## S1D15E06 Series

## NOTICE

No part of this material may be reproduced or duplicated in any from or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notics. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no repersesnation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.
©SEIKO EPSON CORPORATION 2003, All rights reserved.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

## Contents

1. DESCRIPTION ..... 1
2. FEATURES ..... 1
3. BLOCK DIAGRAM ..... 2
4. PIN ASSIGNMENT ..... 3
5. PIN DESCRIPTION ..... 7
6. FUNCTIONAL DESCRIPTION ..... 11
7. COMMAND ..... 27
8. ABSOLUTE MAXIMUM RATINGS ..... 50
9. DC CHARACTERISTICS ..... 51
10. TIMING CHARACTERISTICS ..... 58
11. MPU INTERFACE (Reference example) ..... 66
12. CONNECTION BETWEEN LCD DRIVERS (Reference example) ..... 67
13. LCD PANEL WIRING (Reference example) ..... 68
14. S1D15E06T00A*** TCP PIN LAYOUT ..... 69
15. TCP DIMENSIONS (Reference example) ..... 70
16. CAUTIONS ..... 71

## 1. DESCRIPTION

The S1D15E06 series is a single chip MLS driver for dot matrix liquid crystal displays which can be directly connected to the microcomputer bus. It accepts the 8bit parallel or serial display data from the microcomputer to store the data in the on-chip display data RAM, and issues liquid crystal drive signals independently of the microcomputer.
The S1D15E06 series provides both 4 gray-scale display and binary display. It incorporates a display data RAM ( $132 \times 160 \times 2$ bits). In the case of 4 gray-scale display, 2 bits of the on-chip RAM respond to one-dot pixels, while in the case of binary display, 1 bit of the on-chip RAM respond to one-dot pixels.
The S1D15E06 series features 132 common output circuits and 160 segment output circuits. A single chip provides a display of 10 characters by 8 lines with 132 $\times 160$ dots ( $16 \times 16$ dots) and display of 13 characters by 11 lines by the $12 \times 12$ dot-character font.
Display data RAM read/write operations do not require operation clock from outside, thereby ensuring operation with the minimum current consumption. Furthermore, it incorporates a LCD-drive power supply characterized by low power consumption and a CR oscillator circuit for display clock; therefore, the display system of a handy and high-performance instrument can be realized by use of the minimum current consumption and minimum chip configuration.

## 2. FEATURES

- Direct RAM data display by display data RAM
- 4 gray-scale display
(Normally white in normal display mode) RAM bit data (high order and low order)
$(1,1)$ : gray-scale 3, black
$(1,0)$ : gray-scale 2
$(0,1)$ : gray-scale 1
$(0,0)$ : gray-scale 0 , white
- Binary display
(Normally white display is in normal mode) RAM bit data
" 1 ": On and black
"0": Off and white
- RAM capacity
$132 \times 160 \times 2=42,240$ bits
- Liquid crystal drive circuit 132 common outputs and 160 segment outputs
- High-speed 8-bit MPU interface (directly connectable to the MPUs of both $80 / 68$ series) /serial interface possible
- A variety of command functions

Area scroll display, partial display, n-line reversal, display data RAM address control, contrast control, display ON/OFF, display normal/reverse rotation, display all lighting ON/OFF, liquid crystal drive power supply circuit control, display clock built-in oscillator circuit control

- Lower power MLS drive technology

Built-in high precision voltage regulation function

- High precision CR oscillator circuit incorporated
- Very low power consumption
- Power supply

Logic power supply: VDD - Vss $=1.7$ to 3.6 V Liquid crystal drive power supply:
$\mathrm{V} 3-\mathrm{Vss}=3.4$ to 14.0 V (S1D15E06D01****),
$\mathrm{V} 3-\mathrm{Vss}=3.4$ to $16.0 \mathrm{~V}(\mathrm{~S} 1 \mathrm{D} 15 \mathrm{E} 06 \mathrm{D} 03 * * * *)$

- Wide operation temperature range: -40 to $85^{\circ} \mathrm{C}$
- CMOS process
- Shipping form : Bare chips, TCP
- Light and radiation proof measures are not taken in designing.


## Series specifications

| Product name | Bias | LCD driving <br> voltage range | Duty (Max.) | Form of shipping | Chip thickness |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S1D15E06D01B000 | $1 / 7$ | $3.4 \mathrm{~V} \sim 14.0 \mathrm{~V}$ | $1 / 132$ | Bare chip | 0.400 mm |
| S1D15E06D03B000 | $1 / 7$ | $3.4 \mathrm{~V} \sim 16.0 \mathrm{~V}$ | $1 / 132$ | Bare chip | 0.400 mm |
| S1D15E06D01E000 | $1 / 7$ | $3.4 \mathrm{~V} \sim 14.0 \mathrm{~V}$ | $1 / 132$ | Bare chip | 0.625 mm |
| S1D15E06D03E000 | $1 / 7$ | $3.4 \mathrm{~V} \sim 16.0 \mathrm{~V}$ | $1 / 132$ | Bare chip | 0.625 mm |
| S1D15E06T00A00A | $1 / 7$ | $3.4 \mathrm{~V} \sim 14.0 \mathrm{~V}$ | $1 / 132$ | TCP | - |

## 3. BLOCK DIAGRAM



## 4. PIN ASSIGNMENT

### 4.1 Chip Assignment



| Item | Size | Unit |
| :---: | :---: | :---: |
|  | $\mathrm{X} \quad \mathrm{Y}$ |  |
| Chip size | $10.26 \times 3.98$ | mm |
| Chip thickness | 0.4/0.625 | mm |
| Bump pitch | 50 (Min.) | $\mu \mathrm{m}$ |
| Bump size PAD No. 1 to 98 | $70 \times 92$ | $\mu \mathrm{m}$ |
| PAD No. 99 to 166, 345 to 412 | $116 \times 33$ | $\mu \mathrm{m}$ |
| PAD No. 167 to 175, 336 to 344 | $61 \times 61$ | $\mu \mathrm{m}$ |
| PAD No. 176 to 335 | $33 \times 116$ | $\mu \mathrm{m}$ |
| Bump height | 22.5 (Typ.) | $\mu \mathrm{m}$ |

### 4.2 Alignment mark

Alignment coordinate
(1) $(-4761.4,1830.0) \mu \mathrm{m}$
(2) $(4926.0,-1819.1) \mu \mathrm{m}$

Mark size
$\mathrm{a}=80 \mu \mathrm{~m}$
$\mathrm{b}=20 \mu \mathrm{~m}$
(1)

4.3 Pad Center Coordinates

Unit: $\mu \mathrm{m}$

| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 1 | NC | 4494 | 1830 |
| 2 | NC | 4402 |  |
| 3 | TEST0 | 4310 |  |
| 4 | TEST1 | 4218 |  |
| 5 | TEST2 | 4126 |  |
| 6 | TEST3 | 4034 |  |
| 7 | TEST4 | 3942 |  |
| 8 | TEST5 | 3850 |  |
| 9 | Vss | 3742 |  |
| 10 | TEST6 | 3634 |  |
| 11 | TEST7 | 3542 |  |
| 12 | TEST8 | 3450 |  |
| 13 | TEST9 | 3358 |  |
| 14 | TEST10 | 3266 |  |
| 15 | TEST11 | 3174 |  |
| 16 | TEST12 | 3082 |  |
| 17 | TEST13 | 2990 |  |
| 18 | TEST14 | 2898 |  |
| 19 | TEST15 | 2806 |  |
| 20 | TEST16 | 2714 |  |
| 21 | TEST17 | 2622 |  |
| 22 | TEST18 | 2530 |  |
| 23 | Vss | 2422 |  |
| 24 | FR | 2314 |  |
| 25 | CL | 2222 |  |
| 26 | DOF | 2130 |  |
| 27 | F1 | 2038 |  |
| 28 | F2 | 1946 |  |
| 29 | CA | 1854 |  |
| 30 | Vss | 1762 |  |
| 31 | TEST | 1670 |  |
| 32 | CS1 | 1578 |  |
| 33 | RES | 1486 |  |
| 34 | A0 | 1394 |  |
| 35 | WR, R/W | 1302 |  |
| 36 | RD, E | 1210 |  |
| 37 | CS2 | 1118 |  |
| 38 | VdD | 1026 |  |
| 39 | M/S | 934 |  |
| 40 | Vss | 842 |  |
| 41 | CLS | 750 |  |
| 42 | VDd | 658 |  |
| 43 | C86 | 566 |  |
| 44 | Vss | 474 |  |
| 45 | P/S | 382 |  |
| 46 | VDD | 290 |  |
| 47 | D0 | 198 |  |
| 48 | D1 | 106 |  |
| 49 | D2 | 14 |  |
| 50 | D3 | -78 | $\downarrow$ |


| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 51 | D4 | -170 | 1830 |
| 52 | D5 | -262 |  |
| 53 | D6, SCL | -354 |  |
| 54 | D7, SI | -446 |  |
| 55 | Vss | -538 |  |
| 56 | Vss | -630 |  |
| 57 | Vss | -722 |  |
| 58 | Vdd | -814 |  |
| 59 | VDD | -906 |  |
| 60 | VDD | -998 |  |
| 61 | Vout | -1090 |  |
| 62 | Vout | -1182 |  |
| 63 | CAP1+ | -1274 |  |
| 64 | CAP1+ | -1366 |  |
| 65 | CAP1- | -1458 |  |
| 66 | CAP1- | -1550 |  |
| 67 | CAP2- | -1642 |  |
| 68 | CAP2- | -1734 |  |
| 69 | CAP2+ | -1826 |  |
| 70 | CAP2+ | -1918 |  |
| 71 | CAP3+ | -2010 |  |
| 72 | CAP3+ | -2102 |  |
| 73 | CAP3- | -2194 |  |
| 74 | CAP3- | -2286 |  |
| 75 | CAP4- | -2378 |  |
| 76 | CAP4- | -2470 |  |
| 77 | CAP4+ | -2562 |  |
| 78 | CAP4+ | -2654 |  |
| 79 | V3 | -2746 |  |
| 80 | V3 | -2838 |  |
| 81 | V2 | -2930 |  |
| 82 | V2 | -3022 |  |
| 83 | $\mathrm{V}_{1}$ | -3114 |  |
| 84 | $V_{1}$ | -3206 |  |
| 85 | Vc | -3298 |  |
| 86 | Vc | -3390 |  |
| 87 | MV1 | -3482 |  |
| 88 | MV1 | -3574 |  |
| 89 | MV2 | -3666 |  |
| 90 | MV2 | -3758 |  |
| 91 | MV3 | -3850 |  |
| 92 | MV3 | -3942 |  |
| 93 | CPP+ | -4034 |  |
| 94 | CPP- | -4126 |  |
| 95 | CPM + | -4218 |  |
| 96 | CPM- | -4310 |  |
| 97 | NC | -4402 |  |
| 98 | NC | -4494 | $\checkmark$ |
| 99 | NC | -4958 | 1675 |
| 100 | COM65 | $\downarrow$ | 1625 |


| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \\ \hline \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 101 | COM64 | -4958 | 1575 |
| 102 | COM63 |  | 1525 |
| 103 | COM62 |  | 1475 |
| 104 | COM61 |  | 1425 |
| 105 | COM60 |  | 1375 |
| 106 | COM59 |  | 1325 |
| 107 | COM58 |  | 1275 |
| 108 | COM57 |  | 1225 |
| 109 | COM56 |  | 1175 |
| 110 | COM55 |  | 1125 |
| 111 | COM54 |  | 1075 |
| 112 | COM53 |  | 1025 |
| 113 | COM52 |  | 975 |
| 114 | COM51 |  | 925 |
| 115 | COM50 |  | 875 |
| 116 | COM49 |  | 825 |
| 117 | COM48 |  | 775 |
| 118 | COM47 |  | 725 |
| 119 | COM46 |  | 675 |
| 120 | COM45 |  | 625 |
| 121 | COM44 |  | 575 |
| 122 | COM43 |  | 525 |
| 123 | COM42 |  | 475 |
| 124 | COM41 |  | 425 |
| 125 | COM40 |  | 375 |
| 126 | COM39 |  | 325 |
| 127 | COM38 |  | 275 |
| 128 | COM37 |  | 225 |
| 129 | COM36 |  | 175 |
| 130 | COM35 |  | 125 |
| 131 | COM34 |  | 75 |
| 132 | COM33 |  | 25 |
| 133 | COM32 |  | -25 |
| 134 | COM31 |  | -75 |
| 135 | COM30 |  | -125 |
| 136 | COM29 |  | -175 |
| 137 | COM28 |  | -225 |
| 138 | COM27 |  | -275 |
| 139 | COM26 |  | -325 |
| 140 | COM25 |  | -375 |
| 141 | COM24 |  | -425 |
| 142 | COM23 |  | -475 |
| 143 | COM22 |  | -525 |
| 144 | COM21 |  | -575 |
| 145 | COM20 |  | -625 |
| 146 | COM19 |  | -675 |
| 147 | COM18 |  | -725 |
| 148 | COM17 |  | -775 |
| 149 | COM16 |  | -825 |
| 150 | COM15 | $\checkmark$ | -875 |

Unit: $\mu \mathrm{m}$

| $\begin{aligned} & \text { PAD } \\ & \text { No. } \end{aligned}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 151 | COM14 | -4958 | -925 |
| 152 | COM13 |  | -975 |
| 153 | COM12 |  | -1025 |
| 154 | COM11 |  | -1075 |
| 155 | COM10 |  | -1125 |
| 156 | COM9 |  | -1175 |
| 157 | COM8 |  | -1225 |
| 158 | COM7 |  | -1275 |
| 159 | COM6 |  | -1325 |
| 160 | COM5 |  | -1375 |
| 161 | COM4 |  | -1425 |
| 162 | COM3 |  | -1475 |
| 163 | COM2 |  | -1525 |
| 164 | COM1 |  | -1575 |
| 165 | COM0 |  | -1625 |
| 166 | NC | $\checkmark$ | -1675 |
| 167 | NC | -4704 | -1846 |
| 168 | NC | -4621 |  |
| 169 | NC | -4539 |  |
| 170 | NC | -4456 |  |
| 171 | NC | -4374 |  |
| 172 | NC | -4291 |  |
| 173 | NC | -4209 |  |
| 174 | NC | -4126 |  |
| 175 | NC | -4044 | $\checkmark$ |
| 176 | SEG0 | -3975 | -1818 |
| 177 | SEG1 | -3925 |  |
| 178 | SEG2 | -3875 |  |
| 179 | SEG3 | -3825 |  |
| 180 | SEG4 | -3775 |  |
| 181 | SEG5 | -3725 |  |
| 182 | SEG6 | -3675 |  |
| 183 | SEG7 | -3625 |  |
| 184 | SEG8 | -3575 |  |
| 185 | SEG9 | -3525 |  |
| 186 | SEG10 | -3475 |  |
| 187 | SEG11 | -3425 |  |
| 188 | SEG12 | -3375 |  |
| 189 | SEG13 | -3325 |  |
| 190 | SEG14 | -3275 |  |
| 191 | SEG15 | -3225 |  |
| 192 | SEG16 | -3175 |  |
| 193 | SEG17 | -3125 |  |
| 194 | SEG18 | -3075 |  |
| 195 | SEG19 | -3025 |  |
| 196 | SEG20 | -2975 |  |
| 197 | SEG21 | -2925 |  |
| 198 | SEG22 | -2875 |  |
| 199 | SEG23 | -2825 |  |
| 200 | SEG24 | -2775 | $\downarrow$ |


| $\begin{aligned} & \text { PAD } \\ & \text { No. } \end{aligned}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 201 | SEG25 | -2725 | -1818 |
| 202 | SEG26 | -2675 |  |
| 203 | SEG27 | -2625 |  |
| 204 | SEG28 | -2575 |  |
| 205 | SEG29 | -2525 |  |
| 206 | SEG30 | -2475 |  |
| 207 | SEG31 | -2425 |  |
| 208 | SEG32 | -2375 |  |
| 209 | SEG33 | -2325 |  |
| 210 | SEG34 | -2275 |  |
| 211 | SEG35 | -2225 |  |
| 212 | SEG36 | -2175 |  |
| 213 | SEG37 | -2125 |  |
| 214 | SEG38 | -2075 |  |
| 215 | SEG39 | -2025 |  |
| 216 | SEG40 | -1975 |  |
| 217 | SEG41 | -1925 |  |
| 218 | SEG42 | -1875 |  |
| 219 | SEG43 | -1825 |  |
| 220 | SEG44 | -1775 |  |
| 221 | SEG45 | -1725 |  |
| 222 | SEG46 | -1675 |  |
| 223 | SEG47 | -1625 |  |
| 224 | SEG48 | -1575 |  |
| 225 | SEG49 | -1525 |  |
| 226 | SEG50 | -1475 |  |
| 227 | SEG51 | -1425 |  |
| 228 | SEG52 | -1375 |  |
| 229 | SEG53 | -1325 |  |
| 230 | SEG54 | -1275 |  |
| 231 | SEG55 | -1225 |  |
| 232 | SEG56 | -1175 |  |
| 233 | SEG57 | -1125 |  |
| 234 | SEG58 | -1075 |  |
| 235 | SEG59 | -1025 |  |
| 236 | SEG60 | -975 |  |
| 237 | SEG61 | -925 |  |
| 238 | SEG62 | -875 |  |
| 239 | SEG63 | -825 |  |
| 240 | SEG64 | -775 |  |
| 241 | SEG65 | -725 |  |
| 242 | SEG66 | -675 |  |
| 243 | SEG67 | -625 |  |
| 244 | SEG68 | -575 |  |
| 245 | SEG69 | -525 |  |
| 246 | SEG70 | -475 |  |
| 247 | SEG71 | -425 |  |
| 248 | SEG72 | -375 |  |
| 249 | SEG73 | -325 |  |
| 250 | SEG74 | -275 |  |


| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 251 | SEG75 | -225 | -1818 |
| 252 | SEG76 | -175 |  |
| 253 | SEG77 | -125 |  |
| 254 | SEG78 | -75 |  |
| 255 | SEG79 | -25 |  |
| 256 | SEG80 | 25 |  |
| 257 | SEG81 | 75 |  |
| 258 | SEG82 | 125 |  |
| 259 | SEG83 | 175 |  |
| 260 | SEG84 | 225 |  |
| 261 | SEG85 | 275 |  |
| 262 | SEG86 | 325 |  |
| 263 | SEG87 | 375 |  |
| 264 | SEG88 | 425 |  |
| 265 | SEG89 | 475 |  |
| 266 | SEG90 | 525 |  |
| 267 | SEG91 | 575 |  |
| 268 | SEG92 | 625 |  |
| 269 | SEG93 | 675 |  |
| 270 | SEG94 | 725 |  |
| 271 | SEG95 | 775 |  |
| 272 | SEG96 | 825 |  |
| 273 | SEG97 | 875 |  |
| 274 | SEG98 | 925 |  |
| 275 | SEG99 | 975 |  |
| 276 | SEG100 | 1025 |  |
| 277 | SEG101 | 1075 |  |
| 278 | SEG102 | 1125 |  |
| 279 | SEG103 | 1175 |  |
| 280 | SEG104 | 1225 |  |
| 281 | SEG105 | 1275 |  |
| 282 | SEG106 | 1325 |  |
| 283 | SEG107 | 1375 |  |
| 284 | SEG108 | 1425 |  |
| 285 | SEG109 | 1475 |  |
| 286 | SEG110 | 1525 |  |
| 287 | SEG111 | 1575 |  |
| 288 | SEG112 | 1625 |  |
| 289 | SEG113 | 1675 |  |
| 290 | SEG114 | 1725 |  |
| 291 | SEG115 | 1775 |  |
| 292 | SEG116 | 1825 |  |
| 293 | SEG117 | 1875 |  |
| 294 | SEG118 | 1925 |  |
| 295 | SEG119 | 1975 |  |
| 296 | SEG120 | 2025 |  |
| 297 | SEG121 | 2075 |  |
| 298 | SEG122 | 2125 |  |
| 299 | SEG123 | 2175 |  |
| 300 | SEG124 | 2225 | $\downarrow$ |

