

- Surface Acoustic Wave Resonator Filter
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- F-16 Metal Thru-Hole Package

SF136B

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
Input Power Level	P_{in}	0	dBm				
DC Voltage VDC Between Any Two Pins	V _{DC}	30	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ + 85	°C				

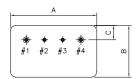
Electrical Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (25°C)		fc	NS	136.00	NS	MHz
Insertion Loss at fc		IL	=	3.0	5.0	dB
3dB Bandwidth		ВWз	65	88	-	KHz
Passband Ripple (fc ± 20 KHz)		Δα	-	0.2	1.0	dB
Stopband Attenuation	fc ± 0.5 MHz		40	48	-	dB
	fc ± 1.0 MHz		45	54	-	dB
	$fc \pm 1.5 \text{ MHz}$	α	45	54	-	dB
	$fc \pm 2.0 \text{ MHz}$		46	55	-	dB
	Ultimate		52	62	-	dB
Temperature Stability	Turnover Temperature	То	25	-	55	°C
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C
Group Delay	Absolute at fc	τ	10	15	18	μSec
	Deviation fc ± 10 KHz	$\Delta \tau$	-	2.0	8.0	μSec
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

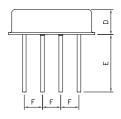
NS = Not Specified

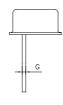
Notes:

- The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, $f_{\text{C}}.$ Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.


Phone: +86 10 6301 4184 Fax: +86 10 6301 9167


Email: sales@vanlong.com

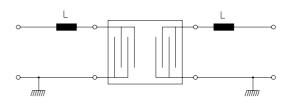

Web: http://www.vanlong.com

Package Dimensions (F-16)

Electrical Connections

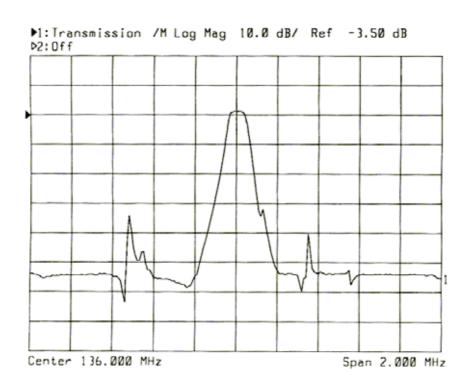
Terminals	Connection
1	Input / Output
2	Case Ground
3	Case Ground
4	Output / Input

Package Dimensions


Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	12.0	E	5.0
В	7.2	F	2.54
С	2.0	G	0.5
D	3.5		

Marking

SF136B


Ink Marking
Color: Black or Blue

Test Circuit

L = 12~20 turns of 0.51mm insulated copper, 4.0mm ID

Typical Frequency Response

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com