

3.3V CMOS 18-BIT READ/WRITE BUFFER WITH 5 VOLT TOLERANT I/O

IDT74LVCH16702A

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 w W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in SSOP, TSSOP, and TVSOP packages

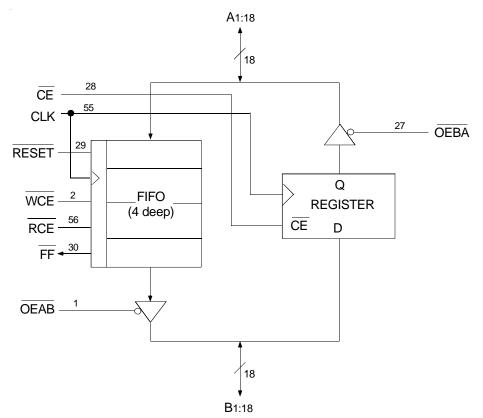
DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- · 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

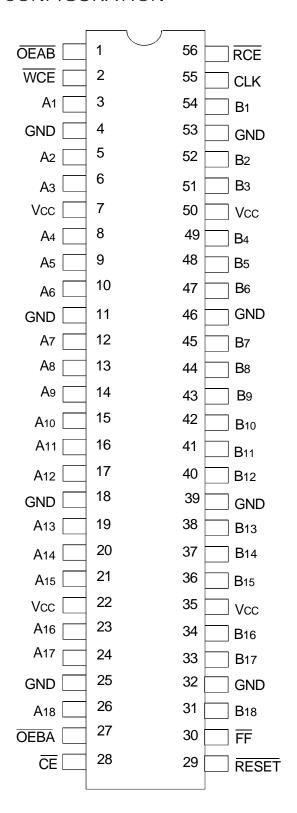

The LVCH16702A 18-bit read/write buffer is built using advanced dual metal CMOS technology. The device is designed as an 18-bit read/write buffer with a four deep FIFO and a read-back latch. It can be used as a read/write buffer between a CPU and a memory or to interface a high-speed bus and a slow peripheral. The A-to-B (write) path has a four deep FIFO for pipelined operations. The FIFO can be reset and a FIFO full condition is indicated by the full flag ($\overline{\text{FF}}$). The B-to-A (read) path has a latch.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16702A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16702A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Cı/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	I/O	Description
A1-18	I/O	18 bit I/O port.
B1-18	I/O	18 bit I/O port.
CLK	I	Clock Input.
WCE	I	Enable pin for FIFO input clock. When $\overline{\text{WCE}}$ is low data clocks into the FIFO on the rising edge of CLK.
RCE	Ι	Enable pin for FIFO output clock. When RCE is low data clocks out of the FIFO on the rising edge of CLK.
FF	0	Write path FIFO full flag. Goes low when FIFO is full. When FIFO is full all further writes to the FIFO are inhibited. When FIFO is empty all reads from the FIFO are inhibited.
RESET	_	Synchronous FIFO reset - when low CLK resets the FIFO. The FIFO pointers are initialized to the "empty" condition and FIFO output is forced high (all ones). The FIFO full flag (FF) will be high immediately after reset.
ŌĒĀB	I	Output Enable pin for B port.
ŌĒBĀ	Ī	Output Enable pin for A port.
CE	Ī	Clock Enable pin for B to A register.

NOTE:

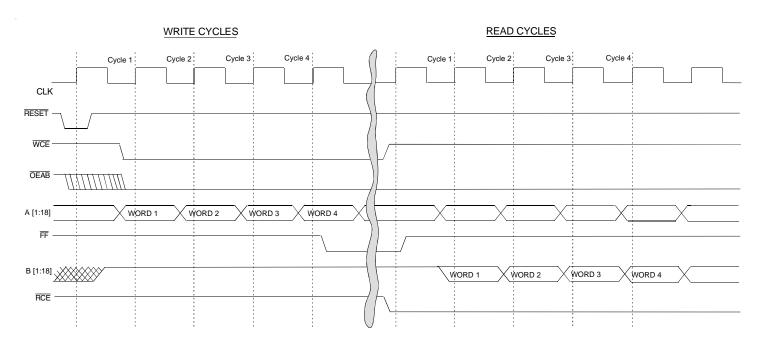
FUNCTION TABLE(1)

	Inputs				Outputs	
ŌĒBĀ	OEAB	CE	CLK	Ах	Вх	Notes
L	Н	L	↑	B to A	B Bus Activity	
L	Н	Н	↑	Q ⁽²⁾ (A)	B Bus Activity	
Н	Н	L	↑	Q ⁽²⁾ (A)Bus Hold		
Н	L	Χ	↑		A to B signal is delayed by 4 clocks	See timing diagram
L	L	L	↑		Q ⁽²⁾ (A) - 5 clocks	Case not recommended
L	L	Н	1	Q ⁽²⁾ (B)	Q ⁽²⁾ (A) - 5 clocks	Case not recommended
Н	Н	Н	1	Q ⁽²⁾ (A)Bus Hold	Q ⁽²⁾ (B) Bus hold	

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - ↑ = LOW-to-HIGH Transition
- 2. Level of Q before the indicated steady-state input conditions were established.

FUNCTIONAL DESCRIPTION


This device is useful as a read/write buffer for modular high end designs. It provides multi-level buffering in the write path and single deep buffering in the read path, and is suited to write back cache implementation. The read path provides a register for full synchronous operation.