Unit: $\mu \mathrm{m}$

| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 301 | SEG125 | 2275 | -1818 |
| 302 | SEG126 | 2325 |  |
| 303 | SEG127 | 2375 |  |
| 304 | SEG128 | 2425 |  |
| 305 | SEG129 | 2475 |  |
| 306 | SEG130 | 2525 |  |
| 307 | SEG131 | 2575 |  |
| 308 | SEG132 | 2625 |  |
| 309 | SEG133 | 2675 |  |
| 310 | SEG134 | 2725 |  |
| 311 | SEG135 | 2775 |  |
| 312 | SEG136 | 2825 |  |
| 313 | SEG137 | 2875 |  |
| 314 | SEG138 | 2925 |  |
| 315 | SEG139 | 2975 |  |
| 316 | SEG140 | 3025 |  |
| 317 | SEG141 | 3075 |  |
| 318 | SEG142 | 3125 |  |
| 319 | SEG143 | 3175 |  |
| 320 | SEG144 | 3225 |  |
| 321 | SEG145 | 3275 |  |
| 322 | SEG146 | 3325 |  |
| 323 | SEG147 | 3375 |  |
| 324 | SEG148 | 3425 |  |
| 325 | SEG149 | 3475 |  |
| 326 | SEG150 | 3525 |  |
| 327 | SEG151 | 3575 |  |
| 328 | SEG152 | 3625 |  |
| 329 | SEG153 | 3675 |  |
| 330 | SEG154 | 3725 |  |
| 331 | SEG155 | 3775 |  |
| 332 | SEG156 | 3825 |  |
| 333 | SEG157 | 3875 |  |
| 334 | SEG158 | 3925 |  |
| 335 | SEG159 | 3975 | $\checkmark$ |
| 336 | NC | 4044 | -1846 |
| 337 | NC | 4126 |  |
| 338 | NC | 4209 |  |
| 339 | NC | 4291 |  |
| 340 | NC | 4374 |  |
| 341 | NC | 4456 |  |
| 342 | NC | 4539 |  |
| 343 | NC | 4621 |  |
| 344 | NC | 4704 | $\checkmark$ |
| 345 | NC | 4958 | -1675 |
| 346 | COM66 |  | -1625 |
| 347 | COM67 |  | -1575 |
| 348 | COM68 |  | -1525 |
| 349 | COM69 |  | -1475 |
| 350 | COM70 | $\checkmark$ | -1425 |


| $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { No. } \end{array}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 351 | COM71 | 4958 | -1375 |
| 352 | COM72 |  | -1325 |
| 353 | COM73 |  | -1275 |
| 354 | COM74 |  | -1225 |
| 355 | COM75 |  | -1175 |
| 356 | COM76 |  | -1125 |
| 357 | COM77 |  | -1075 |
| 358 | COM78 |  | -1025 |
| 359 | COM79 |  | -975 |
| 360 | COM80 |  | -925 |
| 361 | COM81 |  | -875 |
| 362 | COM82 |  | -825 |
| 363 | COM83 |  | -775 |
| 364 | COM84 |  | -725 |
| 365 | COM85 |  | -675 |
| 366 | COM86 |  | -625 |
| 367 | COM87 |  | -575 |
| 368 | COM88 |  | -525 |
| 369 | COM89 |  | -475 |
| 370 | COM90 |  | -425 |
| 371 | COM91 |  | -375 |
| 372 | COM92 |  | -325 |
| 373 | COM93 |  | -275 |
| 374 | COM94 |  | -225 |
| 375 | COM95 |  | -175 |
| 376 | COM96 |  | -125 |
| 377 | COM97 |  | -75 |
| 378 | COM98 |  | -25 |
| 379 | COM99 |  | 25 |
| 380 | COM100 |  | 75 |
| 381 | COM101 |  | 125 |
| 382 | COM102 |  | 175 |
| 383 | COM103 |  | 225 |
| 384 | COM104 |  | 275 |
| 385 | COM105 |  | 325 |
| 386 | COM106 |  | 375 |
| 387 | COM107 |  | 425 |
| 388 | COM108 |  | 475 |
| 389 | COM109 |  | 525 |
| 390 | COM110 |  | 575 |
| 391 | COM111 |  | 625 |
| 392 | COM112 |  | 675 |
| 393 | COM113 |  | 725 |
| 394 | COM114 |  | 775 |
| 395 | COM115 |  | 825 |
| 396 | COM116 |  | 875 |
| 397 | COM117 |  | 925 |
| 398 | COM118 |  | 975 |
| 399 | COM119 |  | 1025 |
| 400 | COM120 | $\downarrow$ | 1075 |


| $\begin{aligned} & \text { PAD } \\ & \text { No. } \end{aligned}$ | Pin Name | X | Y |
| :---: | :---: | :---: | :---: |
| 401 | COM121 | 4958 | 1125 |
| 402 | COM122 |  | 1175 |
| 403 | COM123 |  | 1225 |
| 404 | COM124 |  | 1275 |
| 405 | COM125 |  | 1325 |
| 406 | COM126 |  | 1375 |
| 407 | COM127 |  | 1425 |
| 408 | COM128 |  | 1475 |
| 409 | COM129 |  | 1525 |
| 410 | COM130 |  | 1575 |
| 411 | COM131 |  | 1625 |
| 412 | NC | $\checkmark$ | 1675 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## 5. PIN DESCRIPTION

### 5.1 Power Pin

| Pin name | 1/0 | Description | Number of pins |
| :---: | :---: | :---: | :---: |
| VdD | Power supply | Connect to system MPU power supply pin Vcc. | 6 |
| Vss | Power supply | Connect to the system GND. MV3 is short circuited with Mv3 inside the IC chip. | 8 |
|  | Power supply | A liquid crystal drive multi-level power supply. The voltages determined by the liquid crystal cell are impedance-converted by resistive divider and operational amplifier for application. <br> The following order must be maintained: <br> $\mathrm{V}_{3} \geq \mathrm{V}_{2} \geq \mathrm{V}_{1} \geq \mathrm{VC}_{2} \geq \mathrm{MV}_{1} \geq \mathrm{MV}_{2} \geq \mathrm{MV}_{3}$ (= Vss) <br> Master operation: When power supply is turned on, the following voltage is applied to each pin by the built-in power supply circuit. MV3 is connected to with Vss inside the IC chip. | $\begin{gathered} 14 \\ (2 \text { each }) \end{gathered}$ |

### 5.2 LCD Power Supply Circuit Pin

| Pin name | I/O |  | Number of <br> pins |
| :--- | :---: | :--- | :---: |
| CAP1+ | O | Pin connected to the positive side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP1-pin. | 2 |
| CAP1- | O | Pin connected to the negative side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP1+ pin. | 2 |
| CAP2+ | O | Pin connected to the positive side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP2-pin. | 2 |
| CAP2- | O | Pin connected to the negative side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP2+ pin. | 2 |
| Vout | O | Output pin for step-up. <br> Connect the capacitor between this pin and VDD. | 2 |
| CAP3+ | O | Pin connected to the positive side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP3-pin. | 2 |
| CAP3- | O | Pin connected to the negative side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP3+ pin. | 2 |
| CAP4+ | O | Pin connected to the positive side of the step--up capacitor. <br> Connect the capacitor between this pin and CAP4-pin. | 2 |
| CAP4- | O | Pin connected to the negative side of the step-up capacitor. <br> Connect the capacitor between this pin and CAP4+ pin. | 2 |
| CPP+ | O | Keep it open. | 1 |
| CPP- | O | Keep it open. | 1 |
| CPM+ | O | Keep it open. | 1 |
| CPM- | O | Keep it open. | 1 |

### 5.3 System Bus Connection Pin

| Pin name | 1/0 | Description |  |  |  | Number of pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { D7 to D0 } \\ & \text { (SI) } \\ & \text { (SCL) } \end{aligned}$ | 1/O | Connects to the 8 -bit or 16 -bit MPU data bus via the 8 -bit bi-directional data bus. <br> When the serial interface is selected ( $\mathrm{P} / \mathrm{S}=\mathrm{LOW}$ ), D7 serves as the serial data input (SI) and D6 serves as the serial clock input (SCL), In this case, D0 through D5 go to a high impedance state. When the Chip select is inactive, D0 through D7 go to a high impedance state. |  |  |  | 8 |
| A0 | 1 | Normally, the least significant bit MPU address bus is connected to distinguish between data and command. <br> A0 $=$ HIGH : indicates that DO to D7 are display data or command parameters. A0 $=$ LOW : indicates that D0 to D7 are control commands. |  |  |  | 1 |
| $\overline{\mathrm{RES}}$ | 1 | When the RES is LOW, initialization is achieved. Resetting operation is done on the level of the RES signal. |  |  |  | 1 |
| $\begin{array}{\|l\|} \hline \mathrm{CS1} \\ \mathrm{CS} 2 \\ \hline \end{array}$ | 1 | A chip select signal. When $\overline{\text { CS1 }}=$ LOW and CS2 $=$ HIGH, signals are active, and data/command input/output are enabled. |  |  |  | 2 |
| $\begin{array}{\|l\|l} \hline \mathrm{RD} \\ (\mathrm{E}) \end{array}$ | 1 | - When the 80 series MPU is connected. <br> A pin for connection of the RD signal of the 80 series MPU. When this signal is LOW, the data bus of the S1D15E06 series is in the output state. <br> - When the 68 series MPU is connected. Serves as a 68 series MPU enable clock input pin. |  |  |  | 1 |
| $\overline{\mathrm{WR}}$ (R/W) | 1 | - When the 80 series MPU is connected. <br> A pin for connection of the WR signal of the 80 series MPU. Signals on the data bus are latched at the leading edge of the WR signal. <br> - Serves as a read/write control signal input pin when the 68 series MPU is connected. <br> R/W $=$ HIGH: Read <br> R/W = LOW : Write |  |  |  | 1 |
| C86 | I | A MPU interface switching pin. C86 = HIGH: 68 series MPU interface C86 = LOW : 80 series MPU interface |  |  |  | 1 |
| P/S | 1 | Parallel data input/serial P/S = HIGH: Parallel da P/S = LOW: Serial data The following Table show <br> When P/S = LOW, D0 to D0 to D5 can be HIGH, L RD(E) and $\overline{W R}(R / W)$ are The serial data input does | ata input se input inut the summ <br> 5 are high W or open ocked to H not allow th | ect pin <br> ry: <br> mpedance. <br> H or LOW. <br> RAM display | Serial clock <br>  <br> SCL (D6) <br> data to be read. | 1 |


| Pin name | I/O | Description |  |  |  |  | Number of pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLS | 1 | A pin used to select Enable/Disable state of the built-in oscillator circuit for display clock. <br> CLS $=$ HIGH : Built-in oscillator circuit Enabled <br> CLS = LOW: Built-in oscillator circuit Disabled (External input) When CLS is LOW, display clock is input from the CL pin. When the S1D15E06 series is used in the master/slave mode, each CLS pins must be set to the same level. |  |  |  |  | 1 |
| M/S | 1 | A pin used to select the master/slave operation for S1D15E06 series. Liquid crystal display system is synchronized when the master operation outputs the timing signal required for liquid crystal display, while the slave operation inputs the timing signal required for liquid crystal display. <br> M/S = HIGH: Master operation <br> M/S = LOW : Slave operation <br> The following Table shows the relation in conformance to the M/S and CLS: |  |  |  |  | 1 |
| CL | I/O | Display clock The following Ta <br> When you wa mode, connec | nput/output le shows the $r$ <br> t to use the each CL pin | on in conform | nce to th <br> s in th | /S and CLS state <br> master/slave | 1 |
| FR | I/O | A liquid crystal alternating current input/output pin. <br> M/S = HIGH: Output <br> M/S = LOW: Input <br> When you want to use the S1D15E06 series in the master/slave mode, connect each FR pin. |  |  |  |  | 1 |
| $\begin{aligned} & \text { F1, F2, } \\ & \text { CA } \end{aligned}$ | I/O | A liquid crystal sync signal input/output pin. <br> M/S = HIGH: Output <br> M/S = LOW: Input <br> When you want to use the S1D15E06 series in the master/slave mode, connect each F1, F2 and CA pins. |  |  |  |  | $\begin{gathered} 3 \\ (1 \text { each }) \end{gathered}$ |
| $\overline{\text { DOF }}$ | I/O | A liquid crystal blanking control pin. <br> M/S = HIGH: Output <br> M/S = LOW : Input <br> When you want to use the S1D15E06 series in the master/slave mode, connect each DOF pin. |  |  |  |  | 1 |

### 5.4 Liquid crystal drive pin

| Pin name | I/O | Description | Number of <br> pins |
| :--- | :---: | :--- | :---: |
| SEG0 to <br> SEG159 | O | Liquid crystal segment drive output pins. One of the $\mathrm{V}_{2}, \mathrm{~V}_{1}, \mathrm{Vc}$, <br> MV1, and MV2 levels is selected by a combination of the display <br> RAM content and FR/F1/F2 signals. | 160 |
| COM0 to <br> COM131 | O | Liquid crystal common drive output pins. One of the $\mathrm{V}_{3}, \mathrm{Vc}$, <br> MV3 (VsS) levels is selected by a combination of the scan data <br> and FR/F1/F2 signals. | 132 |

### 5.5 Test pins

| Pin name | I/O | Description | Number of <br> pins |
| :--- | :---: | :--- | :---: |
| TEST, <br> TEST2 to 5 | I | IC chip test pins. Lock them to LOW. | 5 |
| TEST0, 1, <br> 6 to 18 | I/O | IC chip test pins. Open them and make sure that the capacity is not <br> consumed by wiring, etc. | 15 |

## 6. FUNCTIONAL DESCRIPTION

### 6.1 MPU Interface

### 6.1.1 Selection of Interface Type

S1D15E06 series allows data to be sent via the 8-bit bi-directional data buses (D7 to D0) or serial data input (SI). By setting the polarity of the P/S pin to HIGH or LOW, you can select either 8-bit parallel data input or serial data input, as shown in Table 6.1.

## Table 6.1

| P/S | $\overline{\text { CS1 }}$ | CS2 | A0 | $\overline{\mathbf{R D}}$ | $\overline{\text { WR }}$ | $\mathbf{C 8 6}$ | D7 | D6 | D5 to D0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HIGH : Parallel input | $\overline{\mathrm{CS1}}$ | CS 2 | A0 | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | C 86 | D 7 | D 6 | D5 to D0 |
| LOW : Serial input | $\overline{\mathrm{CS} 1}$ | CS 2 | A0 | - | - | - | SI | SCL | (HZ) |

### 6.1.2 parallel interface

When the parallel interface is selected $(\mathrm{P} / \mathrm{S}=\mathrm{HIGH})$, direction connection to the MPU bus of either 80 series MPU or 68 series MPU is performed by setting the 86 pin to either HIGH or LOW, as shown in Table 6.2.

Table 6.2

| P/S | $\overline{\text { CS1 }}$ | CS2 | A0 | $\overline{\text { RD }}$ | $\overline{\text { WR }}$ | D7 to D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HIGH $: 68$ series MPU bus | $\overline{\text { CS1 }}$ | CS2 | A0 | E | $\mathrm{R} / \bar{W}$ | D 7 to D0 |
| LOW $: 80$ series MPU bus | $\overline{\mathrm{CS1}}$ | CS2 | A0 | $\overline{\mathrm{RD}}$ | $\overline{\mathrm{WR}}$ | D 7 to D0 |

The data bus signals are identified by a combination of $A 0, \overline{\mathrm{RD}}(\mathrm{E})$, and $\overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}})$ signals as shown in Table 6.3.
Table 6.3

| Common | 68 series | 80 series |  | Function |
| :---: | :---: | :---: | :---: | :---: |
| A0 | R/W | RD | WR |  |
| 1 | 1 | 0 | 1 | Display data read, status read |
| 1 | 0 | 1 | 0 | Display data write, command parameter write |
| 0 | 1 | 1 | 0 | Command write |

### 6.1.3 Serial interface

When the serial interface is selected ( $\mathrm{P} / \mathrm{S}=\mathrm{LOW}$ ), the chip is active $\overline{(\mathrm{CS} 1}=\mathrm{LOW}, \mathrm{CS} 2=\mathrm{HIGH})$, and reception of serial data input (SI) and serial clock input (SCL) is enabled. Serial interface comprises a 8-bit shift register and 3-bit counter. The serial data are latched by the rising edge of serial clock signals in the order of D7, D6, .... and D0 starting from the serial data input pin. On the rising edge of 8 th serial clock signal, they are converted into 8 -bit parallel data to be processed.
Whether serial data input is a display data or command is identified by A0 input. A0 $=\mathrm{HIGH}$ indicates display data, while A0 $=$ LOW shows command data. The A0 input is read and identified at every $8 \times n$-th rising edge of the serial clock after the chip has turned active.
Fig. 6.1 shows the serial interface signal chart.


Fig. 6.1

* When the chip is inactive, the counter is reset to the initials state.
* Reading is not performed in the case of serial interface.
* For the SCL signal, a sufficient care must be taken against terminal reflection of the wiring and external noise. Recommend to use an actual equipment to verify the operation.


### 6.1.4 Chip Selection

The S1D15E06 series has two chip select pins; CS1 and CS2. MPU interface or serial interface is enabled only when $\overline{\mathrm{CS}}=\mathrm{LOW}$ and CS2 $=\mathrm{HIGH}$.
When the chip select pin is inactive, D 0 to D 5 are in the state of high impedance, while A0, $\overline{\mathrm{RD}}$ and WR inputs are disabled. When serial interface is selected, the shift register and counter are reset.

### 6.1.5 Access to display data RAM and internal register

Access to S1D15E06 series viewed from the MPU side is enabled only if the cycle time requirements are kept. This does not required waiting time; hence, high-speed data transfer is allowed.
Furthermore, at the time of data transfer with the MPU, S1D15E06 series provides a kind of inter-LSI pipe line
processing via the bus holder accompanying the internal data bus.
For example, when data is written to the display data RAM by the MPU, the data is once held by the bus holder. It is written to the display data RAM before the next data write cycle comes.
On the other hand, when the MPU reads the content of the display data RAM, it is read in the first data read cycle (dummy), and the data is held in the bus holder. Then it is read onto on the system bus from the bus holder in the next data read cycle. Restrictions are imposed on the display data RAM read sequence. When the address has been set, specified address data is not output to the Read command immediately after that. The specified address data is output in the second data reading. This must be carefully noted. Therefore, one dummy read operation is mandatory subsequent to address setting or write cycle. Fig. 6.2 illustrates this relationship.


