)

—ie R 8% v
—EER. s ..
e ¢ -

CY7C611A

CYPRESS

SEMICONDUCTOR

136 32-bit registers

Features b

® SPARC® processor optimized for em- A
registers each

32-Bit RISC Controller

— Eight overlapping windows of 24

— Privileged instructions
® Artificial intelligence support

bedded control applications ® Multiprocessing support
. — Dividing registers into seperate . . .
¢ Reduced Instruction Set Computer | ® High-performance floating-point pro-
(RISC) architecture register banks allows fast context cessor interface
— Simple format instructions switching X — Concurrent execution of float-
— Most instructions execute in a — 8 global registers ing-point instructions
single cycle ¢ Hardware pipeline interlocks ® 0.8-micron 2-layer metal CMOS tech-
® Very high performance ® 16 prioritized interrupts levels nology
— 40-ns instruction cycle with 4-stage ® Large address space ¢ 160-pin quad flat package
pipeline — 24-bit address space ® Power
— 18 sustained MIPS at 25 MHz — 3-bit address space indentifier — 3 watts maximum
— 240-ns worst-case interrupt re- ® Multitasking support
sponse — User/supervisor modes
Logic Block Diagram Pin Conﬁguration
DESTINATION
A(23:0) P
REGISTER FILE — T
136 x 32 ASI(2:0) _m—mﬁm
«SZE(10)] fe———————
SOURCE 1 SOURCE 2 MAO FXACK
— FCC(1:0)
310 g Foov
FINS1
| l s Pz
> CY7C611A FPSYN
MHOLDB
ARITHMETIC _.. MHODB) FLUSH
L ANG LOGIC SHIFT UNIT BROLD 1 Sfé\gga
l — T . UNIT __INST
LOCK
PROGRAM UL
B — ———————
COUNTERS ALGN | _ RESET _} | LSO
ERROA
PROCESSOR lld@ "D) INTACK
STATE INSTRUCTION 1 IRL(3:0)
WINDOW INVALID DECODE Ar—— CLK
TRAP BASE WRT e
MULTIPLY STEP. — |
l ® C611-2
ADDRESS INSTRUCTION/DATA
c11-1
Selection Guide
CY7C611A-25
Maximum Operating Current (mA) J Commercial 600

SPARC is a registered trademark of SPARC International, Inc.

=i

?; CYPRESS
SEMICONDUCTOR

CY7C611A

Overview

The CY7C611A controlleris ahigh-speed CMOS implementation
of the SPARC 32-bit RISC architecture processor optimized for
embedded control applications. RISCarchitecture makes possible
the creation of a processor which can execute instructions at arate
of one instruction per processor clock. The CY7C611A supportsa
tightly-coupled floating-point coprocessor capable of executing at
a rate of 4 to 5 MFLOPS. The CY7C611A SPARC controller
provides the following features:

Simple instruction format. All instructions are 32 bits wide and
aligned on 32-bit boundaries in memory. Three basic instruction
formats feature uniform placement of opcode and address fields.

Register intensive architecture. Most instructions operate on
either two registers or one register and a constant, and place the
result in a third register. Only load and store instructions access
off-chip memory.

Large windowed register file. The processor has 136 on-chip
32-bit general purpose registers. Eight of these are global
registers. The remaining 128 registers can be configured as four
separate non-overlapping register banks or as eight overlapping
sets of 24 registers each. The first configuration allows for
extremely fast context switch times and the second provides for
very low overhead procedure calls. The actual configuration and
use of the registers is determined by the user’s application.

Delayed control transfer. The processor always fetches the next
instruction after a control transfer, and either executes it or annuls
it depending on the state of a bit in the control transfer instruction.
This feature allows compilers to rearrange code to place a useful
instruction after a delayed control transfer and thereby take better
advantage of the processor pipeline.

Concurrent floating point. Floating-point instructions can
execute concurrently with each other and with non-floating-point
instructions.

