
January 1994 Order Number: 271166-002

MILITARY i387TM SX
MATH COPROCESSOR

Military

Y Interfaces with Military i386TM SX
Microprocessor

Y Expands Military i386 SX CPU Data
Types to Include 32-, 64-, 80-Bit
Floating Point, 32-, 64-Bit Integers and
18-Digit BCD Operands

Y High Performance 80-Bit Internal
Architecture

Y Two to Three Times M8087/M80287
Performance at Equivalent Clock Speed

Y Implements ANSI/IEEE Standard 754-
1985 for Binary Floating-Point
Arithmetic

Y Fully compatible with the Military i387TM

Math Coprocessor. Implements all
Military i387 NPX architectural
enhancements over M8087 and M80287.

Y Upward Object-Code Compatible from
M8087 and M80287

Y Directly Extends Military i386 SX CPU
Instruction Set to Trigonometric,
Logarithmic, Exponential, and
Arithmetic Instructions for All Data
Types

Y Full-Range Transcendental Operations
for SINE, COSINE, TANGENT,
ARCTANGENT and LOGARITHM

Y Operates Independently of Real,
Protected, and Virtual-8086 Modes of
the Military i386 SX Microprocessor

Y Eight 80-Bit Numeric Registers, Usable
as Individually Addressable General
Registers or as a Register Stack

Y Available in a 68-Lead PGA Package
(see Packaging Specs: Order Ý231369)

Y Available in Three Product Grades:
Ð MIL-STD-883, b55§C to a125§C (TC)
Ð Military Temperature Only, b55§C to

a125§C (TC)
Ð Extended Temperature, b40§C to

a110§C (TC)

The Intel Military i387 SX Math Coprocessor is an extension to the Intel Military i386 microprocessor architec-
ture. The combination of the Military i387 SX with the i386 SX Microprocessor dramatically increases the
processing speed of computer application software which utilizes mathematical operations. This makes an
ideal computer workstation platform for applications such as financial modeling and spreadsheets, CAD/CAM,
or graphics.

The Military i387 SX Math Coprocessor adds over seventy mnemonics to the Military i386 SX Microprocessor
instruction set. Specific Military i387 SX math operations include logarithmic, arithmetic, exponential, and
trigonometric functions. The Military i387 SX supports integer, extended integer, floating point and BCD data
formats, and fully conforms to the ANSI/IEEE floating point standard.

The Military i387 SX Math Coprocessor is object code compatible with the Military i387 DX and upward object
code compatible from the M80287 and M8087 Math Coprocessors. The Military i387 SX is manufactured with
Intel’s CHMOS III technology and packaged in a 68-lead PGA package. A low power consumption option
allows use in portable applications.

NOTE:
References to devices within this document refer to the Military versions of those devices.

MILITARY i387TM SX MATH COPROCESSOR

Figure 0-1. Block Diagram

2
7
1
1
6
6
–
1

2

Military i387TM SX Math Coprocessor

CONTENTS PAGE CONTENTS PAGE

1.0 FUNCTIONAL DESCRIPTION ÀÀÀÀÀÀÀÀÀ 4

2.0 PROGRAMMING INTERFACE ÀÀÀÀÀÀÀÀÀ 5

2.1 Data Types ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

2.2 Numeric Operands ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

2.3 Register Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2.3.1 Data Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2.3.2 Tag Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2.3.3 Status Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

2.3.4 Control Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

2.3.5 Instruction and Data
Pointers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

2.4 Interrupt Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

2.5 Exception Handling ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

2.6 Initialization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

2.7 8087 and 80287 Compatibility ÀÀÀÀÀÀ 15

2.7.1 General Differences ÀÀÀÀÀÀÀÀÀÀÀ 15

2.7.2 Exceptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

3.0 HARDWARE INTERFACE ÀÀÀÀÀÀÀÀÀÀÀÀ 16

3.1 Signal Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

3.1.1 i386TM SX CPU Clock 2
(CPUCLK2) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

3.1.2 i387TM SX NPX Clock 2
(NUMCLK2) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

3.1.3 Clocking Mode (CKM) ÀÀÀÀÀÀÀÀÀ 19

3.1.4 System Reset (RESETIN) ÀÀÀÀÀÀ 20

3.1.5 Processor Extension Request
(PEREQ) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

3.1.6 Busy Status (BUSY) ÀÀÀÀÀÀÀÀÀÀÀ 20

3.1.7 Error Status (ERROR) ÀÀÀÀÀÀÀÀÀ 20

3.1.8 Data Pins (D15–D0) ÀÀÀÀÀÀÀÀÀÀÀ 20

3.1.9 Write/Read Bus Cycle
(W/R) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

3.1.10 Address Strobe (ADS) ÀÀÀÀÀÀÀÀ 20

3.1.11 Bus Ready Input (READY) ÀÀÀÀ 20

3.1.12 Ready Output (READYO) ÀÀÀÀÀ 20

3.1.13 Status Enable (STEN) ÀÀÀÀÀÀÀÀ 20

3.1.14 NPX Select 1 (NPS1) ÀÀÀÀÀÀÀÀÀ 21

3.1.15 NPX Select 2 (NPS2) ÀÀÀÀÀÀÀÀÀ 21

3.1.16 Command (CMD0) ÀÀÀÀÀÀÀÀÀÀÀ 21

3.1.17 System Power (VCC) ÀÀÀÀÀÀÀÀÀ 21

3.1.18 System Ground (VSS) ÀÀÀÀÀÀÀÀ 21

3.2 System Configuration ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

3.3 Processor Architecture ÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

3.3.1 Bus Control Logic ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

3.3.2 Data Interface and Control
Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

3.3.3 Floating-Point Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3.4 Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3.4.1 i387TM SX NPX Addressing ÀÀÀÀ 23

3.4.2 CPU/NPX Synchronization ÀÀÀÀ 23

3.4.3 Synchronous or
Asynchronous Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

3.4.4 Automatic Bus Cycle
Termination ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.0 BUS OPERATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

4.1 Nonpipelined Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀ 25

4.1.1 Write Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25

4.1.2 Read Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26

4.2 Pipelined Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27

4.3 Bus Cycles of Mixed Type ÀÀÀÀÀÀÀÀÀÀ 28

4.4 BUSY and PEREQ Timing
Relationship ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

5.0 ELECTRICAL DATA ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

5.1 Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀ 29

5.2 Operating Conditions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

5.3 DC Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29

5.4 AC Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

6.0 i387TM SX NPX EXTENSIONS TO
THE CPU’S INSTRUCTION SET ÀÀÀÀÀÀÀÀ 35

APPENDIX AÐCompatibility between
the 80287 and the 8087 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

3

MILITARY i387TM SX MATH COPROCESSOR

i386TM SX Microprocessor Registers

GENERAL REGISTERS
31 16 15 0

EAX
AX

AH AL

EBX
BX

BH BL

ECX
CX

CH CL

EDX
DX

DH DL

ESI SI

EDI DI

EBP BP

ESP SP

SEGMENT REGISTERS
15 0

CS

SS

DS

ES

FS

GS

31 0

EIP

EFLAGS

l i387TM SX NPX Data Registers
l Tag

Fieldl
79 78 64 63 0 1 0l

l R0 Sign Exponent Significand

l R1
l

R2l
l R3

l R4
l

R5l
l R6

l R7
l
l
l 15 0 47 0

l Control Register Instruction Pointer (in CPU)
l

Status Register Data Pointer (in CPU)l
l Tag Word

l
l
l
l
l
l
l
l
l

Figure 1-1. i386TM SX Microprocessor and i387TM SX Math Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The i387 SX Math Coprocessor Extension (NPX)
provides arithmetic instructions for a variety of nu-
meric data types. It also executes numerous built-in
transcendental functions (e.g. tangent, sine, cosine,
and log functions). The i387 SX NPX effectively ex-
tends the register and instruction set of its CPU for
existing data types and adds several new data types
as well. Figure 1-1 shows the model of registers visi-
ble to i386 SX Microprocessor and i387 SX Math
Coprocessor applications programs. Essentially, the
i387 SX Math Coprocessor can be treated as an ad-
ditional resource or an extension to the i386 SX Mi-
croprocessor. The i386 SX Microprocessor together
with a i387 SX NPX can be used as a single unified
system, the i386 SX Microprocessor and i387 SX
Math Coprocessor.

The i387 SX Numerics Coprocessor Extension
works the same whether the CPU is executing in
real-address mode, protected mode, or virtual-8086
mode. All references to memory for numerics data
or status information are performed by the CPU, and
therefore obey the memory-management and pro-
tection rules of the CPU mode currently in effect.
The i387 SX Numerics Coprocessor Extension
merely operates on instructions and values passed

to it by the CPU and therefore is not sensitive to the
processing mode of the CPU.

In real-address mode and virtual-8086 mode, the
i386 SX Microprocessor and i387 SX Math Coproc-
essor is completely upward compatible with soft-
ware for the 8086/8087 and 80286/80287 real-ad-
dress mode systems.

In protected mode, the i386 SX Microprocessor and
i387 SX Math Coprocessor is completely upward
compatible with software for the 80286/80287 pro-
tected mode system.

In all modes, the i386 SX Microprocessor and i387
SX Math Coprocessor is completely compatible with
software for the i386 Microprocessor/i387 Math Co-
processor system.

The only differences of operation that may appear
when 8086/8087 programs are ported to the pro-
tected-mode i386 SX Microprocessor and i387 SX
Math Coprocessor system (not using virtual-8086
mode) is in the format of operands for the adminis-
trative instructions FLDENV, FSTENV, FRSTOR,
and FSAVE. These instruction are normally used
only by exception handlers and operating systems,
not by applications programs.

4

MILITARY i387TM SX MATH COPROCESSOR

2.0 PROGRAMMING INTERFACE

The i387 SX NPX adds to an i386 SX Microproces-
sor system additional data types, registers, instruc-
tions, and interrupts specifically designed to facili-
tate high-speed numerics processing. To use the
i387 SX NPX requires no special programming tools,
because all new instructions and data types are di-
rectly supported by the assembler and compilers for
high-level languages. All i386 Microprocessor devel-
opment tools that support i387 NPX programs can
also be used to develop software for the i386 SX
Microprocessor and i387 SX Math Coprocessor. All
8086/8088 development tools that support the 8087
can also be used to develop software for the i386
SX Microprocessor and i387 SX Math Coprocessor
in real-address mode or virtual-8086 mode. All
80286 development tools that support the 80287
can also be used to develop software for the i386
SX Microprocessor and i387 SX Math Coprocessor.

The i387 SX NPX supports all i387 NPX instructions.
The i386 SX Microprocessor and i387 SX Math Co-
processor supports all the same programs and gives
the same results as an i386 Microprocessor and
i387 Math Coprocessor.

All communication between the CPU and the NPX is
transparent to applications software. The CPU auto-
matically controls the NPX whenever a numerics in-
struction is executed. All physical memory and virtu-
al memory of the CPU are available for storage of
the instructions and operands of programs that use
the NPX. All memory addressing modes, including
use of displacement, base register, index register,
and scaling, are available for addressing numerics
operands.

Section 7 at the end of this data sheet lists by class
the instructions that the i387 SX NPX adds to the
instruction set of an i386 SX Microprocessor system.

2.1 Data Types

Table 2-1 lists the seven data types that the NPX
supports and presents the format for each type. Op-
erands are stored in memory with the least signifi-
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad-
dress. For maximum system performance, all oper-
ands should start at physical-memory addresses
that correspond to the word size of the CPU; oper-
ands may begin at any other addresses, but will re-
quire extra memory cycles to access the entire oper-
and.

Internally, the NPX holds all numbers in the extend-
ed-precision real format. Instructions that load oper-
ands from memory automatically convert operands
represented in memory as 16-, 32-, or 64-bit inte-
gers, 32- or 64-bit floating-point numbers, or 18-digit
packed BCD numbers into extended-precision real
format. Instructions that store operands in memory
perform the inverse type conversion.

2.2 Numeric Operands

A typical NPX instruction accepts one or two oper-
ands and produces one (or sometimes two) results.
In two-operand instructions, one operand is the con-
tents of an NPX register, while the other may be a
memory location. The operands of some instructions
are predefined; for example, FSQRT always takes
the square root of the number in the top stack ele-
ment.

5

MILITARY i387TM SX MATH COPROCESSOR

Table 2-1. i387TM SX NPX Data Type Representation in Memory

271166–2

NOTES:
(1) S e Sign bit (0 e positive, 1 e negative)
(2) dn e Decimal digit (two per byte)
(3) X e Bits have no significance; NPX ignores when loading, zeros when storing
(4) U e Position of implicit binary point
(5) I e Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended REal: 16383 (3FFFH)

(7) Packed BCD: (b1)S (D17..D0)
(8) Real: (b1)S (2E-BIAS) (F0 F1...)

6

MILITARY i387TM SX MATH COPROCESSOR

2.3 Register Set

Figure 1-1 shows the i387 SX NPX register set.
When an NPX is present in a system, programmers
may use these registers in addition to the registers
normally available on the CPU.

2.3.1 DATA REGISTERS

i387 SX NPX computations use the NPX’s data reg-
isters. These eight 80-bit registers provide the equiv-
alent capacity of 20 32-bit registers. Each of the
eight data registers in the NPX is 80 bits wide and is
divided into ‘‘fields’’ corresponding to the NPX’s ex-
tended-precision real data type.

The NPX register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as individually addressable
registers. The TOP field in the status word identifies
the current top-of-stack register. A ‘‘push’’ operation
decrements TOP by one and loads a value into the
new top register. A ‘‘pop’’ operation stores the value
from the current top register and then increments
TOP by one. The NPX register stack grows ‘‘down’’
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2-1 shows. Each two-bit tag
represents one of the eight data registers. The prin-
cipal function of the tag word is to optimize the
NPX’s performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to identify special values (e.g. NaNs or denor-
mals) in the contents of a stack location without the
need to perform complex decoding of the actual
data.

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2-2 reflects the overall state of the NPX. It
may be read and inspected by programs.

Bit 15, the B-bit (busy bit) is included for 8087 com-
patibility only. It always has the same value as the
ES bit (bit 7 of the status word); it does not indicate
the status of the BUSY output of NPX.

Bits 13–11 (TOP) point to the NPX register that is
the current top-of-stack.

The four numeric condition code bits (C3–C0) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2-2
through 2-5.

15 0

TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 2-1. Tag Word

7

MILITARY i387TM SX MATH COPROCESSOR

271166–3

ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code.
TOP values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

.

.

.
111 e Register 7 is Top of Stack

For definitions of exceptions, refer to the section entitled ‘‘Exception Handling’’

Figure 2-2. Status Word

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR signal is as-
serted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1e1) and underflow (C1e0).

Figure 2-2 shows the six exception flags in bits 5–0
of the status word. Bits 5–0 are set to indicate that
the NPX has detected an exception while executing
an instruction. A later section entitled ‘‘Exception
Handling’’ explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5–0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR output of the NPX
is activated immediately.

8

MILITARY i387TM SX MATH COPROCESSOR

Table 2-2. Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0 e complete

Q2 Q0 Q1
1 e incomplete

or O/U

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison
Zero

Operand is not

FUCOM, FUCOMP, (see Table 2.4)
or O/U

comparable

FUCOMPP, FICOM, (Table 2.4)

FICOMP

FXAM Operand class Sign Operand class

(see Table 2.5) or O/U (Table 2.5)

FCHS, FABS, FXCH,

FINCSTP, FDECSTP,
Zero

Constant loads, UNDEFINED UNDEFINED

FXTRACT, FLD,
or O/U

FILD, FBLD,

FSTP (ext real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,
Roundup

FDIV, FDIVR, UNDEFINED UNDEFINED

FSUB, FSUBR,
or O/U

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED or O/U, 0 e complete

undefined 1 e incomplete

if C2 e 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,

FSTCW, FSTSW, UNDEFINED

FCLEX, FINIT,

FSAVE

O/U When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1e1) and underflow (C1e0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial remain-
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS,and FSIN-
COS, the reudction bit is set if the oeprand at the top of the stack is too large. In this case
the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

9

MILITARY i387TM SX MATH COPROCESSOR

Table 2-3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 C0

Incomplete Reduction:

1 X X X further interation required

for complete reduction

Q1 Q0 Q2 Q MOD8

0 0 0 0

0 1 0 1
Complete Reduction:

0
1 0 0 2

C0, C3, C1 contain three least
1 1 0 3

significant bits of quotient
0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 2-4. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 a Unsupported

0 0 0 1 a NaN

0 0 1 0 b Unsupported

0 0 1 1 b NaN

0 1 0 0 a Normal

0 1 0 1 a Infinity

0 1 1 0 b Normal

0 1 1 1 b Infinity

1 0 0 0 a 0

1 0 0 1 a Empty

1 0 1 0 b 0

1 0 1 1 b Empty

1 1 0 0 a Denormal

1 1 1 0 b Denormal

10

MILITARY i387TM SX MATH COPROCESSOR

271166–4

Precision Control
00Ð24 bits (single precision)
01Ð(reserved)
10Ð53 bits (double precision)
11Ð64 bits (extended precision)

Rounding Control
00ÐRound to nearest or even
01ÐRound down (toward b%)
10ÐRound up (toward a%)
11ÐChop (truncate toward zero)

Figure 2-3. Control Word

2.3.4 CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2-3 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
exception masking. Bits 5–0 of the control word
contain individual masks for each of the six excep-
tions that the NPX recognizes.

The high-order byte of the control word configures
the NPX operating mode, including precision, round-
ing, and infinity control.

The ‘‘infinity control bit’’ (bit 12) is not meaningful
to the i387 SX NPX, and programs must ignore its
value. To maintain compatibility with the 8087
and 80287, this bit can be programmed; however,
regardless of its value, the i387 SX NPX always
treats infinity in the affine sense (b% k a%).
This bit is initialized to zero both after a hardware
reset and after the FINIT instruction.