Fig. 6.2

### 6.2 Display data RAM

### 6.2.1 Display Data RAM

This is a RAM to store the display dot data, and comprises $132 \times 160 \times 2$ bits. Access to the desired bit is enabled by specifying the page address and column address. When the 4 gray-scale is selected by the Display Mode command, display data input for gray-scale display are processed as a two-bit pair. Combination is as follows:
$(\mathrm{MSB}, \mathrm{LSB})=(\mathrm{D} 1, \mathrm{D} 0),(\mathrm{D} 3, \mathrm{D} 2),(\mathrm{DS}, \mathrm{D} 4),(\mathrm{D} 7, \mathrm{D} 6)$
When the RAM bit data is gray-scale 1 and 2, gray-scale display is realized according to the parameter of the Gray-scale Pattern Set command.

RAM bit data (high order and low order)
$(1,1)$ : gray-scale $3 \quad$ Black (when display is in normal mode)
$(1,0)$ : gray-scale 2
$(0,1)$ : gray-scale 1
$(0,0)$ : gray-scale 0
White (when display is in normal mode)

When binary display is selected by the Display Mode command, the RAM 1 bit built in the one-dot pixel responds to it. When the RAM bit data is " 1 ", the display is black. If it is " 0 ", the display is given in white. RAM bit data
" 1 ": Light On Black (when display is in normal mode)
" 0 " : Light Off White (when display is in normal mode)

Display data D7 to D0 from the MPU correspond to LCD common direction, as shown in Fig. 6.3 and 6.4. Therefore, less restrictions when multi-chip usage. Furthermore, read/write operations from the MPU to the RAM are carried out via the input/output buffer.

The read operation from Display data RAM is designed as an independent operation. Accordingly, even if the MPU accesses the RAM asynchronously during LCD display, no adverse effect is given to display.

| (D1,D0) | $(0,0)$ | $(1,1)$ | $(1,1)$ | $\cdots$ | $(0,0)$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| (D3,D2) | $(1,1)$ | $(0,0)$ | $(0,0)$ | - | $(0,0)$ |
| (D5,D4) | $(0,0)$ | $(1,0)$ | $(0,1)$ | - | $(0,0)$ |
| (D7,D6) | $(0,0)$ | $(0,0)$ | $(0,0)$ | $\cdots$ | $(0,0)$ |
|  |  |  |  |  |  |
| Display data RAM |  |  |  |  |  |



Fig. 6.3 4 gray-scale


Fig. 6.4 Binary

### 6.2.2 Gray-scale display

When the 4 gray-scale is selected by the Display Mode command, gray-scale is represented by the FRM control carried out according to the gray-scale data written in the display data RAM.
Of the 4 gray-scale, 2 gray-scale of halftones (grayscale 2 and 1) has its level of contrast specified by the Gray-scale Set command. Gray-scale can be selected from 6 levels of contrast.

### 6.2.3 Page address circuit/column address circuit

The address of the display data RAM to be accessed is specified by the Page Address Set command and Column Address Set command, as shown in Fig. 6.5 and Fig. 6.6. For Address incremental direction, either the column direction or page direction can be selected by the Address Direction command. Whichever direction is chosen, increment is carried out by positive one $(+1)$ after write
or read operation.
When the column direction is selected for address increment, the column address is increased by +1 for every write or read operation. After the column address has accessed up to 9 FH , the page address is incremented by +1 and the column address shifts to 0 H .
When the page direction is selected for address increment, the page address is increased with the column address locked in position. When the page address has accessed up to 32 H , the column address is incremented by +1 , and the page address goes to 0 H .
Whichever direction is selected for address increment, the page address goes back to 0 H and the column address to 0 H after access up to the column address 9FH of page address 32 H .
As shown in Fig. 6.4, relationship between the display data RAM column address and segment output can be reversed by the Column Address Set Direction command. This will reduce restrictions on IC layout during LCD module assembling.

Table 6.4

| SEG output | SEG0 |  | SEG159 |  |
| :--- | :--- | :--- | :--- | :--- |
| ADC | $" 0 "$ | $0(\mathrm{H}) \rightarrow$ | Column Address | $\rightarrow 9 \mathrm{~F}(\mathrm{H})$ |
| $(\mathrm{DO})$ | $" 1 "$ | $9 \mathrm{~F}(\mathrm{H}) \leftarrow$ | Column Address | $\leftarrow 0(\mathrm{H})$ |

### 6.2.4 Line address circuit

The line address circuit specifies the line address corresponding to COM output when the contents of the display data RAM is displayed, as shown in Fig. 6.5 and 6.6. Normally, the top line of the display (COM0 output in the case of normal rotation of the common output status and COM131 output in the case of reverse rotation) is specified by the Display Start Line Address Set command. The display area starts from the specified display start line address to cover the area corresponding to the lines specified by the DUTY Set command in the direction where the line address increments.
If the display start line address set command is used for
dynamic modification of the line address, screen scroll and page change are enabled.

### 6.2.5 Area scroll

The display area can be divided into the display area fixed in the COM direction and scrollable area by the area scroll command. The scroll area is set by a scroll mode, scroll start line address (AS), scroll end address (AE), and scroll display line count (AL) as parameters for the area scroll command. Display start line address (DL) in the scroll area can be specified by the display start line address set command.


### 6.2.5.1 Mode 0 (full screen scroll)

This mode releases the area scroll. Parameters AS, AE and AL are disabled,

### 6.2.5.2 Mode 1 (Upper scroll)

Reading starts from the line address DL to read AL lines as a scroll area. If the line address AE is read in the
middle of reading the scroll area, the line address to be read next will be 00 H . When all the AL lines have been read, the address to be read next will be $\mathrm{AE}+1$. When reading is completed up to the final line address, the control goes back to the line address DL, and parameter AS is disabled. DL can be specified in the range from 00 H to AE .

### 6.2.5.3 Mode 2 (lower scroll)

Reading starts from line address 00 H to reach the line address AS-1 in the continuous reading mode. Upon completion of reading of line address AS-1, the line address moves to the DL to read the area corresponding to AL lines from the line address DL as a scroll area. If the final line address is read in the middle of reading the scroll area, the line address to be read next will be AS. When all AL lines have been read, the control goes back to the line address 00 H , and parameter AE is disabled. DL can be specified in the range from AS to the final line address.

### 6.2.5.4 Mode 3 (Center scroll)

Reading starts from line address 00 H to reach the line address AS-1 in the continuous reading mode.
Upon completion of reading of line address AS-1, the line address moves to the DL to read the area corresponding to AL lines from the line address DL as a scroll area. If the final line address is read in the middle of reading the scroll area, the line address to be read next will be AS. When all AL lines have been read, the line address will be $\mathrm{AE}+1$. When up to the final line address has been read, the control goes back to the line address 00 H , DL can be specified in the range from AS to AE .

### 6.2.6 Display data latch circuit

The display data latch circuit is a latch to temporarily latch the display data output from then display data RAM to the liquid crystal drive circuit. Display normal/ reverse, display ON/OFF, and display all lighting ON/ OFF commands control the data in this latch, without the data in the display data RAM being controlled.

### 6.2.7 Partial display

Partial display of the screen is provided by the partial display ON/OFF command. The partial area (display start line, number of display lines) are set by the partial display set command.
The display start line of the parameter shows the line assigned in the COM direction of the liquid crystal screen. It is different from the line address given in Fig. 6.5 and 6.6.

Example: When the point is set at 1 (COM4 to 7) by the Duty Reset command, the display line is assigned as shown below. If the display start line 4 and display line count 3 are specified by the partial display set command, the display area is COM8 to COM10.

| Display line | LCD panel |  |
| :---: | :---: | :---: |
| 0 |  | COM4 |
| 1 |  | COM5 |
| 2 |  | COM6 |
| 3 |  | COM7 |
| 4 |  | COM8 |
| 5 |  | COM9 |
| 6 |  | COM10 |
| 7 |  | COM11 |
| 8 |  | COM12 |
| 9 |  | COM13 |
| 10 |  | COM14 |
|  |  | ! |



Fig. 6.54 gray-scale

Common
output state:
COM D

### 6.3 Oscillator circuit

A display clock is generated by the CR oscillator. The oscillator circuit is enabled only when M/S = HIGH and CLS $=$ HIGH. Oscillation starts after input of the builtin oscillator circuit ON command input.
When CLS = LOW, oscillation stops, and display clock is input from the CL pin.

### 6.4 Display timing generation circuit

Timing signals are generated from the display clock to the line address circuit and display data latch circuit. Synchronized with display clock, display data is latched in display data latch circuit, and is output to the segment drive output pin. Reading of the display data into the LCD drive circuit is completely independent of access from the MPU to the display data RAM. Accordingly, asynchronous access to the display data RAM during LCD display does not give any adverse effect; like as
flicker.
Furthermore, the display clock generates internal common timing, liquid crystal alternating signal(FR), field start signal (CA) and drive pattern signal ( Fl and F2).
The FR normally generates 2-frame alternating drive system drive waveform to the liquid crystal drive circuit. The n-line reverse alternating drive waveform is generated for each $4 \times(a+1)$ line by setting data on the n -line reverse drive register. When there is a display quality problem including crosstalk,the problem may be solved using the n -line reverse alternating drive.
Execute liquid crystal display to determine the number of lines " n " for alternation.
When you want to use the S1D15E06 series in multichip configuration, supply display timing signal (FR, CA, F1, F2, CL, DOF) to the slave side from the master side. Table 6.5 shows the statuses of FR, CA, F1, F2, CL, $\overline{\mathrm{DOF}}$.

Table 6.5

|  | Operating mode | CL | FR, CA, F1, F2, $\overline{\text { DOF }}$ |
| :---: | :---: | :---: | :---: |
| Master (M/S = HIGH) | Built-in oscillator circuit enabled (CLS = HIGH) <br> Built-in oscillator circuit disabled (CLS = LOW) | Output <br> Input | Output <br> Output |
| Slave (M/S = LOW) | Built-in oscillator circuit enabled (CLS = HIGH) <br>  <br>  <br>  <br> Built-in oscillator circuit disabled (CLS = LOW) | Input <br> Input | Input <br> Input |

### 6.5 Liquid crystal drive circuit

### 6.5.1 SEG Drivers

This is a SEG output circuit. It selects the five values of $\mathrm{V}_{2}, \mathrm{~V}_{1}, \mathrm{~V}_{\mathrm{C}}, \mathrm{MV} 1$ and MV2 using the driver control signal determined by the decoder, and output them.

### 6.5.2 COM Drivers

This is a COM output circuit. It selects three values of V3, Vc and MV3(Vss) using the driver control signal determined by the decoder, and output them.
S1D15E06 series allows the COM output scanning direction to be set by the common output status select command. (See Table 6.6). This will reduce restrictions on IC layout during LCD module assembling.

Table 6.6

| Status | Direction of COM scanning |  |  |
| :--- | :---: | :---: | :---: |
| Normal | COM 0 | $\rightarrow$ | COM 131 |
| Reverse | COM 131 | $\rightarrow$ | COM 0 |

### 6.6 Power supply circuit

This is a power supply circuit to generate voltage required for liquid crystal drive, and is characterized by a low power consumption. It consists of a step-up circuit, voltage regulating circuit and liquid crystal drive voltage generating circuit, and is enabled only during master operation. The power supply circuit uses the power control set command to provide an on/off
control of step-up circuit, voltage regulating circuit and liquid crystal drive potential generating circuit. This allows a combined use of the external power supply and part of built-in power supply functions. Table 6.7 shows functions controlled by the 5 -bit data of the control set command, and Table 6.8 shows reference combinations. The power supply circuit is enabled only during master operation.

Table 6.7 Control by 5 -bit data of the control set command

| Item | State |  | Triple | Double | Single |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | "1" |  |  |  |  |
| D4 Step-cut circuit scaling factor select bit 1 | - | - | 1 | 1 | 0 |
| D3 Step-cut circuit scaling factor select bit 2 | - | - | 1 | 0 | 1 |
| D2 Step-cut circuit control bit | ON | OFF | - | - | - |
| D1 Voltage regulator circuit (Vc regulator circuit) control bit | ON | OFF | - | - | - |
| D0 LCD driving potential generating circuit (LCDV circuit) control bit | ON | OFF | - | - | - |

Table 6.8 Reference combination

| Circuits used | D4 | D3 | D2 | D1 | D0 | Step-up circuit | Vc regulator circuit | LCDV circuit | Eternal input power supply |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) Use of all built-in power supplies |  |  |  |  |  |  |  |  |  |
| Triple step-up | 1 | 1 | 1 | 1 | 1 | O"1" | O "1" | O"1" | - |
| Double step-up | 1 | 0 | 1 | 1 | 1 | - "1" | O"1" | O"1" | - |
| Vout = VDD | 0 | 1 | 1 | 1 | 1 | O"1" | O"1" | O"1" | - |
| (2) Vc regulating circuit and LCDV circuit only | 0 | 0 | 0 | 1 | 1 | $\times$ "0" | O"1" | O"1" | Vout |
| (3) LCDV circuit only | 0 | 0 | 0 | 0 | 1 | - "0" | $\times$ "0" | O"1" | Vc |
| (4) External power supply only (S1D15E06D00B*) | 0 | 0 | 0 | 0 | 0 | $\times$ "0" | $\times$ "0" | ×"0" | $\begin{gathered} \mathrm{V}_{3}, \mathrm{~V}_{2}, \mathrm{~V}_{1}, \mathrm{Vc}_{2} \\ \mathrm{MV}_{1}, \mathrm{MV}_{2} \end{gathered}$ |

* Any combinations other than the above are not available.
*100ms or more should be kept from VC regulator circuit ON to LCDV circuit ON.


### 6.6.1 Step-up circuit

VDD-Vss potential can be triple and double step-up by the step-up circuit built in the S1D15E06 series. The status of VoUT = VDD can be selected by stopping the operation of the triple and double step-up circuit using the command
(1) When used by switching between the triple, double step-up and Vout $=$ VDD using a command:

Capacitors C1 are connected between CAP1+ <-> CAP1, between CAP2+ <-> CAP2 and between VDD <-> Vout for use.
(2) When used by switching between the double step-up and Vout = VDD using a command:

Capacitors C1 are connected between CAP1+
<-> CAP1 and between VDD <-> Vout for use.
(3) Only Vout $=$ VDD is used.

VDD pin and Vout pin are connected for use.

(1) Triple, double step-up or Vout $=$ VDD

(2) Double step-up or

Vout $=$ VDD

Fig. 6.7 shows the potential relationship for boosting.


Triple step-up potential relationship


Double step-up potential relationship


Fig. 6.7

* Set the VDD voltage range so that the Vout pin voltage does not exceed the absolute maximum rating.


### 6.6.2 Voltage Regulating Circuit

Vout generated from the step-up circuit or Vout input from the outside produces liquid crystal drive voltage VC via the voltage regulating circuit. The voltage regulating circuit is controlled by liquid crystal drive voltage change command and electronic volume.
The S1D15E06 series has a high precision constant voltage source, and incorporates 4 -step liquid crystal drive voltage change command and 128 -step electronic volume functions. This makes it possible to provide a high precision liquid crystal drive voltage regulation

- Electronic volume
$\alpha$ of Table 6.9 indicates an electronic volume command value. It takes one of 128 states when the data is set in the 7-bit electronic volume register.
Table 6.9 shows the value of $\alpha$ by setting the data in the electronic volume register.
only by the command without adding any external parts. The variable range of the VC voltage is from about 1.6 to $7.0[\mathrm{~V}]$. When the internal step-up is used, or Vout is input for use, the Vout potential should be, in principle, the voltage $20 \%$ or more higher than the maximum voltage of the $\mathrm{VC}_{\mathrm{C}}$ to be used, giving consideration to temperature characteristics.

Example: When Vc output is 7 [V], Vout $\geq 8.4$ [V] (three times 2.8 [V], etc.)
When Vc output is 4 [V], Vout $\geq 4.8$ [V] (two times 2.4 [V], three times 1.8 [V])

Table 6.9

| D6 | D5 | D4 | D3 | D2 | D1 | D0 | $\boldsymbol{\alpha}$ | Voltage Vc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Small |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |  |
|  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 125 |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 126 | $\downarrow$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 127 | Large |

- Liquid crystal drive voltage selection

The liquid drive voltage range can be selected from 3 states by the liquid crystal drive voltage select command using the two-bit crystal drive voltage select command register.

Table 6.10

| D1 | D0 | Vc voltage output range |
| :---: | :---: | :---: |
| 0 | 0 | 1.77 V to 3.50 V |
| 1 | 0 | 2.53 V to 5.00 V |
| 1 | 1 | 3.54 V to 7.00 V |

Equation A-1 represents Vc logical values. For the output voltage of VC, a manufacturing dispersion of up to $\pm 3 \%$ should be taken into account.

## Equation A-1

Unit [V]

| $\begin{gathered} \text { Electronic } \\ V_{R} \\ \alpha \end{gathered}$ | LCD voltage selection |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D1 | D0 | D1 | D0 | D1 | D0 |
|  | 0 | 0 | 1 | 0 | 1 | 1 |
|  | $\mathrm{Vc}(\mathrm{Max})=.3.50 \mathrm{~V}$ |  | $\mathrm{Vc}(\mathrm{Max})=.5.00 \mathrm{~V}$ |  | $\mathrm{Vc}(\mathrm{Max})=.7.00 \mathrm{~V}$ |  |
| 0 to 31 | $1.77+0.0195 \times \alpha$ |  | $2.53+0.028 \times \alpha$ |  | $3.54+0.039 \times \alpha$ |  |
| 32 to 63 | $2.39+0.0156 \times(\alpha-32)$ |  | $3.42+0.0223 \times(\alpha-32)$ |  | $4.78+0.0313 \times(\alpha-32)$ |  |
| 64 to 95 | $2.89+0.0117 \times(\alpha-64)$ |  | $4.12+0.0167 \times(\alpha-64)$ |  | $5.77+0.0234 \times(\alpha-64)$ |  |
| 96 to 127 | $3.26+0.0078 \times(\alpha-96)$ |  | $4.65+0.0112 \times(\alpha-96)$ |  | $6.52+0.0156 \times(\alpha-96)$ |  |



Figure 6.8

### 6.6.3 Liquid crystal drive voltage generation circuit

Voltage VC is boosting in the IC to generate potential V3. Furthermore, voltages V3 and Vc are converted by resistive divider to produce $\mathrm{V}_{2}, \mathrm{~V}_{1}, \mathrm{MV}_{1}$ and $\mathrm{MV}_{2}$ voltages. $\mathrm{V}_{2}, \mathrm{~V}_{2}, \mathrm{MV}_{1}$ and $\mathrm{MV}_{2}$ voltages are impedance-converted by the voltage follower, and is supplied to the liquid crystal drive circuit.

| $\mathrm{V}_{2}$ | $11 / 14 \cdot \mathrm{~V}_{3}$ |
| :---: | :---: |
| $\mathrm{~V}_{1}$ | $9 / 14 \cdot \mathrm{~V}_{3}$ |
| $\mathrm{~V}_{\mathrm{c}}$ | $7 / 14 \cdot \mathrm{~V}_{3}$ |
| $\mathrm{MV}_{1}$ | $5 / 14 \cdot \mathrm{~V}_{3}$ |
| MV 2 | $3 / 14 \cdot \mathrm{~V}_{3}$ |