Fast interrupt response. Interrupt inputs are sampled on every
clock cycle and can be acknowledged in one to three cycles. The
first instruction of an interrupt service routine can be executed
within six to eight cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of the CY7C601A and
CY7C611A integer units and the CY7C602A floating-point unit.
The CY7C601A and CY7C611A integer units are a high-speed
implementation of the SPARC architecture, and are binary
compatible with all SPARC processors. The CY7C602A is a
high-performance floating-point unit that allows floating-point
instructions to execute concurrently with the CY7C601A or the
CY7C611A.

The CY7C611A is designed for embedded control and application
specific systems. The CY7C611A communicates with external
memory via a 24-bit address bus and a 32-bit data/instruction bus.
In many dedicated controller applications, the CY7C611A can
function by itself with high-speed local memory. The CY7C611A
retains the signals supplied on the CY7C601A for discrete
implementations of cache systems. The CY7C157A cache storage
unit can be used with the CY7C611A to provide a zero wait-state
memory system with no glue logic. The CY7C289 registered
PROM provides a zero wait-state PROM memory for most
accesses and requires no glue logic for interfacing to the
CY7C611A.

Floating-Point Coprocessor Interface

The CY7C611A is the basic processing engine which executes
all of the instruction set except for floating-point operations.
The CY7C602A and CY7C611A operate concurrently. The
CY7C602A recognizes floating-point instructions and places
them in a queue while the CY7C611A continues to execute
non-floating point instructions. If the CY7C602A encounters
an instruction which will not fit in its queue, the CY7C602A
holds the CY7C611A until the instruction can be stored. The
CY7C602A contains its own set of registers on which it
operates. The contents of these registers are transferred to and
from external memory under control of the CY7C611A via
floating-point load/store instructions. Processor interlock
hardware hides floating-point concurrency from the compiler
or assembly language programmer. A program containing
floating-point computations generates the same results as if
instructions were executed sequentially.

Multitasking Support

The CY7C611A supports a multitasking operating system by
providing user and supervisor modes. Some instructions are
privileged and can only be executed while the processor is in
supervisor mode. Changing from user to supervisor mode requires
taking a hardware interrupt or executing a trap instruction.

Interrupts and Traps

The CY7C611A supports both asynchronous traps (interrupts)
and synchronous traps (error conditions and trap instructions).
The occurrence of a trap causes the CY7C611A to fetch the
beginning address of the trap routine from a trap table. The base
address of the trap table is specified by a trap base register and the
offset is a function of the trap type. After fetching the trap routine
address, program control jumps to the trap routine. Traps are
taken before the current instruction is executed and can therefore
be considered to occur between instructions.

Registers

The following sections provide an overview of the CY7C611A
registers. The CY7C611A has two types of registers; working
registers (rregisters), and control registers. The rregisters provide
storage for processes, and the control registers keep track of and
control the state of the CY7C611A.

Special r Registers. The utilization of four r registers is partially
fixed by the instruction set. Global register r[0] is dummy register;
it returns the value “0” when it is used as a source register, and it is
not modified when used as a destination register. This feature
makes the most common value easily available and eliminates the
need for aclear register instruction. Another rregister fixed by the
instruction set is r[15]. Upon executing a CALL instruction, the
address of the CALL instruction is written into r[15]. Upon
entering atrap routine, registersr[17] and r[18] contain the PCand
nPC.

r Register Addressing. r registers r8 through r31 are addressed
internally using the register number and current window pointer
(CWP) field of the processor status register (PSR; see next
section). The CWP is essentially an index field for r register
addressing, and acts as a pointer to a group of 24 registers. Figure 1

?
W s

CWP5% previous -
cwpP 28
r28
re7
r2é
r25
r24
r23
22
r21
r20
[ak]
n8
n7
r16 _
CWP4 % [Turrent 31 s
130 r
CwP 29 "3
i r28 n2
ins i 27 rt
26 o
r25 i
24 8
r23
r22
r2i
r20
locals "9
[al:]
117
- . 16
CWP3 % “Next 31 s
r30 4
cwp r29 M3
28 [a¥-]
re7 m outs
r26 g
r2s 9
524 -]
r23
22
r21
r20

CY7C611A
8
CWP7 » Tas
CWPE » 12
CWP5 » b+
... CwPay et
CWP3 » —%
CWRZ# &
. ‘CWP1 # et
CWPO » 2
8
CWP7 » 135
Global 7
registers g
4
3
2
gl
1]

Figure 1. CWP Register Addressing

Registers (continued)

illustrates r register addressing using the CWP. Incrementing or
decrementing the CWP changes the register offset by 16, thereby
causing the register addressing to overlap by eight registers.
Thisallows r24 through r31 of the current window to act as r8
through r15 of the previouswindow. Registers rQ through r7 donot
use the CWP to address them, therefore they are global in nature.

The window invalid mask register (WIM) is used to disallow
selected CWP values. Each bit of the least significant byte of the
WIM register corresponds to a register window or CWP value.
Incrementing or decrementing the CWP to a window invalidated
by the WIM register causes the CY7C611A to cause a window
underflow or window overflow trap. This is used in a register
window environment to set the boundaries for software. The WIM
register can also be used to set boundaries for register banks in a
bank switching environment.

CY7C611A Control Registers. The CY7C611A’s control registers
contain various addresses and pointers used by the system to
control its internal state. They include the program counters (PC
and nPC), the processor state register (PSR), the window invalid
mask register (WIM), the trap base register (TBR), and the Y
register. The following paragraphs briefly describe each:

Processor Status Register (PSR). The processor status register
contains fields that describe and control the state of the
CYT7C611A. Figure 2 illustrates the bit assignments for the PSR.

IU Implementation and IU Version Numbers. These are read-only
fields in the PSR. The version number is set to “0001” and the
implementation number is set to binary “0011”.

Integer Condition Codes. The integer condition codes consist of
four flags: negative, zero, overflow, and carry. These flags are set
by the conditions occurring during integer logic and arithmetic
operations.

Enable Floating-Point Unit (EF bit). This bit is used to enable the
floating-point unit. If a floating-point operation (FPop) is
encountered and the EF bit is cleared (i.c., FPU disabled), a
floating-point disabled trap is generated.

Processor Interrupt Level (PIL). This four bit field sets the
CY7C611A interrupt level The CY7C611A will only
acknowledge interrupts greater than the level indicated by the PIL
field. Bit 11 is the MSB; bit 8 is the LSB.

Supervisor Mode (S). S = 1 indicates that the CY7C611A is in
supervisor mode. Supervisor mode can only be entered by a
software or hardware trap.

Previous Supervisor Mode (PS). This bit indicates the state of the
supervisor bit before the most recent trap.

Trap Enable (ET). This bit enables or disables the CY7C611A
traps. This bit is automatically set to 0 (traps disabled) upon
entering a trap. When ET = 0, all asynchronous traps are ignored.

LOGIC E

=,

CY7C611A

CYPRESS
SEMICONDUCTOR

If a synchronous trap occurs when ET = 0, the CY7C611A enters
error mode.

Current Window Pointer (CWP). The r registers are addressed by
the Current Window Pointer (CWP), afield of the Processor Status
Register (PSR) that points to the 24 active local registers. It is
incremented by a RESTORE instruction and decremented by a
SAVE instruction. Note that the globals are always accessible
regardless of the CWP. In the overlapping configuration each
window shares its ins and outs with adjacent windows. The outs
from a previous window (CWP +1) are the ins of the current
window, and the outs from the current window are the ins for the
next window (CWP —1). Inboth the windowed and register bank
configurations globals are equally available and the locals are
unique to each window.

Trap Enable (ET) —
Previous Supervisor Mode (PS)
Supervisor Mode (S}

Floating Point Unit Enabled (EF)
Integer Condition Codes

U Version Number Processor Current
U Implementation Interrupt Window
Number .
] Leve! Pointer
impl) _(ver) (CC) Reserved (PIL) (cwp)
o el 7 [« TR s |
31 28 24 1312 8765 o
negativej zero joverflow| carry
(n l (2)] (v}] €)
23 22 21 20

Figure 2. Processor State Register

Program Counters (PC and nPC). The program counter (PC)
holds the address of the instruction being executed, and the next
program counter (nPC) holds the address of the next instruction to
be executed.