The rounding control (RC) bits (bits 11–10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

The precision control (PC) bits (bits 9–8) can be
used to set the NPX internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

11

MILITARY i387TM SX MATH COPROCESSOR

2.3.5 INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any exceptions detected by the NPX may be report-
ed after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the i386 SX Microprocessor and
i387 SX Math Coprocessor contains registers that
aid in diagnosis. These registers supply the address
of the failing instruction and the address of its nu-
meric memory operand (if appropriate).

The instruction and data pointers are provided for
user-written exception handlers. These registers are
actually located in the CPU, but appear to be located
in the NPX because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and

FRSTOR. Whenever the CPU executes a new ESC
instruction, it saves the address of the instruction
(including any prefixes that may be present), the ad-
dress of the operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the CPU (protected mode or real-address mode)
and depending on the operand-size attribute in ef-
fect (32-bit operand or 16-bit operand). (See Figures
2-4, 2-5, 2-6, and 2-7.) The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used
to transfer these values between the registers and
memory. Note that the value of the data pointer is
undefined if the prior ESC instruction did not have a
memory operand.

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

IP OFFSET C

00000 OPCODE 10..0 CS SELECTOR 10

DATA OPERAND OFFSET 14

RESERVED OPERAND SELECTOR 18

Figure 2-4. Instruction and Data Pointer Image in Memory, 32-bit Protected-Mode Format

12

MILITARY i387TM SX MATH COPROCESSOR

16-BIT PROTECTED MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

IP OFFSET 6

CS SELECTOR 8

OPERAND OFFSET A

OPERAND SELECTOR C

Figure 2-5. Instruction and Data Pointer Image in Memory, 16-bit Protected-Mode Format

32-BIT REAL-ADDRESS MODE FORMAT
31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

RESERVED INSTRUCTION POINTER 15..0 C

0 0 0 0 INSTRUCTION POINTER 31..16 0 OPCODE 10..0 10

RESERVED OPERAND POINTER 15..0 14

0 0 0 0 OPERAND POINTER 31..16 0 0 0 0 0 0 0 0 0 0 0 0 18

Figure 2-6. Instruction and Data Pointer Image in Memory, 32-bit Real-Mode Format

16-BIT REAL-ADDRESS MODE AND VIRTUAL 8086 MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

INSTRUCTION POINTER 15..0 6

IP19.16 0 OPCODE 10..0 8

OPERAND POINTER 15..0 A

DP 19.16 0 0 0 0 0 0 0 0 0 0 0 0 C

Figure 2-7. Instruction and Data Pointer Image in Memory, 16-bit Real-Mode Format

13

MILITARY i387TM SX MATH COPROCESSOR

Table 2-6. CPU Interrupt Vectors Reserved for NPX

Interrupt
Cause of Interrupt

Number

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CR0) was
set. EM e 1 indicates that software emulation of the instruction is required. When TS is set,
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current NPX
context may not belong to the current task.

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an
addressing limit (0FFFFH for expand-up segments, zero for expand-down segments) and
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does not
return reliable addresses. The segment overrun exception should be handled by executing an
FNINIT instruction (i.e. an FINIT without a preceding WAIT). The exception can be avoided by
never allowing numerics operands to cross the end of a segment.

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit
of its segment. The return address pushed onto the stack of the exception handler points at
the ESC instruction that caused the exception, including any prefixes. The NPX has not
executed this instruction; the instruction pointer and data pointer register refer to a previous,
correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data pointer
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including
prefixes). This instruction can be restarted after clearing the exception condition in the NPX.
FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt.

NOTE:
a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is
FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte operand that starts at valid offset
FFFCH will span addresses FFFC–FFFFH and 0000-0003H; however addresses FFFEH and FFFFH are not valid, because
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights.

2.4 Interrupt Description

CPU interrupts are used to report exceptional condi-
tions while executing numeric programs in either real
or protected mode. Table 2-6 shows these interrupts
and their functions.

2.5 Exception Handling

The NPX detects six different exception conditions
that can occur during instruction execution. Table 2-
7 lists the exception conditions in order of prece-
dence, showing for each the cause and the default
action taken by the NPX if the exception is masked
by its corresponding mask bit in the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR signal. When the CPU attempts
to execute another ESC instruction or WAIT, excep-
tion 16 occurs. The exception condition must be re-
solved via an interrupt service routine. The return
address pushed onto the CPU stack upon entry to
the service routine does not necessarily point to the
failing instruction nor to the following instruction. The
CPU saves the address of the floating-point instruc-
tion that caused the exception and the address of
any memory operand required by that instruction.

14

MILITARY i387TM SX MATH COPROCESSOR

2.6 Initialization

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an 80287 after RESET. For compatibility with
the 8087 and 80287, the bit that used to indicate
infinity control (bit 12) is set to zero; however, re-
gardless of its setting, infinity is treated in the affine
sense. After FNINIT or RESET, the status word is
initialized as follows:

All exceptions are set to zero.

Stack TOP is zero, so that after the first push the
stack top will be register seven (111B).

The condition code C3–C0 is undefined.

The B-bit is zero.

The tag word contains FFFFH (all stack locations
are empty).

The i386 SX Microprocessor and i387 SX Math Co-
processor initialization software must execute an
FNINIT instruction (i.e an FINIT without a preceding
WAIT) after RESET. The FNINIT is not strictly re-
quired for the 80287 software, but Intel recommends
its use to help ensure upward compatibility with oth-
er processors. After a hardware RESET, the ERROR
output is asserted to indicate that a i387 SX NPX is
present. To accomplish this, the IE and ES bits of
the status word are set, and the IM bit in the control
word is cleared. After FNINIT, the status word and
the control word have the same values as in an
80287 after RESET.

2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the i387 SX NPX and the 80287. Any migration from
the 8087 directly to the i387 SX NPX must also take
into account the differences between the 8087 and
the 80287 as listed in Appendix A.

Many changes have been designed into the i387 SX
NPX to directly support the IEEE standard in hard-
ware. These changes result in increased perform-
ance by eliminating the need for software that sup-
ports the standard.

2.7.1 GENERAL DIFFERENCES

The i387 SX NPX supports only affine closure for
infinity arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for g%); F2XM1 and
FPTAN accept a wider range of operands.

Rounding control is in effect for FLD constant .

Software cannot change entries of the tag word to
values (other than empty) that differ from actual reg-
ister contents.

After reset, FINIT, and incomplete FPREM, the i387
SX NPX resets to zero the condition code bits C3–
C0 of the status word.

Table 2-7. Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signalling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate for (0-%, 0/0, (a%) a (b%), etc.), or indefinite, or BCD indefinte

stack overflow/underflow (SF is also set)

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is %

nonzero number

Overflow The result is too large in magnitude to fit in the specified Result is largest finite

format value or %

Underflow The true result is nonzero but too small to be Result is denormalized

represented in the specified format, and, if underflow or zero

exception is masked, denormalization causes the loss of

accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g. 1/3); the result is rounded continues

(Precision according to the rounding mode.

15

MILITARY i387TM SX MATH COPROCESSOR

In conformance with the IEEE standard, the i387 SX
NPX does not support the special data formats
pseudozero, pseudo-NaN, pseudoinfinity, and un-
normal.

The denormal exception has a different purpose on
the i387 SX NPX. A system that uses the denormal-
exception handler solely to normalize the denormal
operands, would better mask the denormal excep-
tion on the i387 SX NPX. The i387 SX NPX automati-
cally normalizes denormal operands when the de-
normal exception is masked.

2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the i387 SX NPX:

1. When the overflow or underflow exception is
masked, the i387 SX NPX differs from the
80287 in rounding when overflow or underflow
occurs. The i387 SX NPX produces results that
are consistent with the rounding mode.

2. When the underflow exception is masked, the
i387 SX NPX sets its underflow flag only if there
is also a loss of accuracy during denormaliza-
tion.

3. Fewer invalid-operation exceptions due to de-
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be-
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece-
dence over all other exceptions.

7. When the denormal exception is masked, the
i387 SX NPX automatically normalizes denormal
operands. The 8087/80287 performs unnormal
arithmetic, which might produce an unnormal re-
sult.

8. When the operand is zero, the FXTRACT in-
struction reports a zero-divide exception and
leaves b% in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLD extended precision no longer reports de-
normal exceptions, because the instruction is
not numeric.

11. FLD single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a signalling NaN, FLD
single/double precision signals an invalid-oper-
and exception.

12. The i387 SX NPX only generates quiet NaNs (as
on the 80287); however, the i387 SX NPX distin-
guishes between quiet NaNs and signaling
NaNs. Signaling NaNs trigger exceptions when
they are used as operands; quiet NaNs do not
(except for FCOM, FIST, and FBSTP which also
raise IE for quiet NaNs).

13. When stack overflow occurs during FPTAN and
overflow is masked, both ST(0) and ST(1) con-
tain quiet NaNs. The 80287/8087 leaves the
original operand in ST(1) intact.

14. When the scaling factor is g%, the FSCALE
(ST(0), ST(1)) instruction behaves as follows
(ST(0) and ST(1) contain the scaled and scaling
operands respectively):

FSCALE(0,%) generates the invalid opera-
tion exception.

FSCALE(finite, b%) generates zero with the
same sign as the scaled operand.