An example of circuit around the power supply circuit
(1) Use of all built-in power supplies

When used by switching between the triple, double boosting and Vout = VdD: ( 12 C 's)


When used by switching between the double boosting and Vout = VdD: (11 C's)


Only Vout $=$ VDD is used: $(9 \mathrm{C}$ 's $)$

(3) LCDV circuit only

VC external input (9 C's)

(2) VC regulating circuit and LCDV circuit Vout external input (10 C's)

(4) External power supply only external input (1 C)


Examples of common reference settings

| Item | Settings | Unit |
| :---: | :---: | :---: |
| C1 | 1.0 to 4.7 | $\mu \mathrm{~F}$ |
| C2 | 0.47 to 1.0 |  |
| C3 | 0.47 to 1.0 |  |

*5 Precautions when installing the COG
When installing the COG, it is necessary to duly consider the fact that there exists a resistance of the ITO wiring occurring between the driver chip and the externally connected parts (such as capacitors and resistors). By the influence of this resistance, non-conformity may occur with the indications on the liquid crystal display. When installing the COG, we recommend to use the "(4) External power supply only"

### 6.6.4 Temperature gradient select circuit

This is a circuit to select the temperature gradient characteristics of the liquid crystal drive power supply voltage. Temperature gradient characteristics can be selected from eight states by the Temperature Gradient command. Selection of temperature gradient characteristics conforming to the temperature characteristics of the liquid crystal to be used makes it possible to configure a system without providing an external element for temperature characteristics compensation.

### 6.7 Reset circuit

When the $\overline{\mathrm{RES}}$ input becomes LOW, this LSI is set to the initialized state.
The following shows the initially set state:

1. Display: OFF
2. Display OFF mode : Vss output
3. Display : normal mode
4. Display all lighting : OFF
5. Common output status : normal
6. Display start line : Set to 1st line
7. Page address : Set to 0 page
8. Column address : Set to 0 address
9. Display data input direction : Column direction
10. Column address direction : forward
11. n-line a.c. reverse drive : OFF (reverse drive for each frame)
12. n-line reverse drive register : (D4, D3, D2, D1, D0) $=(0,1,1,0,0)$
13. Display mode : 4 gray-scale display
14. Gray-scale pattern register : (D7, D6, D5, D4, D3, $\mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=(*, 1,0,1, *, 0,1,0)$
15. Area scroll :

Scroll mode : (D1, D0) $=(0,0)$
Scroll start address : (D7, D6, D5, D4, D3, D2, D1, $\mathrm{D} 0)=(0,0,0,0,0,0,0,0)$
Scroll terminating address : (D7, D6, D5, D4, D3, $\mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=(0,0,0,0,0,0,0,0)$
Number of display lines: (D7, D6, D5, D4, D3, D2, $\mathrm{D} 1, \mathrm{D} 0)=(0,0,0,0,0,0,0,0)$

The optimum values for above-mentioned $\mathrm{Cl}, \mathrm{C} 2$ and C3 vary according to the LCD panel to drive. Use the above-mentioned values as references. Actually verify the display of a pattern with big load to make a decision.
16. DUTY register : (D5, D4, D3, D2, D1, D0) $=(1,0$, $0,0,0,0)(1 / 132$ duty)
Start spot (block) register : (D5, D4, D3, D2, D1, $\mathrm{D} 0)=(0,0,0,0,0)(\mathrm{COM} 0)$
17. Partial display : OFF
18. Partial display start line: (D7, D6, D5, D4, D3, D2, $\mathrm{D} 1, \mathrm{D} 0)=(0,0,0,0,0,0,0)$
Number of partial display lines: (D7, D6, D5, D4, $\mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=(0,0,0,0,0,0,0)$
19. Read modify write : OFF
20. Built-in oscillation circuit : stop
21. Oscillation frequency register : $(\mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=$ $(0,0,0,0)(120 \mathrm{kHz})$
22. Power control register : (D4, D3, D2, D1, D0) $=(0$, $0,0,0,0$ )
23. Clock frequency for step-up/step-down

Step-up : (D2, D1, D0) $=(1,0,1)$
Step-down : (D6, D5, D4) $=(1,0,1)$
24. Liquid crystal drive voltage selection register : $(\mathrm{D} 1, \mathrm{D} 0)=(0,0)$
25. Electronic volume register : (D6, D5, D4, D3, D2, $\mathrm{D} 1, \mathrm{D} 0)=(0,0,0,0,0,0,0)$
26. Discharge : ON (only for when $\overline{\mathrm{RES}}=\mathrm{LOW}$ )
27. Power save : OFF
28. Temperature gradient resistor: $(\mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=(0$, $0,0)\left(-0.06 /{ }^{\circ} \mathrm{C}\right)$
29. Register data in the serial interface: Clear

When the Reset command is used, only the abovementioned inilialized items 7, 8 and 19 are executed.

When power is turned on, initialization by the $\overline{\mathrm{RES}}$ pin is necessary. After initialization by the $\overline{\mathrm{RES}}$ pin, each input pin must be controlled correctly.
Furthermore, when control signals from the MPU have a high impedance, the excessive current may flow to the IC.
After VDD is applied, measures should be taken to ensure that the input pin does not have a high impedance. The S1D15E06 series discharges the electric charge of Vout and liquid crystal drive voltage (V3, V2, V1, Vc, MV1, MV2) at the level of $\overline{\mathrm{RES}}$ pin = LOW. When liquid crystal drive external power supply is used, external power supply should not be supplied during the period of RES $=$ LOW to prevent external power supply and VDD from being short circuited.

## 7. COMMAND

The S1D15E06 series identifies data bus signals by a combination of A0, $\overline{R D}(E)$ and $\overline{W R}(R / \bar{W})$. Interpretation and execution of the command are executed by the internal timing alone which is independent of the external clock. This allows high-speed processing.
The 80 series MPU interface allows the command to be started by entering the low pulse in the $\overline{\mathrm{RD}}$ pin during reading and by entering the low pulse in the $\overline{\mathrm{WR}}$ pin during writing.
The 68 series MPU interface allows a read state to occur by entering HIGH in the $\mathrm{R} / \overline{\mathrm{W}}$ pin, and permits a write state to occur by entering LOW. It also allows the command to be started by entering the high pulse in the pin E . (For timing, see the description of " 10 . Timing characteristics").

Accordingly, the 68 series MPU interface is different from 80 series MPU interface in that $\overline{\mathrm{RD}}(\mathrm{E})$ is " $1(\mathrm{H})$ " in the case of display data/read shown in the Command Description and Command Table. The following describes the commands, based on the example of the 80 series MPU interface:
When the serial interface is selected, enter data sequentially starting from D7.

## Command Description

## (1) Display ON/OFF

This command sets the display ON/OFF.
When display OFF is specified, segment and common drivers outputs the level selected by the display OFF Mode Select command.

| A0 | $\overline{\mathbf{R D}}$ | $\overline{\mathbf{R} / \overline{\mathbf{W}}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WR | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Output level |  |  |  |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | Display OFF |
|  |  |  |  |  |  |  |  |  |  | 1 | Display ON |

## (2) Display OFF Mode Select

This command is used to set the output level of the segment and common driver when the display is off.
In the initial setting state, it becomes "D0 = 0".

* When $\mathrm{D} 0=0$ is selected in the case of $\mathrm{S} 1 \mathrm{D} 15 \mathrm{E} 06 \mathrm{D} 00 \mathrm{~B} *$, the MV2 and common driver Vss level is output by segment driver when display is off. Select $\mathrm{D} 0=1$ to use the S1D15E06D00B*.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W} \mathbf{W}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Output level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Vss |
|  |  |  |  |  |  |  |  |  |  | 1 | Vc |

## (3) Display Normal/Reverse

This command allows the display ON/OFF state to be reversed, without having to rewrite the contents of the display data RAM. In this case, contents of the display data RAM are maintained.

| A0 | $\frac{E}{R D}$ | $\begin{aligned} & \hline \mathbf{R} / \overline{\mathrm{W}} \\ & \overline{\mathrm{WR}} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | RAM data $=$ HIGH LCD ON Voltage (normal) |
|  |  |  |  |  |  |  |  |  |  | 1 | RAM data $=$ LOW LCD ON Voltage (reverse) |

## (4) Display All Lighting ON/OFF

This command forces all the displays to be turned on independently of the contents of the display data RAM. In this case, the contents of the display data RAM are maintained. Fully white display can also be made by a combination of the Display Reverse command.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\frac{\mathrm{R} / \overline{\mathbf{W}}}{\mathrm{WR}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | $0$ | Normal display status Display all lighting |

## (5) Common Output Status Select

This command allows the scanning direction of the COM output pin to be selected. For details, see the description of "6.5.2 COM Drivers" in the Function Description.

|  | A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \overline{\mathbf{W}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## (6) Display Start Line set (Parameter: 1 byte (4 gray-scale) and 2 bytes (binary))

The parameter following this command specifies the display start line address of the display data RAM shown in Fig. 6.5 and 6.6. When the Display Mode command is used to select 4 gray-scale display, a 1-byte parameter must be entered. When the binary display is selected, a 2-byte parameter must be entered.
The display area is indicated in the direction where line address numbers are incremented, starting from the specified line address. If a dynamic change of the line address is made by this command, smooth scrolling in the longitudinal direction and page breaking are enabled. For details, see the description of "6.2.4 Line address circuit" in the Function Description.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W R}$ |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | P 7 | P 6 | P 5 | P 4 | P 3 | P 2 | P 1 | P 0 |
| 1 | 1 | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | P 8 |

## - Display Start Line Set command parameter

(i) When the display mode is a 4 gray-scale mode:

The one-byte parameter is used to specify the address.

