DATA SHEET

NX8304BE-CC,NX8304CE-CC

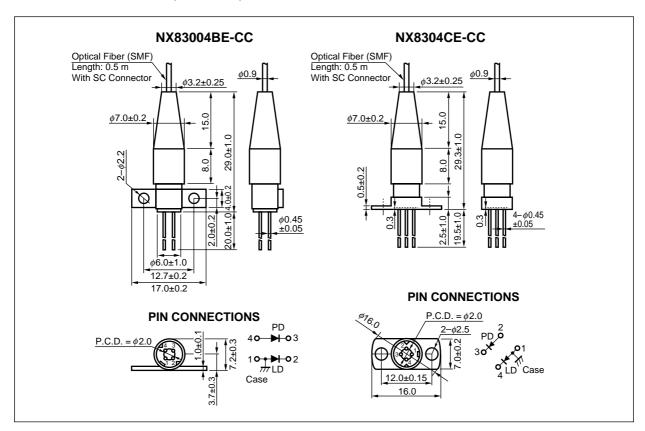
1 310 nm InGaAsP MQW-DFB LASER DIODE COAXIAL MODULE FOR FIBEROPTIC COMMUNICATIONS

DESCRIPTION

The NX8304BE-CC and NX8304CE-CC are 1 310 nm Multiple Quantum Well (MQW) structured Distributed Feed-Back (DFB) laser diode coaxial modules with an internal optical isolator.

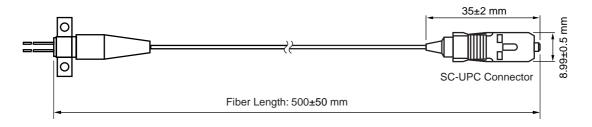
This module is as a light source for fiberoptic communications.

FEATURES


· Internal optical isolator

 $\begin{array}{ll} \bullet & \text{Peak emission wavelength} & \lambda_p = 1 \ 310 \ \text{nm} \\ \bullet & \text{Optical output power} & \text{Pf} = 2.0 \ \text{mW} \\ \bullet & \text{Wide operating temperature range} & \text{Tc} = -40 \ \text{to} \ +85^{\circ}\text{C} \\ \end{array}$

- InGaAs monitor PIN-PD
- With SC-UPC connector
- · Based on Telcordia reliability


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PACKAGE DIMENSIONS (UNIT: mm)

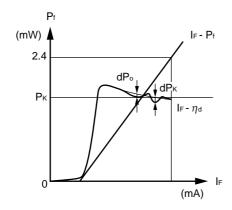
OPTICAL FIBER CHARACTERISTICS

Parameter	Specification	Unit
Mode Field Diameter	9.5±1	μ m
Cladding Diameter	125±2	μm
Maximum Cladding Noncircularity	2	%
Maximum Core/Cladding Concentricity	1.6	%
Outer Diameter	0.9±0.1	mm
Cut-off Wavelength	1 100 to 1 270	nm
Minimum Fiber Bending Radius	30	mm
Fiber Length	500±50	mm
Flammability	UL1581 VW-1	

ORDERING INFORMATION

Part Number	Flange Type	Available Connector
NX8304BE-CC	Flat Mount Flange	With SC-UPC Connector
NX8304CE-CC	Vertical Mount Flange	

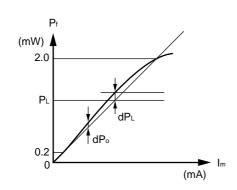
ABSOLUTE MAXIMUM RATINGS


Parameter	Symbol	Ratings	Unit
Optical Output Power from Fiber	Pf	5	mW
Forward Current of LD	lF	150	mA
Reverse Voltage of LD	VR	2.0	V
Forward Current of PD	lF	2.0	mA
Reverse Voltage of PD	VR	15	V
Operating Case Temperature	Tc	-40 to +85	°C
Storage Temperature	T _{stg}	-40 to +85	°C
Lead Soldering Temperature	T _{sld}	350 (3 sec.)	°C
Relative Humidity (noncondensing)	RH	85	%

ELECTRO-OPTICAL CHARACTERISTICS (Tc = -40 to +85°C, unless otherwise specified)

