Power MOSFET

30 V, 23 A, Single N-Channel, μ8FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

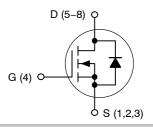
- DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	30	V		
Gate-to-Source Voltage	V_{GS}	±20	V		
Continuous Drain		T _A = 25°C	I _D	7.2	Α
Current R _{θJA} (Note 1)		T _A = 85°C		5.2	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.06	W
Continuous Drain	.A =0 0		I _D	9.6	Α
Current $R_{\theta JA} \le 10 \text{ s}$ (Note 1)		T _A = 85°C		6.9	
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$	Steady	T _A = 25°C	P _D	3.61	W
Continuous Drain	State $T_A = 25^{\circ}C$		I _D	4.5	Α
Current R _{θJA} (Note 2)		T _A = 85°C		3.2	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.79	W
Continuous Drain		T _C = 25°C	Ι _D	23	Α
Current R _{θJC} (Note 1)		T _C = 85°C		16	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	20.2	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	92	Α
Operating Junction and S	T _J , T _{stg}	-55 to +150	°C		
Source Current (Body Did	I _S	25	Α		
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-So $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, \text{V}_{L} = 12 \text{ A}_{pk}, \text{ L} = 0.1 \text{ mH}, \text{ F}$	E _{AS}	7.2	mJ		
Lead Temperature for So (1/8" from case for 10 s)	TL	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

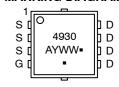
- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
30 V	23 mΩ @ 10 V	23 A	
	30 mΩ @ 4.5 V	257	


N-Channel MOSFET

CASE 511AB

MARKING DIAGRAM

4930 = Specific Device Code A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4930NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4930NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	6.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	60.7	
Junction-to-Ambient - Steady State (Note 4)	$R_{ heta JA}$	159	
Junction–to–Ambient – (t \leq 10 s) (Note 3)	$R_{ heta JA}$	34.6	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Drain-to-Source Breakdown Voltage V _{(BR)DSS} V _{GS} = 0 V, I _D = 250 μA 30	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage V(BR)DSS/TJ	OFF CHARACTERISTICS	•		•		•	•	•
Tamperature Coefficient Ibas Vas = 0 V, Vas = 24 V Tau = 25°C 1.0	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	= 250 μA	30			V
Vos = 24 V Vos = 24 V Vos = 24 V Vos = 24 V Vos = 25° C 10 10 10 10 10 10 10	Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				16		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	- ŭ				μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	s = ±20 V			±100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON CHARACTERISTICS (Note 5)					1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μΑ	1.2	1.6	2.2	V
$V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V \\ \hline V_{GS} = 4.5 \ V \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 10 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 10 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 10 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ A \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ V \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ V \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ V \\ \hline V_{DS} = 1.5 \ V, \ I_{D} = 15 \ V, \ I_{D}$						3.7		mV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-to-Source On Resistance	R _{DS(on)} V _{GS} = 10 V	.,	I _D = 6 A		15	23	mΩ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			I _D = 10 A		15			
Forward Transconductance GFS VDS = 1.5 V, ID = 15 A 19 S			V 45V	I _D = 7 A		22.7	30	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 4.5 V	I _D = 10 A		22.7		
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{iss} \\ \hline \text{Output Capacitance} & C_{oss} \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Gate-to-Source Charge} & Q_{G} \\ \hline \text{Gate-to-Drain Charge} & Q_{G(TOT)} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Gate-to-Drain Charge} & Q_{G(TOT)} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{V}_{GS} = 4.5 \text{ V}, \text{V}_{DS} = 15 \text{ V}, \text{I}_{D} = 20 \text{ A} \\ \hline \text{SWITCHING CHARACTERISTICS (Note 6)} \\ \hline \text{Turn-On Delay Time} & t_{d(on)} \\ \hline \text{Rise Time} & t_{r} \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} \\ \hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance	g _{FS}	V _{DS} = 1.5 V, I _D = 15 A			19		S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES AND CAPACITANCES							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}				476		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V			197		
Threshold Gate Charge $Q_{G(TH)}$ Gate—to—Source Charge Q_{GS} Gate—to—Drain Charge Q_{GD} Total Gate Charge $Q_{G(TOT)}$ SWITCHING CHARACTERISTICS (Note 6) Turn—On Delay Time $t_{d(on)}$ Rise Time t_{r} Turn—Off Delay Time $t_{d(off)}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, V_{$	Reverse Transfer Capacitance	C _{rss}				101		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				5.5		nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	V 45VV	15 V I 20 A		0.5		
Total Gate Charge $Q_{G(TOT)} V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 20 \text{ A} \qquad 9.8 \qquad \text{nC}$ $\textbf{SWITCHING CHARACTERISTICS (Note 6)}$ $Turn-On \text{ Delay Time} \qquad \qquad t_{d(on)} \qquad \qquad 8.4 \qquad \text{ns}$ $Rise \text{ Time} \qquad \qquad t_r \qquad V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 15 \text{ A}, I_D = 10 \text{ A}$	Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$			1.5		
	Gate-to-Drain Charge	Q_{GD}				3.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 20 A			9.8		nC
Rise Time $ t_r \qquad V_{GS} = 4.5 \text{ V, } V_{DS} = 15 \text{ V,} \\ Turn-Off Delay Time } t_{d(off)} \qquad V_{GS} = 4.5 \text{ V, } V_{DS} = 15 \text{ V,} \\ I_D = 15 \text{ A, } R_G = 3.0 \Omega \qquad 10.4 $	SWITCHING CHARACTERISTICS (No	ote 6)						
Turn–Off Delay Time $t_{d(off)} \qquad \qquad t_{d(off)} \qquad \qquad t_{d(off)} \qquad \qquad 10.4$	Turn-On Delay Time	t _{d(on)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			8.4		ns
- a(oii)	Rise Time	t _r				26.6		
Fall Time t _f 3.6	Turn-Off Delay Time	t _{d(off)}				10.4		
	Fall Time	t _f				3.6		