The four deep FIFO uses one clock with two clock enable pins, \overline{WCE} and \overline{RCE} to clock data in and out. The FIFO has an external full flag which goes LOW when the FIFO is full. Internal read and write pointers keep track of the words stored in the FIFO. A write attempt to a full FIFO is ignored. An attempt to read from an empty FIFO will have no effect and the last read data

remains at the output of the FIFO. The FIFO may be reset by the synchronous RESET input. This resets the read and write pointers to the original "empty" condition and also sets all B outputs = 1. Simultaneous read and write attempts (clock data into FIFO as well as clock data out of FIFO) are possible except on FIFO empty and full boundaries. When the FIFO is empty, and a simultaneous read and write is attempted, the read is ignored while the write is executed. If the same is attempted when the FIFO is full, the write is ignored while the read is executed. Normal operation of the four deep FIFO in the write path is independent of the read path operation.

^{1.} These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

TIMING DIAGRAM

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Tes	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	T -	_	±5	μΑ
lıL							
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or Vo \le 5.$	5V	_	_	±50	μΑ
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		T -	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	T -	_	10	μΑ
Iссн Iссz			$3.6 \le VIN \le 5.5V^{(2)}$	 	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, o	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	- 75	_		μΑ
IBHL			VI = 0.8V	75	-	ı	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μA
IBHLO							

NOTES

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test C	onditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	7	2.4	_	
		Vcc = 3V	IOH = - 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

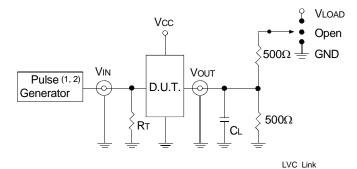
NOTE:

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation WCE Mode, OEAB = 0	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation \overline{RCE} Mode, $\overline{OEBA} = 0$			
CPD	Registered Channel (B to A)			
	Power Dissipation $\overline{OEBA} = 0$; $\overline{CE} = 0$			
CPD	Registered Channel			
	Power Dissipation OEBA = 0; CE = 1			

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

SWITCHING CHARACTERISTICS(1)


			Vcc	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
PROPAGATIO	N DELAYS	•		•	•	•	•
1	CLK to A1-18	Read path/register	_	7.5	_	6.5	ns
2	CLK to FF	Write path	_	8.2	_	7.2	ns
3	CLK to B1-18	Write path	_	7.5	_	6.5	ns
4	Output Skew ⁽²⁾	Write path	_	_	_	1	ns
SETUP & HOL	D TIMES						
5	A1-18, B1-18 to CLK (LOW to HIGH) Setup	Write path	2.1	_	1.8	_	ns
6	A1-18, B1-18 to CLK (LOW to HIGH) Hold	Write path	1.3	_	1	_	ns
7	CE (LOW) to CLK Setup	Read path/register	2.4	_	2.1	_	ns
8	CE (LOW) to CLK Hold	Read path/register	1.3	_	1	_	ns
9	WCE, RCE (LOW) to CLK Setup	Writepath	3.8	_	3	_	ns
10	WCE, RCE (LOW) to CLK Hold	Write path	1	_	0.7	_	ns
11	RESET (LOW) to CLK Setup	Write path	2.1	_	1.8	_	ns
12	RESET (LOW) to CLK Hold	Writepath	1.3	_	1	_	ns
ENABLE & DIS	SABLE TIMES			•		•	•
13	OEBA LOW to A1-18 Enable	Write path	_	7	_	6	ns
14	OEBA HIGH to A1-18 Disable	Write path	_	7	_	6	ns
15	OEAB LOW to B1-18 Enable	Readpath	_	7	_	6	ns
16	OEAB HIGH to B1-18 Disable	Readpath	_	7	_	6	ns
MINIMUM PUL	SE WIDTHS				-	-	
17	CLK HIGH or LOW Pulse Width	Write path/READ	6	_	5	_	ns
18	Clock cycle frequency		_	_	_	75	MHz
19	Clock cycle time		_	_	13	_	ns

NOTES

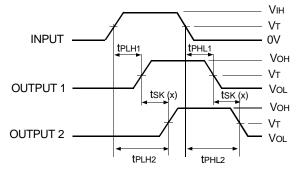
- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to + 85° C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

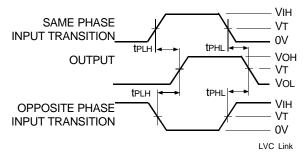

CL = Load capacitance: includes jig and probe capacitance.

 $\mbox{Rt} = \mbox{Termination}$ resistance: should be equal to \mbox{Zout} of the Pulse Generator. $\mbox{NOTES:}$

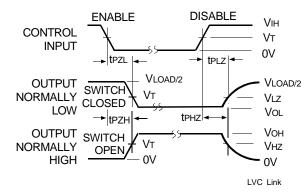
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

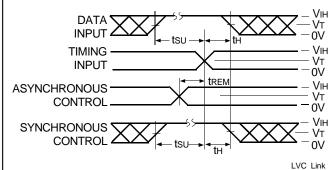


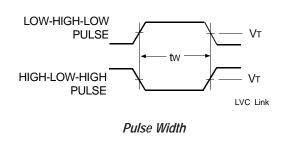
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsk(x)

NOTES:

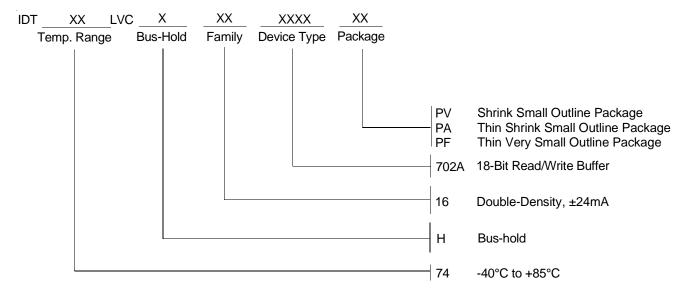
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459