Trap Base Register (TBR). The trap base register contains the
base address of the trap table and a field that provides a pointer
into the trap table.

Reserved Trap Base Address Reserved

[+]

12 11 43 0

Trap Type (it}
9 11 8
31 23 22

Figure 3. Trap Base Register

Window Invalid Mask Register (WIM). The window invalid mask
register determines which windows are valid and which window
accesses cause window_overflow and window_underflow traps.

Y register. The Y register is used to hold the partial product
during execution of the multiply-step instruction (MULSCC).

Pin Description

The integer unit’s external signals fall into three categories:
1. memory subsystem interface signals,
2. floating-point unit interface signals, and
3. miscellaneous 1/O signals.

Window 0
Window 1

Window 2
Window 3 —|—‘

Etc.
[7]e]s[efs]2]sfo]
0

Reserved

31

Figure 4. Window Invalid Mask

These are described in the following sections. Paragraphs after the
tables describe each signal. Signals that are active LOW are
marked with an overbar; all others are active HIGH. For example,
WE is active LOW, while RD is active HIGH.

Memory Subsystem Interface Signals

The memory interface signals consist of 27 bits of address (24 bits
of address and a three-bit address space identifier), 32 bits of
bidirectional data lines, and two bits to identify the size (byte,
halfword, word, or double word) of data bus transactions.

A[23:0]—These 24 bits are the addresses of instructions or data
and they are sent out “unlatched” by the CY7C611A. Assertion of
the MAO signal during a cache miss will force the integer unit to
put the previous (missed) address on the address bus. A[23:0] pins
are three-stated if the TOE signal is deasserted.

ASI[2:0]—These three bits are the address space identifier for an
instruction or data access to the memory. ASI[2:0] are sent out
“unlatched” by the integer unit. The value on these pins during any
given cycle is the address space identifier corresponding to the
memory address on the A[23:0] pins at that cycle. Assertion of the
MAQO signal during a cache miss will force the integer unit to put
the previous address space identifier on the ASI[2:0] pins. ASI[2:0]
pins are three-stated if the TOE signal is deasserted. Normally, the
encoding of the ASI bits is as shown in Table 1. The remaining
codes are software generated.

Table 1. ASI Bit Assignment

Address Space Identifier (ASI) Address Space
000 User Instruction
010 User Data
001 Supervisor Instruction
011 Supervisor Data

D[31:0]1—D[31:0] is the bidirectional data bus to and from the
integer unit. The data bus is driven by the integer unit during the
execution of integer store instructions and the store cycle of atomic
load/store instructions. Similarly, the data bus is driven by the
floating-pointunitonly during the execution of floating-pointstore
instructions. The store data is sent out unlatched and must be
latched externally before it is used. Once latched, store data is
valid during the second data cycle of a store single access, the
second and third data cycle of a store double access, and the third
data cycle of an atomic load store access. The alignment for load
and store instructions is done inside the processor. A double word
is aligned on an eight-byte boundary, a word is aligned on a
four-byte boundary, and a half word is aligned on a two-byte
boundary. D(31) corresponds to the most significant bit of the least

?

CY7C611A

significant byte of the 32-bit word. If a double-word, word, or
half-word load or store instruction generates an improperly
aligned address, a memory address not aligned trap will occur.

Memory Subsystem Interface Signals (continued)

Instructions and operands are always expected to be fetched from
a 32-bit wide memory.

SIZE[1:0]. These two bits specify the data size associated with a
data or instruction fetch. Size bits are sent out “unlatched” by the
CY7C611A. The value on these pins at any given cycle is the data
size corresponding to the memory address on the A[23:0] pins in
that cycle. SIZE[1:0] remains valid on the bus during all data
cycles of loads, stores, load_doubles, store_doubles and atomic
load stores. Since all instructions are 32-bits long, SIZE[1:0] is set
to “10” during all instruction fetch cycles. Encoding of the
SIZE[1:0] bits is shown in Table 2.