^{5.} Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

^{6.} Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	S (Note 6)						
Turn-On Delay Time	t _{d(on)}				4.6		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DS}	= 15 V,		17.6		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G =$			13.3		1
Fall Time	t _f				2.5		1
DRAIN-SOURCE DIODE CHARA	CTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.97	1.2	V
			T _J = 125°C		0.89		1
Reverse Recovery Time	t _{RR}		•		15.3		ns
Charge Time	ta	$V_{GS} = 0 \text{ V, } d_{ S}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 20 \text{ A}$			7.4		1
Discharge Time	t _b				7.9		1
Reverse Recovery Charge	Q_{RR}				4.6		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.38		nΗ
Drain Inductance	L _D		_		0.054		1
Gate Inductance	L _G	T _A = 25°C			1.3		1
Gate Resistance	R _G				0.6		Ω

^{5.} Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

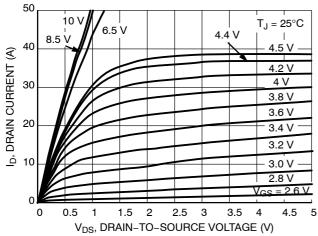


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

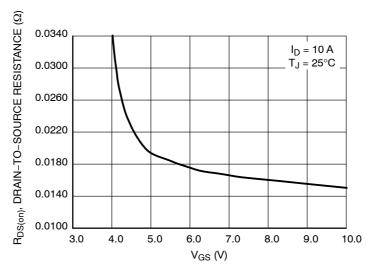