FSCALE(finite, a%) generates % with the
same sign as the scaled operand.

The 8087/80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The i387 SX NPX returns signed infinity/zero as
the unmasked response to massive overflow/
underflow. The 8087 and 80287 support a limit-
ed range for the scaling factor; within this range
either massive overflow/underflow do not occur
or undefined results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface, an
overscore appearing over a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no overscore is
present over the signal, the signal is asserted when
at the high voltage level.

3.1 Signal Description

In the following signal descriptions, the i387 SX NPX
pins are grouped by function as shown by Table 3-1.
Table 3-1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. Refer to Figure 3-2 and Table 3-2 for pin
configuration.

16

MILITARY i387TM SX MATH COPROCESSOR

271166–5

Figure 3.1. Asynchronous Operation

Table 3-1. Pin Summary

Pin
Function

Active Input/ Referenced

Name State Output To...

Execution Control

CPUCLK2 i386TM SX Microprocessor CLocK 2 I

NUMCLK2 NPX CLocK 2 I

CKM NPX ClocKing Mode I

RESETIN System reset High I CPUCLK2

NPX Handshake

PEREQ Processor Extension REQuest High O STEN/CPUCLK2

BUSY Busy status Low O STEN/CPUCLK2

ERROR Error status Low O STEN/NUMCLK2

Bus Interface

D15–D0 Data pins High I/O CPUCLK2

W/R Write/Read bus cycle Hi/Lo I CPUCLK2

ADS ADdress Strobe Low I CPUCLK2

READY Bus ready input Low I CPUCLK2

READYO Ready output Low O STEN/CPUCLK2

Chip/Port Select

STEN STatus ENable High I CPUCLK2

NPS1 NPX select Ý1 Low I CPUCLK2

NPS2 NPX select Ý2 High I CPUCLK2

CMD0 CoMmanD Low I CPUCLK2

Power and Ground

VCC System power

VSS System ground

17

MILITARY i387TM SX MATH COPROCESSOR

Table 3-2

Mi387SX PGA Pin Cross Reference
(Sorted by Signal Name)

Mi387SX PGA Pin Cross Reference
(Sorted by Pin)

Signal Pin

W/R G11

VSS L9

VSS L10

VSS K6

VSS K5

VSS K3

VSS J10

VSS H2

VSS G10

VSS D1

VSS B9

VSS B6

VSS B5

VSS A6

VSS A3

VCC L6

VCC L4

VCC K9

VCC K8

VCC J11

VCC H11

VCC H1

VCC F11

VCC F1

VCC E10

VCC C2

VCC C10

VCC A7

VCC A5

VCC A4

STEN H10

RESETIN B11

READY C11

READYO B8

Signal Pin

PEREQ A8

NUMCLK2 B10

NPS2 E11

NPS1 F10

NC L2

NC K1

NC F2

NC B4

NC B3

NC B1

NC A2

NC A10

ERROR K11

D15 G1

D14 G2

D13 J1

D12 J2

D11 L8

D10 K7

D09 L7

D08 L5

D07 B2

D06 C1

D05 D2

D04 E1

D03 E2

D02 K4

D01 L3

D00 K2

CPUCLK2 A9

CMD0 D10

CKM B7

BUSY K10

ADS D11

Pin Signal

L10 VSS

L9 VSS

L8 D11

L7 D09

L6 VCC

L5 D08

L4 VCC

L3 D01

L2 NC

K11 ERROR

K10 BUSY

K9 VCC

K8 VCC

K7 D10

K6 VSS

K5 VSS

K4 D02

K3 VSS

K2 D00

K1 NC

J11 VCC

J10 VSS

J2 D12

J1 D13

H11 VCC

H10 STEN

H2 VSS

H1 VCC

G11 W/R

G10 VSS

G2 D14

G1 D15

F11 VCC

F10 NPS1

Pin Signal

F2 NC

F1 VCC

E11 NPS2

E10 VCC

E2 D03

E1 D04

D11 ADS

D10 CMD0

D2 D05

D1 VSS

C11 READY

C10 VCC

C2 VCC

C1 D06

B11 RESETIN

B10 NUMCLK2

B9 VSS

B8 READYO

B7 CKM

B6 VSS

B5 VSS

B4 NC

B3 NC

B2 D07

B1 NC

A10 NC

A9 CPUCLK2

A8 PEREQ

A7 VCC

A6 VSS

A5 VCC

A4 VCC

A3 VSS

A2 NC

18

MILITARY i387TM SX MATH COPROCESSOR

271166–18

The term ‘‘top view’’ means ‘‘as viewed when mounted in a printed-circuit board’’.

Figure 3-2. i387TM SX Math Coprocessor PGA Pinout ÐView from Pin Side

All output signals are tristate; they leave floating
state only when STEN is active. The output buffers
of the bidirectional data pins D15–D0 are also tri-
state; they leave floating state only during cycles
when the NPX is selected (i.e. when STEN, NPS1,
and NPS2 are all active).

3.1.1 i386TM SX CPU CLOCK 2 (CPUCLK2)

This input uses the CLK2 signal of the CPU to time
the bus control logic. Several other NPX signals are
referenced to the rising edge of this signal. When
CKM e 1 (synchronous mode) this pin also clocks
the data interface and control unit and the floating-
point unit of the NPX. This pin requires MOS-level
input. The signal on this pin is divided by two to pro-
duce the internal clock signal CLK.

3.1.2 i387TM SX NPX CLOCK 2 (NUMCLK2)

When CKM e 0 (asynchronous mode) this pin pro-
vides the clock for the data interface and control unit
and the floating-point unit of the NPX. In this case,
the ratio of the frequency of NUMCLK2 to the fre-
quency of CPUCLK2 must lie within the range 10:16
to 14:10. When CKM e 1 (synchronous mode) sig-
nals on this pin are ignored; CPUCLK2 is used in-
stead for the data interface and control unit and the
floating-point unit. This pin requires MOS-level input.

3.1.3 CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
VCC (HIGH), the NPX operates in synchronous
mode; when strapped to VSS (LOW), the NPX oper-
ates in asynchronous mode. These modes relate to

19

MILITARY i387TM SX MATH COPROCESSOR

clocking of the data interface and control unit and
the floating-point unit only; the bus control logic al-
ways operates synchronously with respect to the
CPU.

3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
NPX to terminate its present activity and to enter a
dormant state. RESETIN must remain active (HIGH)
for at least 40 NUMCLK2 periods.

The HIGH to LOW transitions of RESETIN must be
synchronous with CPUCLK2, so that the phase of
the internal clock of the bus control logic (which is
the CPUCLK2 divided by two) is the same as the
phase of the internal clock of the CPU. After RESE-
TIN goes LOW, at least 50 NUMCLK2 periods must
pass before the first NPX instruction is written into
the NPX. This pin should be connected to the CPU
RESET pin. Table 3-3 shows the status of the output
pins during the reset sequence. After a reset, all out-
put pins return to their inactive states.

Table 3-3. Output Pin Status during Reset

Pin Value Pin Name

HIGH READYO, BUSY

LOW PEREQ, ERROR

Tri-State OFF D15–D0

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the CPU that the
NPX is ready for data transfer to/from its data FIFO.
When all data is written to or read from the data
FIFO, PEREQ is deactivated. This signal always
goes inactive before BUSY goes inactive. This signal
is referenced to CPUCLK2. It should be connected
to the CPU PEREQ input.

3.1.6 BUSY STATUS (BUSY)

When active, this pin signals to the CPU that the
NPX is currently executing an instruction. This signal
is referenced to CPUCLK2. It should be connected
to the CPU BUSY pin.

3.1.7 ERROR STATUS (ERROR)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep-
tion has occurred. This signal can be changed to
inactive state only by the following instructions (with-
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. This pin is referenced to CPUCLK2. It
should be connected to the ERROR pin of the CPU.

3.1.8 DATA PINS (D15–D0)

These bidirectional pins are used to transfer data
and opcodes between the CPU and NPX. They are
normally connected directly to the corresponding
CPU data pins. HIGH state indicates a value of one.
D0 is the least significant data bit. Timings are refer-
enced to CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R)

This signal indicates to the NPX whether the CPU
bus cycle in progress is a read or a write cycle. This
pin should be connected directly to the CPU’s W/R
pin. HIGH indicates a write cycle; LOW a read cycle.
This input is ignored if any of the signals STEN,
NPS1, or NPS2 is inactive. Setup and hold times are
referenced to CPUCLK2.

3.1.10 ADDRESS STROBE (ADS)

This input, in conjunction with the READY input, indi-
cates when the NPX bus-control logic may sample
W/R and the chip-select signals. Setup and hold
times are referenced to CPUCLK2. This pin should
be connected to the ADS pin of the CPU.

3.1.11 BUS READY INPUT (READY)

This input indicates to the NPX when a CPU bus
cycle is to be terminated. It is used by the bus-con-
trol logic to trace bus activities. Bus cycles can be
extended indefinitely until terminated by READY.
This input should be connected to the same signal
that drives the CPU’s READY input. Setup and hold
times are referenced to CPUCLK2.