Table 2. Size Bit Assignment

SIZE1 SIZEO Data Transfer Type
0 Byte
0 1 Halfword
1 0 Word
1 1 Word (Load/Store Double)

MHOLDA or MHOLDB. The processor pipeline will be frozen
while MHOLDA is asserted and the CY7C611A outputs will
revert to and maintain the value they had at the rising edge of the
clock in the cycle before MHOLDA was asserted. MHOLDA is
used to freeze the clock to both the integer and floating-point units
during a cache miss (for systems with cache) or when a slow
memory is accessed. This signal must be presented to the
processor chip at the beginning of each processor clock cycle and
be stable during the high time of the processor clock. Either
MHOLDA or MHOLDB can be used for stopping the processor
during a cache miss or memory exception. MHOLDB has the
same definition as MHOLDA. The processor hardware uses the
logical “OR” of all hold signals (i.e., MHOLDA, MHOLDB, and
BHOLD) to generate a final hold signal for freezing the processor
pipeline. All HOLD signals are latched (transparent latch) in the
CY7C611A before they are used.

BHOLD. BHOLD is asserted by the I/O controller when an
external bus master requests the data bus. Assertion of this signal
will freeze the processor pipeline. External logic should guarantee
that after deassertion of BHOLD, the data at all inputs to the chip
is the same as what it was before BHOLD was asserted. This signal
must be presented to the processor chip at the beginning of each
processor clock cycle and be stable during the high time of the
processor clock since the CY7C611A processes the BHOLD input
through a transparent latch before it is used. BHOLD should be
used only for bus access requests by an external device since the

and signals are not recognized while this input is
active. BHOLD should not be deasserted while LOCK is asserted.

MDS. Assertion of this signal will enable the clock input to the
on-chip instruction register (during an instruction fetch) or to the
load result register (during a data fetch). In a system with cache,
MDS is used to signal the processor when the missed data (cache
miss) is ready on the bus. In a system with slow memories, MDS is

used to signal the processor when the read data is available on the
bus. MDS must be asserted only while the processor is frozen by
either the MHOLDA or MHOLDB input signals. The
CY7C611A samples the MDS signal via an on-chip transparent
latch before it is used. The MDS signal is also used for strobing
memory exceptions. In other words, MDS should be asserted
whenever MEXC is asserted (see MEXC definition).

MEXC. This signal is asserted by the memory (or cache)
controller to initiate an instruction (or data) exception trap.
MEXC is latched in the processor at the rising edge of CLK and is
used in the following cycle. If MEXC is asserted during an
instruction fetch cycle, an instruction access exception is
generated, and if MEXC is asserted during a data fetch cycle, a
data access exception trap is generated. The MEXC signal is used
during (MHOLD) in conjunction with the MDS signal to indicate
to the CY7C611A that the memory system was unable to supply
valid instruction or data. If MDS is applied without MEXC, the
CY7C611A accepts the contents of the data bus as valid
information, but when MDS is applied with MEXC an exception
trap is generated and the contents of the data bus is ignored by the
CY7C611A. (In other words, MHOLD and MDS must be LOW
when MEXC is asserg%)ﬁmMEXC must be deasserted in the same

clock cycle in which is released.

RD. This signal specifies whether the current memory access is a
read or write operation. It is sent out "unlatched” by the integer
unit and must be latched externally before it is used. RD is set to
“0” only during address cycles of store instructions including the
store cycles of atomic load store instructions. This signal, when
used in conjunction with SIZE[1:0] and LDSTO, can be used to
check access rights of bus transactions. In addition, the RD signal
may be used to turn off the output drivers of data RAMs during a
store operation. For atomic load store instructions the RD signal
is “1” during the first address cycle (read cycle), and “0” during the
second and third address cycles (write cycle).