Figure 3. On-Resistance vs. V_{GS}

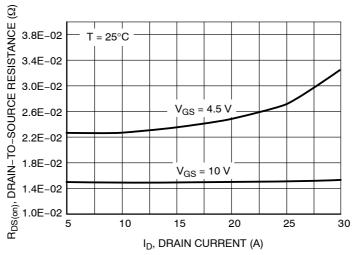
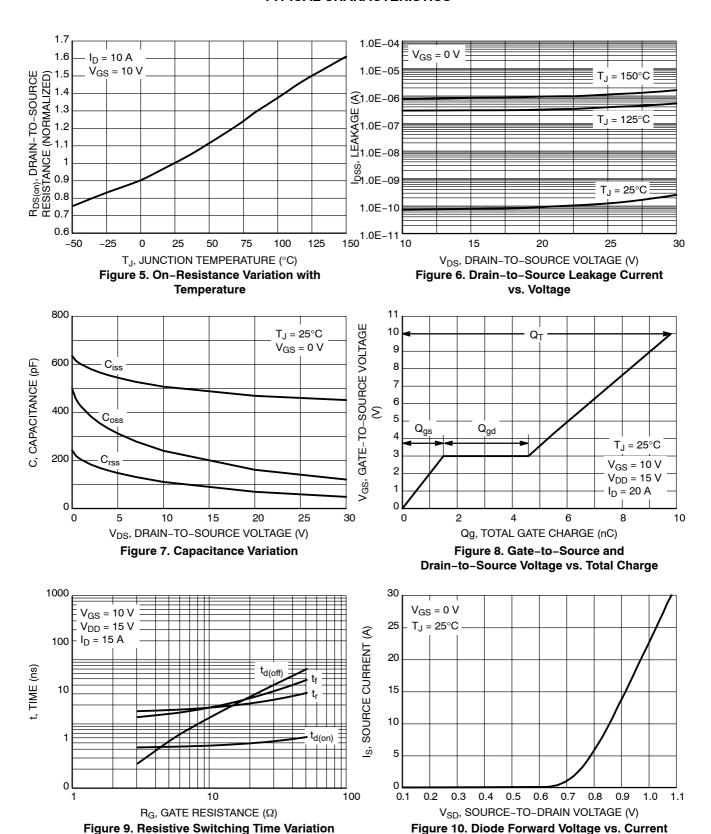



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS

http://onsemi.com

vs. Gate Resistance

TYPICAL CHARACTERISTICS

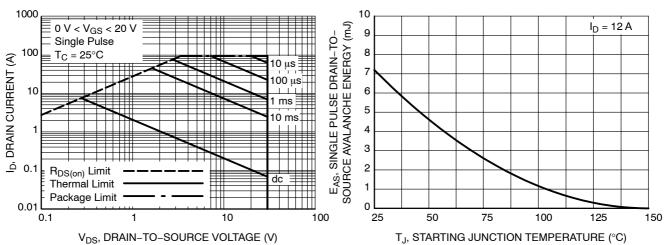


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

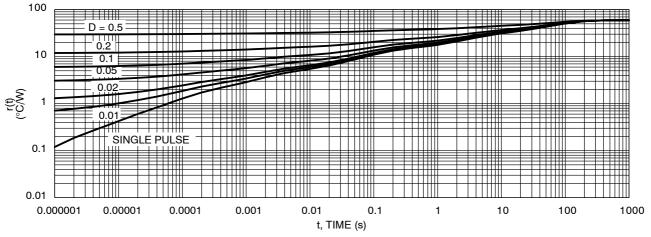
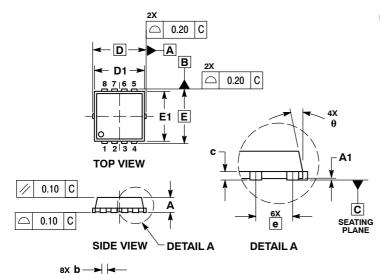
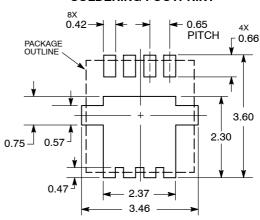



Figure 13. Thermal Response

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB-01 **ISSUE B**



NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	,	3.30 BSC		C	.130 BSC)	
D1	2.95	3.05	3.15	0.116 0.120 0.1			
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	3.30 BSC			0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
е	0.65 BSC			(0.026 BS0)	
G	0.30	0.41	0.51	0.012 0.016 0.03			
K	0.64			0.025			
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

В

BOTTOM VIEW

0.10 С Α

0.05 С

Ф

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Cer Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative