM™ Stealth™	VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS	DEFINITIONS
Definition of Terms	

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only		
	•	Rev. 119		

FDD8451 N-Channel PowerTrench[®] MOSFET