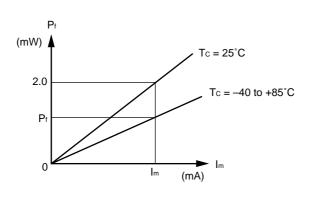
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Optical Output Power from Fiber	Pf	CW		2.0		mW
Operating Voltage	Vop	Pf = 2.0 mW		1.2	1.6	V
Threshold Current	Ith	Tc = 25°C		15	25	mA
					55	
Threshold Output Power	Pth	IF = Ith			100	μW
Modulation Current	Imod	P _f = 2.0 mW, T _C = 25°C	8	20	30	mA
		P _f = 2.0 mW	6		50	
Differential Efficiency	$\eta_{ extsf{d}}$	P _f = 2.0 mW, T _C = 25°C	0.07	0.1	0.2	W/A
		P _f = 2.0 mW	0.04		0.3	
Temperature Dependence of Differential Efficiency	$\Delta\eta$ d	$\Delta \eta_{\rm d} = 10 \log \frac{\eta_{\rm d} (@ {\rm Tc^{\circ}C})}{\eta_{\rm d} (@ 25^{\circ}{\rm C})}$	-3.5	-2.2		dB
Kink (Refer to DEFINITIONS)	kink	P _f = Up to 2.4 mW			±20	%
Peak Emission Wavelength	λ_{P}	P _f = 2.0 mW	1 280	1 310	1 335	nm
Temperature Dependence of Peak Emission Wavelength	Δλ/ΔΤ			0.09	0.1	nm/°C
Spectral Width	Δλ	Pf = 2.0 mW, -20 dB down width		0.1	1.0	nm
Side Mode Suppression Ratio	SMSR	P _f = 2.0 mW	30	40		dB
Cut-off Frequency	fc	P _f = 2.0 mW, -3 dBm		2.0		GHz
Rise Time	tr	10-90%, Ppk = 2.0 mW, IF = Ith		0.15	0.5	ns
Fall Time	t _f	90-10%, Ppk = 2.0 mW, IF = Ith		0.15	0.5	ns
Monitor Current	Im	V _R = 5 V, P _f = 2.0 mW, T _C = 25°C	200	700	1 500	μА
Monitor Dark Current	lσ	V _R = 5 V, P _f = 2.0 mW		10	500	nA
		VR = 5 V, Tc = 25°C		0.1	50	
Monitor PD Terminal Capacitance	Ct	V _R = 5 V, f = 1 MHz		1.0	20	pF
Linearity (Refer to DEFINITIONS)	LINm	V _R = 5 V, P _f = 0.2 to 2.0 mW			15	%
Tracking Error (Refer to DEFINITIONS)	γ	I _m = const.		0.5	1.0	dB
Relative Intensity Noise	RIN	Ref = -14 dB		-135		dB/Hz
Optical Return Ross	ORL	SMF	35	52		dB

PARAMETER DEFINITIONS


Kink : kink

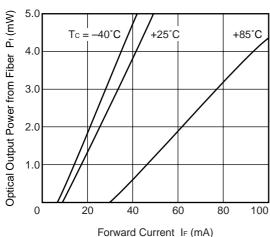
$$kink = \frac{|dP_K|}{P_K} \times 100 \, [\%]$$

 $dP\kappa = dP_0 MAX.$ $P\kappa \le 2.4 (mW)$

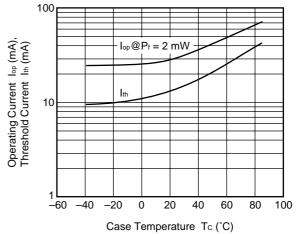

Linearity: LINm

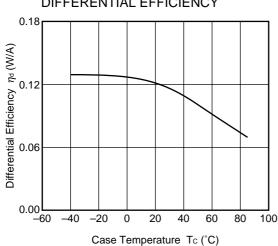
$$LIN_m = \frac{|dP_L|}{P_L} \times 100 \text{ [\%]}$$

 $dP_L = dP_0 \text{ MAX}.$ 0.2 < $P_L < 2.0 \text{ (mW)}$

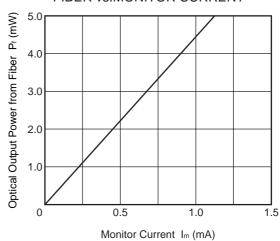

Tracking Error : γ

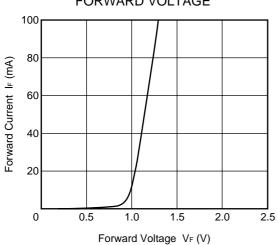
$$\gamma = \left| 10 \log \frac{P_f}{2.0} \right| [dB]$$

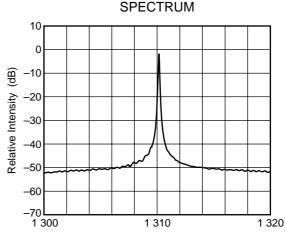

TYPICAL CHARACTERISTICS (Tc = 25°C, unless otherwise specified)



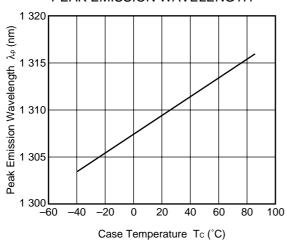
erating C


OPERATING CURRENT AND THRESHOLD CURRENT vs. CASE TEMPERATURE


TEMPERATURE DEPENEDENCE OF DIFFERENTIAL EFFICIENCY



OPTICAL OUTPUT POWER FROM FIBER vs.MONITOR CURRENT


FORWARD CURRENT vs. FORWARD VOLTAGE

Wavelength λ (nm)

TEMPERATURE DEPENDENCE OF PEAK EMISSION WAVELENGTH

Remark The graphs indicate nominal characteristics.