WE. This signal is asserted by the integer unit during the second
address cycle of store single instructions, the second and third
address cycles of store double instructions, and the the third data
cycle of atomic load/store instructions. The WE signal is sent out
“unlatched” and must be latched externally before it is used. The
WE signal may be externally qualified by HOLD signals (i.e.,
MHOLDA and MHOLDB) to avoid writing into the memory
during memory exceptions.

WRT. This signal is asserted (set to “1”) by the processor during
the first address cycle of single or double integer store instructions,
the first data cycle of single or double floating-point store
instructions, and the second data cycle of atomic load/store
instructions. WRT is sent out “unlatched” and must be latched
externally before it is used.

LDSTO. Thissignal is asserted by the integer unit during the data
cycles of atomic load store operations. LDSTO is sent out
“unlatched” by the integer unit and must be latched externally
before it is used.

LOCK. This signal is set to “1” when the processor needs the bus
for multiple cycle transactions such as atomic load/store, double
loads and double stores. The LOCK signalis sent “unlatched” and
should be latched externally before it is used. The bus may not be
granted to another bus master as long as the LOCK signal is
asserted (i.c., BHOLD should not be asserted in the following
processor clock cycle when LOCK=1).

INULL. Assertion of INULL indicates that the current memory

LOGIC E

CY7C611A

CYPRESS
SEMICONDUCTOR

Memory Subsystem Interface Signals (continued)

access (whose address is held in an external latch) is to be
nullifiedby the processor. INULL is intended to be used to disable
cachemisses (in systems with cache) and to disable memory
exception generation for the currentmemory access (i.e., MDSand
MEXC should not be asserted for a memory access when
INULL=1). INULL is a latched output and is active during the
same cycle as the address which it nullifies. INULL is asserted
under the following conditions: During the second cycle of a store
instruction, or whenever the CY7C611A address is invalid due to
an external or internal exception. If a floating-point unit or
coprocessor unit is present in the system INULL should be ORed
with the FNULL and CNULL signals from these units.

Floating-Point Interface Signals

The floating-point/coprocessor unit interface is a dedicated group
of connections between the CY7C611A and the CY7C602A. Note
that no external circuits are required between the CY7C611A and
the CY7C602A; all traces should connect directly. The interface
consists of the following signals:

FP. Thissignal indicates whether or not a floating-point unit exists
in the system. The FP signal is normally pulled up to VDD by a
resistor. It is grounded when the CY7C602A chip is present. The
integer unit generates a floating-point disable trap if FP = 1 during
the execution of a floating-point instruction, FBfcc instruction or
floating-point load and store instructions.

FCC[1:0]. These bits are taken as the current condition code bits
of the CY7C602A. They are considered validif FCCV=1. During
the execution of the FBfcc instruction, the processor uses these bits
to determine whether the branch should be taken or not. FCC[1:0]
are latched by the processor before they are used.

FCCV. This signal should be asserted only when the FCC[1:0] bits
are valid. The floating-point unit deasserts FCCV if pending
floating-point compare instructions exist in the floating-point
queue. FCCV is reasserted when the compare instruction is
completed and the floating-point condition codes FCC[1:0] are
valid. The integer unit will enter a wait state if FCCV is deasserted
(i.e.,, FCCV = “0”). The FCCV signalislatched (transparentlatch)
in the CY7C611A before it is used.

FHOLD. This signal is asserted by the floating-point unit if a
situation arises in which the CY7C602A cannot continue
execution. The floating-point unit checks all dependencies in the
Decode stage of the instruction and asserts FHOLD (if necessary)
inthe next cycle. Thissignal is used by the integer unit to freeze the
instruction pipeline in the same cycle. The CY7C602A must
eventually deassert FHOLD in order to unfreeze the integer unit’s
pipeline. The FHOLD signal is latched (transparent latch) in the
CY7C611A before it is used.

FEXC. Assertion of this signal indicates that a floating-point
exception has occurred. FEXC must remain asserted until the
integer unit takes the trap and acknowledges the CY7C602A via
FXACK signal. Floating-point exceptions are taken only during
the execution of floating-point instructions, FBfcc instruction and
floating-point load and store instructions. FEXC is latched in the
integer unit before it is used. The CY7C602A should deassert
FHOLD if it detects an exception while FHOLD is asserted. In
this case FEXC should be asserted a cycle before FHOLD is
deasserted.

INST. This signal is asserted by the integer unit whenever a new
instruction is being fetched. It is used by the CY7C602A to latch
the instruction on the D[31:0] bus into the CY7C602A instruction
buffer. The CY7C602A needs two instruction buffers (D1 and D2)
to save the last two fetched instructions. When INST is asserted a
new instruction enters into the D1 buffer and the old instruction in
D1 enters into the D2 buffer.

FLUSH. This signal is asserted by the integer unit and is used by
the CY7C602A to flush the instructions in its instruction registers.
This may happen when a trap is taken by the integer unit.
Instructions that have entered into the floating-point queue may
continue their execution if FLUSH is raised as a result of a trap or
exception other than floating-point exceptions.

FINS1. Thissignalisasserted by the integer init during the decode
stage of a CY7C602A instruction if the instruction is in the D1
buffer of the CY7C602A chip. The CY7C602A uses this signal to
latch the instruction in D1 buffer into its execute stage instruction
register.

FINS2—This signal is asserted by the integer unit during the
decode stage of a CY7C602A instruction if the instruction is in the
D2 buffer of the CY7C602A chip. The CY7C602A uses this signal
to latch the instruction in D2 buffer into its execute stage
instruction register.

FXACK—This signal is asserted by the integer unit in order to
acknowledge to the CY7C602A that the current FEXC trap is
taken. The CY7C602A must deassert FEXC after it receives an
asserted level of FXACK signal so that the next floating-point
instruction does not cause a “repeated” floating-point exception
trap.

Miscellaneous I/O Signals

These signals are used by the CY7C611A to control external events
or to receive input from external events. This interface consists of
the following signals:

IRL({3:0]. The data on these pins defines the external interrupt
level. IRL{3:0]=0000 indicates that no external interrupts are
pending. The integer unit uses twoon-chip synchronizinglatchesto
sample these signals on the rising edge of CLK. A given interrupt
level must remain valid for at least two consecutive cycles to be
recognized by the integer unit. IRL{3:0]=1111 signifies an
non-maskable interrupt. All other interruptlevels are maskable by
the PIL field of the Processor State Register (PSR). External
interrupts should be latched and prioritized by the external logic
before they are passed to the integer unit. The external interrupt
latches should keep the interrupts pending until they are taken
(and acknowledged) by the integer unit. External interrupts can be
acknowledged by software or by the Interrupt Acknowledge
(INTACK) output.

INTACK—This signal is asserted by the integer unit when an
external interrupt is taken.

RESET—Assertion of this pin will reset the integer unit. The
RESET signal must be asserted for a minimum of eight processor
clock cycles. After a reset, the integer unit will start fetching from
address 0. The RESET signal is latched by the integer unit before
it is used.

ERROR—This signal is asserted by the integer unit when a trap is
encountered while traps are disabled via the ET bit in the PSR.

CY7C611A

CYPRESS
SEMICONDUCTOR

Miscellaneous I/O Signals (continued)

In this situation the integer unit saves the PC and nPC registers,
sets the tt value in the TBR, enters into an error state, asserts the
ERROR signal and then halts. The only way to restart the
processor trappedin the error state, is to trigger areset by asserting
the RESET signal.

TOE—This signal is used to force all output drivers of the
processor chip into a high-impedance state. Itisused to isolate the
chip from the rest of the system for debugging purposes. This pin
should be tied LOW for normal operation.

FPSYN—This pin is amode pin which is used to allow execution of
additional instructions in future designs. It should be normally
kept deasserted (FPSYN=0) to disable the execution of these
instructions.

Document #: 38—R—10003—A

CLK—CIK is a 50% duty-cycle clock used for clocking the
CY7C611As pipeline registers. It is HIGH during the first half of
the processor cycle, and LOW during the second half. The rising
edge of CLK defines the beginning of each pipeline stage in the
CY7C611A chip.