3.1.12 READY OUTPUT (READYO)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re-
quired, this pin must directly or indirectly drive the
READY input of the CPU. Refer to the section enti-
tled ‘‘Bus Operation’’ for details. This pin is activated
only during bus cycles that select the NPX. This sig-
nal is referenced to CPUCLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the NPX. When
inactive, this pin forces, BUSY, PEREQ, ERROR,
and READYO outputs into floating state. D15–D0
are normally floating; they leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other

20

MILITARY i387TM SX MATH COPROCESSOR

chip-select inputs. STEN makes it easier to do on-
board testing (using the overdrive method) of other
chips in systems containing the NPX. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on-
board testing. STEN should be connected to VCC.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1, NPS2, and CMD0 (i.e. if STEN
changes state during an NPX bus cycle, it must
change state during the same CLK period as the
NPS1, NPS2, and CMD0 signals).

3.1.14 NPX SELECT 1 (NPS1)

When active (along with STEN and NPS2) in the first
period of a CPU bus cycle, this signal indicates that
the purpose of the bus cycle is to communicate with
the NPX. This pin should be connected directly to
the M/IO pin of the CPU, so that the NPX is selected
only when the CPU performs I/O cycles. Setup and
hold times are referenced to CPUCLK2.

3.1.15 NPX SELECT 2 (NPS2)

When active (along with STEN and NPS1) in the first
period of a CPU bus cycle, this signal indicates that
the purpose of the bus cycle is to communicate with
the NPX. This pin should be connected directly to
the A23 pin of the CPU, so that the NPX is selected
only when the CPU issues one of the I/O addresses
reserved for the NPX (8000F8H, 8000FCH or
8000FEH which is treated as 8000FCH by the NPX).
Setup and hold times are referenced to CPUCLK2.

3.1.16 COMMAND (CMD0)

During a write cycle, this signal indicates whether an
opcode (CMD0 active) or data (CMD0 inactive) is
being sent to the NPX. During a read cycle, it indi-
cates whether the control or status register (CMD0
active) or a data register (CMD0 inactive) is being
read. CMD0 should be connected directly to the A2
output of the CPU. Setup and hold times are refer-
enced to CPUCLK2.

3.1.17 SYSTEM POWER (VCC)

System power provides the a5V DC supply input.
All VCC pins should be tied together on the circuit
board and local decoupling capacitors should be
used between VCC and VSS.

3.1.18 SYSTEM GROUND (VSS)

All VSS pins should be tied together on the circuit
board and local decoupling capacitors should be
used between VCC and VSS.

3.2 System Configuration

The i387 SX Math Coprocessor is designed to inter-
face with the i386 SX Microprocessor as shown by
Figure 3-3. A dedicated communication protocol
makes possible high-speed transfer of opcodes and
operands between the CPU and NPX. The i387 SX
NPX is designed so that no additional components
are required for interface with the CPU. Most control
pins of the NPX are connected directly to pins of the
CPU.

The interface between the NPX and the CPU has
these characteristics:

The NPX shares the local bus of the i386 SX Mi-
croprocessor.

The CPU and NPX share the same reset signals.
They may also share the same clock input; how-
ever, for greatest performance, an external oscil-
lator may be needed.

The corresponding BUSY, ERROR, and PEREQ
pins are connected together.

The NPX NPS1 and NPS2 inputs are connected
to the latched CPU M/IO and A23 outputs re-
spectively. For coprocessor cycles, M/IO is al-
ways LOW and A23 always HIGH.

The NPX input CMD0 is connected to the latched
A2 output. The i386 SX Microprocessor gener-
ates address 8000F8H when writing a command
and address 8000FCH or 8000FEH (treated as
8000FCH by the i387 SX NPX) when writing or
reading data. It does not generate any other ad-
dresses during NPX bus cycles.

3.3 Processor Architecture

As shown by the block diagram on the front page,
the i387 SX NPX is internally divided into three sec-
tions: the bus control logic (BCL), the data interface
and control unit, and the floating point unit (FPU).
The FPU (with the support of the control unit which
contains the sequencer and other support units) ex-
ecutes all numerics instructions. The data interface
and control unit is responsible for the data flow to
and from the FPU and the control registers, for re-
ceiving the instructions, decoding them, and se-
quencing the microinstructions, and for handling
some of the administrative instructions. The BCL is
responsible for CPU bus tracking and interface. The
BCL is the only unit in the NPX that must run syn-
chronously with the CPU; the rest of the NPX can
run asynchronously with respect to the CPU.

21

MILITARY i387TM SX MATH COPROCESSOR

271166–6

Figure 3-3. i386TM SX CPU and i387TM SX NPX System Configuration

3.3.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
I/O bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/O addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the NPX and
transferring outputs from the NPX to memory.

3.3.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control executes it independently of the FPU and the
sequencer. The data interface and control unit is the
one that generates the BUSY, PEREQ, and ERROR
signals that synchronize NPX activities with the CPU.

22

MILITARY i387TM SX MATH COPROCESSOR

3.3.3 FLOATING-POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.4 Bus Cycles

The pins STEN, NPS1, NPS2, CMD0, and W/R iden-
tify bus cycles for the NPX. Table 3-4 defines the
types of NPX bus cycles.

3.4.1 i387TM SX NPX ADDRESSING

The NPS1, NPS2, and CMD0 signals allow the NPX
to identify which bus cycles are intended for the
NPX. The NPX responds to I/O cycles when the I/O
address is 8000F8H, 8000FCH or 8000FEH (treated
as 8000FCH by the i387 SX NPX). The NPX re-
sponds to I/O cycles when bit 23 of the I/O address
is set. In other words, the NPX acts as an I/O device
in a reserved I/O address space.

Because A23 is used to select the i387 SX Numerics
Coprocessor Extension for data transfers, it is not
possible for a program running on the CPU to ad-
dress the NPX with an I/O instruction. Only ESC in-
structions cause the CPU to communicate with the
NPX.

3.4.2 CPU/NPX SYNCHRONIZATION

The pins BUSY, PEREQ, and ERROR are used for
various aspects of synchronization between the
CPU and the NPX.

BUSY is used to synchronize instruction transfer
from the CPU to the NPX. When the NPX recognizes
an ESC instruction, it asserts BUSY. For most ESC
instructions, the CPU waits for the NPX to deassert
BUSY before sending the new opcode.

The NPX uses the PEREQ pin of the CPU to signal
that the NPX is ready for data transfer to or from its
data FIFO. The NPX does not directly access mem-
ory; rather, the CPU provides memory access serv-
ices for the NPX. (For this reason, memory access
on behalf of the NPX always obeys the protection
rules applicable to the current CPU mode.) Once the
CPU initiates an NPX instruction that has operands,
the CPU waits for PEREQ signals that indicate when
the NPX is ready for operand transfer. Once all oper-
ands have been transferred (or if the instruction has
no operands) the CPU continues program execution
while the NPX executes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In the i386 SX Microprocessor
and i387 SX Math Coprocessor systems, however,
WAIT instructions are required only for operand syn-
chronization; namely, after NPX stores to memory
(except FSTSW and FSTCW) or load from memory.
(In 80286/80287 systems, WAIT is required before
FLDENV and FRSTOR; with the i386 SX Microproc-
essor and i387 SX Math Coprocessor, WAIT is not
required in these cases.) Used this way, WAIT en-
sures that the value has already been written or read
by the NPX before the CPU reads or changes the
value.

Once it has started to execute a numerics instruction
and has transferred the operands from the CPU, the
NPX can process the instruction in parallel with and
independent of the host CPU. When the NPX de-
tects an exception, it asserts the ERROR signal,
which causes a CPU interrupt.

3.4.3 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the NPX (the FPU) can operate
either directly from the CPU clock (synchronous
mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the NPX is synchronized with the CPU

Table 3-4. Bus Cycle Definition

STEN NPS1 NPS2 CMD0 W/R Bus Cycle Type

0 x x x x NPX not selected and all outputs in floating state

1 1 x x x NPX not selected

1 x 0 x x NPX not selected

1 0 1 0 0 CW or SW read from NPX

1 0 1 0 1 Opcode write to NPX

1 0 1 1 0 Data read from NPX

1 0 1 1 1 Data write to NPX

23

MILITARY i387TM SX MATH COPROCESSOR

clock. Use of asynchronous mode allows the CPU
and the FPU section of the NPX to run at different
speeds. In this case, the ratio of the frequency of
NUMCLK2 to the frequency of CPUCLK2 must lie
within the range 10:16 to 14:10. Use of synchronous
mode eliminates one clock generator from the board
design.

3.4.4 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYO can drive the CPU’s READY input.
If this pin is used, it should be connected to the logic
that ORs all READY outputs from peripherals on the
CPU bus. READYO is asserted by the NPX only dur-
ing I/O cycles that select the NPX. Refer to Section
4.0 ‘‘Bus Operation’’ for details.

4.0 BUS OPERATION

With respect to bus interface, the i387 SX NPX is
fully synchronous with the CPU. Both operate at the
same rate, because each generates its internal CLK
signal by dividing CPUCLK2 by two. Furthermore,
both internal CLK signals are in phase, because they
are synchronized by the same RESETIN signal.

A bus cycle for the NPX starts when the CPU acti-
vates ADS and drives new values on the address
and cycle-definition lines. The NPX examines the ad-
dress and cycle-definition lines in the same CLK pe-
riod during which ADS is activated. This CLK period
is considered the first CLK of the bus cycle. During
this first CLK period, the NPX also examines the
R/W input signal to determine whether the cycle is a
read or a write cycle and examines the CMD0 input
to determine whether an opcode, operand, or con-
trol/status register transfer is to occur.

The i387 SX NPX supports both pipelined (i.e. over-
lapped) and nonpipelined bus cycles. A nonpipelined
cycle is one for which the CPU asserts ADS when no
other NPX bus cycle is in progress. A pipelined bus
cycle is one for which the CPU asserts ADS and
provides valid next-address and control signals be-
fore the prior NPX cycle terminates. The CPU may
do this as early as the second CLK period after as-
serting ADS for the prior cycle. Pipelining increases
the availability of the bus by at least one CLK period.
The i387 SX NPX supports pipelined bus cycles in
order to optimize address pipelining by the CPU for
memory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 4-1 illustrates the states and
state transitions for NPX bus cycles:

TI is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after every nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

TRS is the READY-sensitive state. Different types
of bus cycles may require a minimum of one or
two successive TRS states. The bus logic re-
mains in TRS state until READY is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY, thereby causing additional successive
TRS states.

TP is the first state for every pipelined bus cycle.
This state is not used by nonpipelined cycles.

Note that the bus logic tracks bus state regardless
of the values on the chip/port select pins.

271166–7

Figure 4-1. Bus State Diagram

The READYO output of the NPX indicates when an
NPX bus cycle may be terminated if no extra wait
states are required. For all write cycles (except
those for the instructions FLDENV and FRSTOR),
READYO is always asserted during the first TRS
state, regardless of the number of wait states. For all
read cycles and write cycles for FLDENV and
FRSTOR, READYO is always asserted in the sec-
ond TRS state, regardless of the number of wait
states. These rules apply to both pipelined and non-
pipelined cycles. Systems designers may use
READYO in one of the following ways:

1. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READY inputs of the CPU and NPX.

2. Use it as one input to a wait-state generator.

24

MILITARY i387TM SX MATH COPROCESSOR

The following sections illustrate different types of
i387 SX NPX bus cycles. Because different instruc-
tions have different amounts of overhead before, be-
tween, and after operand transfer cycles, it is not
possible to represent in a few diagrams all of the
combinations of successive operand transfer cycles.
The following bus-cycle diagrams show memory cy-
cles between NPX operand-transfer cycles. Note
however that, during FRSTOR, some consecutive
accesses to the NPX do not have intervening memo-
ry accesses. For the timing relationship between op-
erand transfer cycles and opcode write or other
overhead activities, see the figure ‘‘Other Parame-
ters’’ in section 5.

4.1 Nonpipelined Bus Cycles

Figure 4-2 illustrates bus activity for consecutive
nonpipelined bus cycles.

At the second clock of the bus cycle, the NPX enters
the TRS state. During this state, it samples the
READY input and stays in this state as long as
READY is inactive.

4.1.1 WRITE CYCLE

In write cycles, the NPX drives the READYO signal
for one CLK period during the second CLK period of
the cycle (i.e. the first TRS state); therefore, the fast-
est write cycle takes two CLK periods (see cycle 2 of
Figure 4-2). For the instructions FLDENV and
FRSTOR, however, the NPX forces a wait state by
delaying the activation of READYO to the second
TRS state (not shown in Figure 4-2).

The NPX samples the D15–D0 inputs into data
latches at the falling edge of CLK as long as it stays
in TRS state.

271166–8

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead.

Figure 4-2. Nonpipelined Read and Write Cycles

25

MILITARY i387TM SX MATH COPROCESSOR

When READY is asserted, the NPX returns to the
idle state. Simultaneously with the NPX’s entering
the idle state, the CPU may assert ADS again, sig-
naling the beginning of yet another cycle.

4.1.2 READ CYCLE

At the rising edge of CLK in the second CLK period
of the cycle (i.e. the first TRS state), the NPX starts
to drive the D15–D0 outputs and continues to drive
them as long as it stays in TRS state.

At least one wait state must be inserted to ensure
that the CPU latches the correct data. Because the
NPX starts driving the data bus only at the rising
edge of CLK in the second clock period of the bus
cycle, not enough time is left for the data signals to

propagate and be latched by the CPU before the
next falling edge of CLK. Therefore, the NPX does
not drive the READYO signal until the third CLK peri-
od of the cycle. Thus, if the READYO output drives
the CPU’s READY input, one wait state is automati-
cally inserted.

Because one wait state is required for NPX reads,
the minimum length of an NPX read cycle is three
CLK periods, as cycle 3 of Figure 4-2 shows.

When READY is asserted, the NPX returns to the
idle state. Simultaneously with the NPX’s entering
the idle state, the CPU may assert ADS again, sig-
naling the beginning of yet another cycle. The tran-
sition from TRS state to idle state causes the NPX to
put the tristate D15–D0 outputs into the floating
state, allowing another device to drive the data bus.

271166–9

Cycle 1–Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY and ADS are sampled active at the end of a TRS state
of the current cycle.

Figure 4-3. Fastest Transitions to and from Pipelined Cycles

26

MILITARY i387TM SX MATH COPROCESSOR

4.2 Pipelined Bus Cycles

Because all the activities of the NPX bus interface
occur either during the TRS state or during the tran-
sitions to or from that state, the only difference be-
tween a pipelined and a nonpipelined cycle is the
manner of changing from one state to another. The
exact activities during each state are detailed in the
previous section ‘‘Nonpipelined Bus Cycles’’.

When the CPU asserts ADS before the end of a bus
cycle, both ADS and READY are active during a TRS
state. This condition causes the NPX to change to a
different state named TP. One clock period after a
TP state, the NPX always returns to TRS state. In

consecutive pipelined cycles, the NPX bus logic
uses only the TRS and TP states.

Figure 4-3 shows the fastest transitions into and out
of the pipelined bus cycles. Cycle 1 in the figure rep-
resents a nonpipelined cycle. (Nonpipelined write
cycles with only one TRS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY is asserted before the earliest pos-
sible assertion of ADS for the next cycle.)

Figure 4-4 shows pipelined write and read cycles
with one additional TRS state beyond the minimum
required. To delay the assertion of READY requires
external logic.

271166–10

NOTE:
1. Cycles between operand write to the NPX and storing result.

Figure 4-4. Pipelined Cycles with Wait States

27

MILITARY i387TM SX MATH COPROCESSOR

4.3 Bus Cycles of Mixed Type

When the NPX bus logic is in the TRS state, it distin-
guishes between nonpipelined and pipelined cycles
according to the behavior of ADS and READY. In a
nonpipelined cycle, only READY is activated, and
the transition is from TRS state to idle state. In a
pipelined cycle, both READY and ADS are active,
and the transition is first from TRS state to TP state,
then, after one clock period, back to TRS state.

4.4 BUSY and PEREQ Timing
Relationship

Figure 4-5 shows the activation of BUSY at the be-
ginning of instruction execution and its deactivation
upon completion of the instruction. PEREQ is acti-
vated within this interval. If ERROR (not shown in
the figure) is ever asserted, it would be asserted at
least six CPUCLK2 periods after the deactivation of
PEREQ and would be deasserted at least six
CPUCLK2 periods before the deactivation of BUSY.
Figure 4-5 also shows that STEN is activated at the
beginning of an NPX bus cycle.

271166–11

NOTES:
1. Instruction dependent.
2. PEREQ is an asynchronous input to the i386TM Microprocessor; it may not be asserted (instruction dependent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 4-5. STEN, BUSY, and PEREQ Timing Relationships

28

MILITARY i387TM SX MATH COPROCESSOR

5.0 ELECTRICAL DATA

5.1 Absolute Maximum Ratings

NOTE:
Stresses above those listed may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not im-

plied. Exposure to absolute maximum rating condi-
tions for extended periods may affect device reliabili-
ty.

Case Temperature TC
under BiasÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀb55§C to a125§C

Storage Temperature ÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on Any Pin

with Respect to GroundÀÀÀÀÀb0.5 to VCC a 0.5V

Power DissipationÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5W

5.2 Operating Conditions

Table 5-1

MIL-STD-883

Symbol Description Min Max Units

TC Case Temperature (Instant On) b55 a125 §C
VCC Digital Supply Voltage 4.75 5.25 V

Extended Temperature

Symbol Description Min Max Units

TC Case Temperature (Instant On) b40 a110 §C
VCC Digital Supply Voltage 4.75 5.25 V

Military Temperature Only (MTO)

Symbol Description Min Max Units

TC Case Temperature (Instant On) b55 a125 §C
VCC Digital Supply Voltage 4.75 5.25 V

5.3 DC Characteristics (Over Specified Operating Conditions)

Table 5-2. DC Specifications

Symbol Parameter Min Max Units Test Conditions

VIL Input LO Voltage b0.3* a0.8 V (Note 1)

VIH Input HI Voltage 2.0 VCCa0.3* V (Note 1)

VCL CPUCLK2 and NUMCLK2 b0.3* a0.8 V

Input LO Voltage

VCH CPUCLK2 and NUMCLK2 VCCb0.8 VCCa0.3* V

Input HI Voltage

29

MILITARY i387TM SX MATH COPROCESSOR

Table 5-2. DC Specifications (Continued)

Symbol Parameter Min Max Units Test Conditions

VOL Output LO Voltage 0.45 V (Note 2)

VOH Output HI Voltage 2.4 V (Note 3)

VOH Output HI Voltage VCCb0.8 V (Note 4)

ICC Power Supply Current

NUMCLK2 e 40 MHz 300 mA (Note 5)

NUMCLK2 e 32 MHz 250 mA (Note 5)

NUMCLK2 e 2 MHz 100 mA (Note 5)

ILI Input Leakage Current g15 mA 0V s VIN s VCC

ILO I/O Leakage Current g15 mA 0.45V s VO s VCC

CIN Input Capacitance 10* pF fc e 1MHz

CO I/O or Output Capacitance 12* pF fc e 1MHz

CCLK Clock Capacitance 20* pF fc e 1MHz

NOTES:
*Guaranteed, not tested.
1. This parameter is for all inputs, excluding the clock inputs.
2. This parameter is measured at IOL as follows: data e 4.0 mA

READY0, ERROR, BUSY, PEREQ e 2.5 mA
3. This parameter is measured at IOH as follows: data e 1.0 mA

READY0, ERROR, BUSY, PEREQ e 0.6 mA
4. This parameter is measured at IOH as follows: data e 1 mA

READY0, ERROR, BUSY, PEREQ e 0.12 mA
5. ICC is measured at steady state, 50 pF capacitive loading on the outputs, and worst-case DC level at the inputs;
CPUCLK2 at the same frequency as NUMCLK2.

5.4 AC Characteristics (Over Specified Operating Conditions)

Table 5-3a. Combinations of Bus Interface and Execution Speeds

Functional Block 80387SX-16 80387SX-20

Bus Interface Unit (MHz) 16 20

Execution Unit (MHz) 16 20

Table 5-3b. Timing Requirements of Execution Unit

Pin Symbol Parameter

16 MHz 20 MHz

Conditions

Test Refer to

FigureMin Max Min Max

(ns) (ns) (ns) (ns)

NUMCLK2 t1 Period 31.25 500 25 500 2.0V 5.1

NUMCLK2 t2a* High Time 7 6 2.0V

NUMCLK2 t2b* High Time 3 3 VCC b 0.8V

NUMCLK2 t3a* Low Time 7 6 2.0V

NUMCLK2 t3b* Low Time 5 4 0.8V

NUMCLK2 t4* Fall Time 8 8 From VCC b 0.8V to 0.8V (Note 1)

NUMCLK2 t5* Rise Time 8 8 From 0.8V to VCC b 0.8V

NOTE:
*Guaranteed, not tested.
1. If not used (CKM e 1), tie LOW.

30

MILITARY i387TM SX MATH COPROCESSOR

Table 5-3c. Timing Requirements of Bus Interface Unit

Pin Symbol Parameter

16 MHz 20 MHz

Conditions

Test Refer to

Figure

(1.5V) (1.5V)

Min Max Min Max

(ns) (ns) (ns) (ns)

CPUCLK2 t1 Period 31.25 500 25 500 2.0V 5.1

CPUCLK2 t2a* High Time 7 6 2.0V

CPUCLK2 t2b* High Time 3 3 VCC b 0.8V

CPUCLK2 t3a* Low Time 7 6 2.0V

CPUCLK2 t3b* Low Time 5 4 0.8V

CPUCLK2 t4* Fall Time 8 8 From VCC b 0.8V to 0.8V

CPUCLK2 t5* Rise Time 8 8 From 0.8V to VCC b 0.8V

CPUCLK2/ Ratio 10/16 14/10

NUMCLK2

READYO t7 Out Delay 4 34 3 31 CL e 75 pF 5.2

READYO t7 Out Delay 4 31 3 27 CL e 25 pF**
PEREQ t7 Out Delay 5 34 5 34 CL e 75 pF

BUSY t7 Out Delay 5 34 5 29 CL e 75 pF

ERROR t7 Out Delay 5 34 5 34 CL e 75 pF

D15–D0 t8 Out Delay 1 54 1 54 CL e 120 pF 5.3

D15–D0 t10 Setup Time 11 11

D15–D0 t11 Hold Time 11 11

D15–D0 t12*** Float Time 6 33 6 27 CL e 120 pF

PEREQ t13*** Float Time 1 60 1 50 CL e 75 pF 5.5

BUSY t13*** Float Time 1 60 1 50 CL e 75 pF

ERROR t13*** Float Time 1 60 1 50 CL e 75 pF

READYO t13*** Float Time 1 60 1 50 CL e 75 pF

ADS t14 Setup Time 26 21 5.3

ADS t15 Hold Time 4 4

W/R t14 Setup Time 26 21

W/R t15 Hold Time 4 4

READY t16 Setup Time 19 12 5.3

READY t17 Hold Time 4 3

CMD0 t16 Setup Time 21 19

CMD0 t17 Hold Time 2 2

NPS1, NPS2 t16 Setup Time 21 19

NPS1, NPS2 t17 Hold Time 2 2

STEN t16 Setup Time 21 21

STEN t17 Hold Time 2 2

RESETIN t18 Setup Time 13 11 5.4

RESETIN t19 Hold Time 3 3

NOTES:
*Guaranteed, not tested.
**Not tested at 25 pf.
***Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested.

These AC Characteristics are preliminary and subject to change.

31

MILITARY i387TM SX MATH COPROCESSOR

271166–12

Figure 5-1. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output

271166–13

Figure 5-2. Output Signals

32

MILITARY i387TM SX MATH COPROCESSOR

271166–14

Figure 5-3. Input and I/O Signals

271166–15

NOTE:
The second internal processor phase following RESET high to low transition is PH2.

Figure 5-4. RESET Signal

33

MILITARY i387TM SX MATH COPROCESSOR

271166–16

Figure 5-5. Float from STEN

Table 5-4. Other Parameters

Pin Symbol Parameter Min Max Units

RESETIN t30 Duration 40 NUMCLK2

RESETIN t31 RESETIN inactive to 1st opcode write 50 NUMCLK2

BUSY t32 Duration 6 CPUCLK2

BUSY, ERROR t33 ERROR (in)active to BUSY inactive 6 CPUCLK2

PEREQ, ERROR t34 PEREQ inactive to ERROR active 6 CPUCLK2

READY, BUSY t35 READY active to BUSY active 4 4 CPUCLK2

READY t36 Minimum time from opcode write to 4 CPUCLK2

opcode/operand write

READY t37 Minimum time from operand write to 4 CPUCLK2

operand write

34

MILITARY i387TM SX MATH COPROCESSOR

271166–17

* In NUMCLK2’s
** or last operand

NOTE:
1. Memory read (operand) cycle is not shown.

Figure 5-6. Other Parameters

6.0 i387TM SX NPX EXTENSIONS TO
THE CPU’S INSTRUCTION SET

Instructions for the i387 SX NPX assume one of the
five forms shown in Table 6-1. In all cases, instruc-
tions are at least two bytes long and begin with the
bit pattern 11011B, which identifies the ESCAPE
class of instruction. Instructions that refer to memory
operands specify addresses using the CPU’s ad-
dressing modes.

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of CPU instructions (refer to Pro-
grammer’s Reference Manual for the CPU). SIB

(Scale Index Base) byte and DISP (displacement)
are optionally present in instructions that have MOD
and R/M fields. Their presence depends on the val-
ues of MOD and R/M, as for instructions of the CPU.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quests delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and R/M fields
that call for both base and index registers, add one
clock.

35

MILITARY i387TM SX MATH COPROCESSOR

Table 6-1. Instruction Formats

Instruction Optional

First Byte Second Byte
Fields

1 11011 OPA 1 MOD 1 OPB R/M SIB DISP

2 11011 MF OPA MOD OPB* R/M SIB DISP

3 11011 d P OPA 1 1 OPB* ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0
OP e Instruction opcode, possibly split into two fields OPA and OPB
MF e Memory Format

00Ð32-bit real
01Ð32-bit integer
10Ð64-bit real
11Ð16-bit integer

d e Destination
0ÐDestination is ST(0)
1ÐDestination is ST(i)

R XOR d e 0ÐDestination (op) Source
R XOR d e 1ÐSource (op) Destination
*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit
P e POP

0ÐDo not pop stack
1ÐPop stack after operation

ESC e 11011
ST(i) e Register stack element i

000 e Stack top
001 e Second stack element

.

.

.
111 e Eighth stack element

36

MILITARY i387TM SX MATH COPROCESSOR

i387TM SX NPX Extension to the i386TM SX Microprocessor Instruction Set

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–6 Real Integer Real Integer

DATA TRANSFER

FLD e Loada

Integer/real memory to ST(0) ESC MF 1 MOD 000 R/M SIB/DISP 24 49–56 33 61–65

Long integer memory to ST(0) ESC 111 MOD 101 R/M SIB/DISP 64–75

Extended real memory to ST(0) ESC 011 MOD 101 R/M SIB/DISP 52

BCD memory to ST(0) ESC 111 MOD 100 R/M SIB/DISP 274–283

ST(i) to ST(0) ESC 001 11000 ST(i) 14

FST e Store

ST(0) to integer/real memory ESC MF 1 MOD 010 R/M SIB/DISP 49 84–98 55 82–95

ST(0) to ST(i) ESC 101 11010 ST(i) 11

FSTP e Store and Pop

ST(0) to integer/real memory ESC MF 1 MOD 011 R/M SIB/DISP 49 84–98 55 82–95

ST(0) to long integer memory ESC 111 MOD 111 R/M SIB/DISP 90–107

ST(0) to extended real ESC 011 MOD 111 R/M SIB/DISP 63

ST(0) to BCD memory ESC 111 MOD 110 R/M SIB/DISP 522–544

ST(0) to ST(i) ESC 101 11011 ST (i) 12

FXCH e Exchange

ST(i) and ST(0) ESC 001 11001 ST(i) 18

COMPARISON

FCOM e Compare

Integer/real memory to ST(0) ESC MF 0 MOD 010 R/M SIB/DISP 30 60–67 39 71–75

ST(i) to ST(0) ESC 000 11010 ST(i) 24

FCOMP e Compare and pop

Integer/real memory to ST ESC MF 0 MOD 011 R/M SIB/DISP 30 60–67 39 71–75

ST(i) to ST(0) ESC 000 11011 ST(i) 26

FCOMPP e Compare and pop twice

ST(1) to ST(0) ESC 110 1101 1001 26

FTST e Test ST(0) ESC 001 1110 0100 28

FUCOM e Unordered compare ESC 101 11100 ST(i) 24

FUCOMP e Unordered compare

and pop ESC 101 11101 ST(i) 26

FUCOMPP e Unordered compare
and pop twice ESC 010 1110 1001 26

FXAM e Examine ST(0) ESC 001 11100101 30-38

CONSTANTS

FLDZ e Load a0.0 into ST(0) ESC 001 1110 1110 20

FLD1 e Load a1.0 into ST(0) ESC 001 1110 1000 24

FLDPI e Load pi into ST(0) ESC 001 1110 1011 40

FLDL2T e Load log2(10) into ST(0) ESC 001 1110 1001 40

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.

37

MILITARY i387TM SX MATH COPROCESSOR

i387TM SX NPX Extension to the i386TM SX Microprocessor Instruction Set (Continued)

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–6 Real Integer Real Integer

CONSTANTS (Continued)

FLDL2E e Load log2(e) into ST(0) ESC 001 1110 1010 40

FLDLG2 e Load log10(2) into ST(0) ESC 001 1110 1100 41

FLDLN2 e Load loge(2) into ST(0) ESC 001 1110 1101 41

ARITHMETIC

FADD e Add

Integer/real memory with ST(0) ESC MF 0 MOD 000 R/M SIB/DISP 28–36 61–76 37–45 71–85

ST(i) and ST(0) ESC d P 0 11000 ST(i) 23–31b

FSUB e Subtract

Integer/real memory with ST(0) ESC MF 0 MOD 10 R R/M SIB/DISP 28–36 61–76 36–44 71–83c

ST(i) and ST(0) ESC d P 0 1110 R R/M 26–34d

FMUL e Multiply

Integer/real memory with ST(0) ESC MF 0 MOD 001 R/M SIB/DISP 31–39 65–86 40–65 76–87

ST(i) and ST(0) ESC d P 0 1100 1 R/M 29–57e

FDIV e Divide

Integer/real memory with ST(0) ESC MF 0 MOD 11 R R/M SIB/DISP 93 124–131f 102 136–140g

ST(i) and ST(0) ESC d P 0 1111 R R/M 88h

FSQRTi e Square root ESC 001 1111 1010 122–129

FSCALE e Scale ST(0) by ST(1) ESC 001 1111 1101 67–86

FPREM e Partial remainder ESC 001 1111 1000 74–155

FPREM1 e Partial remainder

(IEEE) ESC 001 1111 0101 95–185

FRNDINT e Round ST(0) ESC 001 1111 1100 66–80
to integer

FXTRACT e Extract components
of ST(0) ESC 001 1111 0100 70–76

FABS e Absolute value of ST(0) ESC 001 1110 0001 22

FCHS e Change sign of ST(0) ESC 001 1110 0000 24–25

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d e 1.
c. Add 1 clock to each range when R e 1.
d. Add 3 clocks to the range when d e 0.
e. typical e 52 (When d e 0, 46–54, typical e 49).
f. Add 1 clock to the range when R e 1.
g. 135–141 when R e 1.
h. Add 3 clocks to the range when d e 1.
i. b0 s ST(0) s a%.

38

MILITARY i387TM SX MATH COPROCESSOR

i387TM SX NPX Extension to the i386TM SX Microprocessor Instruction Set (Continued)

Encoding
Instruction Byte Byte Optional Clock Count Range

0 1 Bytes 2–6

TRANSCENDENTAL

FCOSk e Cosine of ST(0) ESC 001 1111 1111 123–772j

FPTANk e Partial tangent of ST(0) ESC 001 1111 0010 191–497j

FPATAN e Partial arctangent ESC 001 1111 0011 314–487

FSINk e Sine of ST(0) ESC 001 1111 1110 122–771j

FSINCOSk e Sine and cosine of ST(0) ESC 001 1111 1011 194–809j

F2XM1l e 2ST(0) b 1 ESC 001 1111 0000 211–476

FYL2Xm e ST(1) * log2(ST(0)) ESC 001 1111 0001 120–538

FYL2XP1n e ST(1) * log2(ST(0) a 1.0) ESC 001 1111 1001 257–547

PROCESSOR CONTROL

FINIT e Initialize NPX ESC 011 1110 0011 33

FSTSW AX e Store status word ESC 111 1110 0000 13

FLDCW e Load control word ESC 001 MOD 101 R/M SIB/DISP 19

FSTCW e Store control word ESC 101 MOD 111 R/M SIB/DISP 15

FSTSW e Store status word ESC 101 MOD 111 R/M SIB/DISP 15

FCLEX e Clear exceptions ESC 011 1110 0010 11

FSTENV e Store environment ESC 001 MOD 110 R/M SIB/DISP 103–104

FLDENV e Load environment ESC 001 MOD 100 R/M SIB/DISP 71

FSAVE e Save state ESC 101 MOD 110 R/M SIB/DISP 475–476

FRSTOR e Restore state ESC 101 MOD 100 R/M SIB/DISP 388

FINCSTP e Increment stack pointer ESC 001 1111 0111 21

FDECSTP e Decrement stack pointer ESC 001 1111 0110 22

FFREE e Free ST(i) ESC 101 1100 0 ST(i) 18

FNOP e No operations ESC 001 1101 0000 12

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
j. These timings hold for operands in the range lxl k q/4. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 s l ST(0) l k 263.
l. b1.0 s ST(0) s 1.0.
m. 0 s ST(0) k %, b% k ST(1) k a%.
n. 0 s lST(0)l k (2 b SQRT(2))/2, b% k ST(1) k a%.

39

MILITARY i387TM SX MATH COPROCESSOR

APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 NPX
and the 8087 NPX, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 NPX and the 8087 NPX, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The NPX signals exceptions through a dedicated
ERROR line to the 80286. The NPX error signal
does not pass through an interrupt controller (the
8087 INT signal does). Therefore, any interrupt-
controller-oriented instructions in numeric excep-
tion handlers for the 8086/8087 should be delet-
ed.

2. The 8087 instructions FENI/FNENI and FDISI/
FNDISI perform no useful function in the 80287.
If the 80287 encounters one of these opcodes in
its instruction stream, the instruction will effec-
tively be ignoredÐnone of the 80287 internal
states will be updated. While 8086/8087 contain-
ing these instructions may be executed on the
80286/80287, it is unlikely that the exception-
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op-
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287’s saved instruction and address pointers is
different than for the 8087. The instruction op-
code is not saved in Protected modeÐexception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS e 1

or EM e 1). If TS is set, then a WAIT instruction
will also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han-
dle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the start-
ing address of a numeric operand falls outside a
segment’s size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati-
cally synchronized by the 80286 CPUÐthe
80286 automatically tests the BUSY line from the
80287 to ensure that the 80287 has completed
its previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are
required to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex-
plicit WAITs are required before each numeric in-
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in-
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT
instructions are unnecessary.

9. Since the 80287 does not require WAIT instruc-
tions before each numeric instruction, the
ASM286 assembler does not automatically gen-
erate these WAIT instructions. The ASM86 as-
sembler, however, automatically precedes every
ESC instruction with a WAIT instruction. Although
numeric routines generated using the ASM86 as-
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may
result in a more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in-
structions cause ASM286 to precede the ESC in-
struction with a CPU WAIT instruction, in the
identical manner as does ASM86.

A-1