DFB-LD FAMILY

		Maximum ings	Electro-C	optical Chara (Tc = 25°C)			
Part Number	Tc (°C)	T _{stg} (°C)	I _{th} (mA)	P _f (mW)	λ _P (nm)	Application	Package
			TYP.	MIN.	TYP.		
NX8300BE-CC NX8300CE-CC	0 to +75	-40 to +85	15	2*⁴	1 310	2.5 Gb/s: STM-16 (S-16.1, L-16.1)	Coaxial
NX8303BG-CC NX8303CG-CC	-10 to +85	-40 to +85	15	2*1	1 310	622 Mb/s: STM-4 (L-4.1)	Coaxial
NX8304BE-CC NX8304CE-CC	-40 to +85	-40 to +85	15	2*1	1 310	For fiberoptic communications	Coaxial
NX8503BG-CC NX8503CG-CC	-10 to +85	-40 to +85	15	2*1	1 550	156 Mb/s: STM-1 (L-1.2, L-1.3)	Coaxial
						622 Mb/s: STM-4 (L-4.2, L-4.3)	
NX8504BE-CC NX8504CE-CC	-10 to +85	-40 to +85	15	2*1	1 550	622 Mb/s: STM-4 (L-4.2, L-4.3)	Coaxial
NX8560LJ-CC	-20 to +70	-40 to +85	6	-1 dBm	1 550 ^{*2}	≤ 10 Gb/s: STM-64	BFY with GPO™
NX8562LB	-20 to +65	-40 to +85	20	20	1 550 ^{*2}	CW Light Source for external modulator	BFY
NX8563LB	-20 to +65	-40 to +85	20	10	1 550 ^{*2}	CW Light Source for external modulator	BFY
NX8564LE-CC	-20 to +70	-40 to +85	7	–2 dBm ^{*1}	1 550 ^{*2}	2.5 Gb/s: STM-16, 360 km BFY EA modulator integrated	
NX8565LE-CC	-20 to +70	-40 to +85	7	−2 dBm ^{*1}	1 550 ⁻²	2.5 Gb/s: STM-16, 600 km BFY EA modulator integrated	
NX8566LE-CC	-20 to +70	-40 to +85	7	0 dBm	1 550 ^{°2}	2.5 Gb/s: STM-16, 240 km EA modulator integrated	BFY
NX8570 Series	-20 to +70	-40 to +85	20	20	1 550°2	CW Light Source with λ monitoring PD	BFY
NX8571 Series	-20 to +70	-40 to +85	20	10	1 550 ^{°2}	CW Light Source with λ monitoring PD	BFY

^{*1} TYP.

^{*2} Available for DWDM Wavelengths based on ITU-T recommendations

REFERENCE

Document Name	Document No.	
Optical semiconducrtor devices for fiberoptic communications Selection Guide	P12480E	
Opto-Electronics Devices Pamphlet	P13623E	
Opto-Electronics Devices (CD-ROM)	P12944X	
NEC semiconductor device reliability/quality control system ¹	C11159E	
Quality grades on NEC semiconductor devices 1 C11531E		
SEMICONDUCTOR SELECTION GUIDE -Products and Packages-1	X13769E	

^{*1} Published by NEC Corporation

GPO is a trademark of Gilbert Engineering Co., Inc.

- The information in this document is current as of July, 2002. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

SAFETY INFORMATION ON THIS PRODUCT

SEMICONDUCTOR LASER

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture

Warning Laser Beam	A laser beam is emitted from this diode during operation. The laser beam, visible or invisible, directly or indirectly, may cause injury to the eye or loss of eyesight. Do not look directly into the laser beam. Avoid exposure to the laser beam, any reflected or collimated beam.
Caution GaAs Products	The product contains gallium arsenide, GaAs. GaAs vapor and powder are hazardous to human health if inhaled or ingested. Do not destroy or burn the product. Do not cut or cleave off any part of the product. Do not crush or chemically dissolve the product. Do not put the product in the mouth. Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.
Caution Optical Fiber	A glass-fiber is attached on the product. Handle with care. When the fiber is broken or damaged, handle carefully to avoid injury from the damaged part or fragments.

▶Business issue

NEC Compound Semiconductor Devices, Ltd.

5th Sales Group, Sales Division TEL: +81-3-3798-6372 FAX: +81-3-3798-6783 E-mail: salesinfo@csd-nec.com

NEC Compound Semiconductor Devices Hong Kong Limited

 Hong Kong Head Office
 TEL: +852-3107-7303
 FAX: +852-3107-7309

 Taipei Branch Office
 TEL: +886-2-8712-0478
 FAX: +886-2-2545-3859

 Korea Branch Office
 TEL: +82-2-528-0301
 FAX: +82-2-528-0302

NEC Electron Devices European Operations http://www.nec.de/

TEL: +49-211-6503-101 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

▶Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

Sales Engineering Group, Sales Division

E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918