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 | Line <br> address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 H |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01 H |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 02 H |
|  |  | 0 | $\downarrow$ |  |  |  |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 82 H |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 83 H |

Set to the line address 00 H at the time of resetting.
(ii) When the display mode is binary:

To specify the address, continuous 2-byte data is necessary. The first byte D0 is LSB, and the second byte D0 is MLB.


Set to line address 000 H at the time of resetting. *: denote invalid bits.

## - Line address setting sequence



Fig. 7.1

## (7) Page Address Set

This command specifies the page address corresponding to row address when MPU access to the display data RAM shown in Fig. 6.5 and 6.6. For details, see the description of "6.2.2 Page address circuit" in the Function Description.

| A0 | $\mathbf{E}$ | $\mathbf{R} / \overline{\mathbf{W}}$ | $\mathbf{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | Page address |
| 1 | 1 | 0 | $*$ | $*$ | P5 | P4 | P3 | P2 | P1 | P0 | Page address setting |

*: denote invalid bits.

| P5 | P4 | P3 | P2 | P1 | P0 | Page address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|  |  |  | $\downarrow$ |  |  | $\downarrow$ |
| 0 | 1 | 1 | 1 | 1 | 1 | 31 |
| 1 | 0 | 0 | 0 | 0 | 0 | 32 |

## (8) Column Address Set

This command sets the display data RAM column address given in Fig. 6.5 and 6.6. For details, see the description of "6.2.3 Column address circuit" in the Function Description.

| A0 | $\mathbf{E} \mathbf{R D}$ | $\mathbf{R} / \mathbf{W R}$ |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{D 0}$ |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | P 7 | P 6 | P 5 | P 4 | P 3 | P 2 | P 1 | P 0 |


| P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 | Column <br> address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
|  |  |  |  | $\downarrow$ |  |  |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 158 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 159 |

## (9) Display Data Write

This command allows the 8-bit data to be written to the address specified by the display data RAM. After writing, column address or page address is automatically incremented +1 by the Display Data Input Direction Select command. This enables the MPU to write the display data continuously.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\frac{\mathbf{R} / \mathbf{W}}{\mathbf{W R}}$ | D7 | $\mathbf{D} 6$ | $\mathbf{D} 5$ | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | Write Data |  |  |  |  |  |  |  |

## (10) Display Data Read

This command allows the 8 -bit data to be read from the address specified by the display data RAM. After reading, column address or page address is automatically incremented +1 by the Display Data Input Direction select command. This enables the MPU to read multiple word data continuously.
It should be noted that one dummy reading is essential immediately after the column address or page address has been set. For details, see the description of "6.1.5 Access to display data RAM and internal register" in the Function Description. When the serial interface is used, display data cannot be read.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W} \mathbf{W}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | Read Data |  |  |  |  |  |  |  |

## (11) Display Data Input Direction Select

This command sets the direction where the display RAM address number is automatically incremented. For details, see the description of "6.2.3 Column address circuit" in the Function Description.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Direction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Column <br> Page |

## (12) Column Address Set Direction

This command can reverse the relationship between the display RAM data column address and segment driver output shown in Fig. 6.5 and 6.6. So you can reverse the sequence of segment driver output pins using this command. When the display data is written or read, the column address is incremented by $(+1)$ according to the column address given in Fig. 6.4 and 6.5. For details, see the description of "6.2.3 Column address circuit" in the Function Description.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \overline{\mathbf{W}}$ |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Setting |

## (13) n-line Inversion Drive Register Set

This command sets the liquid crystal alternating drive reverse line count in the register to start line reverse driving operation. The line count to be set is 4 to 128 ( 32 states for each 4 lines. For details, see the description of " 6.4 Display timing generation circuit" in the Function Description.

| A0 | $\frac{E}{R D}$ | $\begin{aligned} & \mathrm{R} / \overline{\mathbf{W}} \\ & \mathrm{WR} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Reverse line count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | Command |
| 1 | 1 | 0 | * | * | * | P4 | P3 | P2 | P1 | P0 | Reverse line count |

*: denote invalid bits.

| P4 | P3 | P2 | P1 | P0 | Reverse line count |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | $4(1 \times 4)$ |
| 0 | 0 | 0 | 0 | 1 | $8(2 \times 4)$ |
|  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 1 | 1 | 1 | 0 | $124(31 \times 4)$ |
| 1 | 1 | 1 | 1 | 1 | $128(32 \times 4)$ |

## (14) n-line ON/OFF

This command provides ON/OFF control of n-line inverting drive.

| A0 | $\mathbf{E}$ | $\mathbf{R D}$ | $\mathbf{R} / \overline{\mathbf{W}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | n-line |

## (15) Display Mode

This command sets the display mode. 4 gray-scale and binary display each have a different RAM configuration. For details, see the description of "6.2.1 Display Data RAM" in the Function Description.

| A0 | $\mathbf{E}$ | $\mathbf{R D} / \overline{\mathbf{R}}$ | $\mathbf{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Display mode |
| 1 | 1 | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | P1 | P0 | Display mode |

*: denote invalid bits.

| P1 | P0 | Display mode |
| :---: | :---: | :---: |
| 0 | 0 | 4gray-scale |
| 0 | 1 | Binary value |

Set to 4 gray-scale $(\mathrm{D} 1, \mathrm{D} 0)=(0,0)$ at the time of resetting.
(16) Gray-scale Pattern Set

This command sets the level of gray-scale.

| $\mathbf{A 0}$ | $\mathbf{E}$ | $\mathbf{R} \mathbf{R} / \overline{\mathbf{W}}$ | $\overline{\mathbf{W R}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Gray-scale pattern $\mid$

* (P6, P5, P4) : Selects the level of gray-scale bit $(1,0)$
* (P2, P1, P0) : Selects the level of gray-scale bit (0, 1)

| Gray-scale bit $(1,0)$ |  | P6 | P5 | P4 |  | P2 | P1 | P0 | Level of gray-scale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | 0 | 0 | 1 | - | - | - | - | White |
| Gray-scale bit $(0,1)$ |  |  |  |  |  |  |  |  |  |
|  | - | 0 | 1 | 0 | - | - | - | - |  |
|  | - | 1 | 1 | 0 | - | - | - | - | Black |
|  |  |  | P6 | P5 | P4 |  | P2 | P1 | P0 |

## (17) Area Scroll Set

This command sets the area scroll. When the binary display is selected by the Display Mode Set command, the scroll end line address becomes a two-byte parameter.
(1) 4 gray-scale display

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \mathrm{WR} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Area scroll |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Command |
| 1 | 1 | 0 | * | * | * | * | * | * | P11 | P10 | Scroll mode |
| 1 | 1 | 0 | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | Scroll start line address |
| 1 | 1 | 0 | P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | Scroll end line address |
| 1 | 1 | 0 | P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 | Scroll display line count |

*: denote invalid bits.

| P11 | P10 | Scroll mode |
| :---: | :---: | :---: |
| 0 | 0 | 0 (full screen) |
| 0 | 1 | 1 (Upper) |
| 1 | 0 | 2 (Lower) |
| 1 | 1 | 3 (Central) |


| P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | Scroll start line address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 H |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01 H |
|  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 82 H |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 83 H |
| P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | Scroll end line address |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 H |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01 H |
|  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 82 H |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 83 H |


| P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 | Scroll display line count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
|  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 131 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 132 |

(2) Binary display

| A0 | $\frac{E}{R D}$ | $\begin{aligned} & \overline{R / \bar{W}} \\ & \overline{W R} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Area scroll |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Command |
| 1 | 1 | 0 | * | * | * | * | * | * | P11 | P10 | Scroll mode |
| 1 | 1 | 0 | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | Scroll start line address |
| 1 | 1 | 0 | P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | Scroll end line address |
| 1 | 1 | 0 | * | * | * | * | * | * | * | P38 |  |
| 1 | 1 | 0 | P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 | Scroll display line count |

*: denote invalid bits.

- Specifications on the parameters for scroll mode, scroll start line address and scroll display line count are the same as those on 4 gray-scale display.

| 1st byte 2nd byte | P37 | P36 | P35 | P34 | P33 | P32 | P31 | $\begin{aligned} & \text { P30 } \\ & \text { P38 } \end{aligned}$ | Scroll end line address Binary value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00H |
|  | * | * | * | * | * | * | * | 0 |  |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 01H |
|  | * | * | * | * | * | * | * | 0 |  |
|  |  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
|  | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 106H |
|  | * | * | * | * | * | * | * | 1 |  |
|  | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 107H |
|  | * | * | * | * |  | * | * | 1 |  |

## (18) Duty Set Command

Liquid crystal drive at a lower power consumption is ensured by using this command to change the duty. Use of this command also allows display at a desired position on the panel (continuous COM pins on a 4 -line basis).
This command is used with a pair of the duty set parameter and start point (block) parameter, so be sure to set both parameters so that one of them will immediately follow the other.

|  | $\mathbf{E}$ | $\mathbf{R} / \overline{\mathbf{W}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | $\mathbf{R D}$ | $\overline{\mathbf{W R}}$ | D7 | $\mathbf{D} 6$ | $\mathbf{D} 5$ | $\mathbf{D} 4$ | $\mathbf{D} 3$ | $\mathbf{D} 2$ | $\mathbf{D} 1$ | D0 | Selected state |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | Duty set command |
| 1 | 1 | 0 | $*$ | $*$ | P 15 | P 14 | P 13 | P 12 | P 11 | P 10 | Duty set |
| 1 | 1 | 0 | $*$ | $*$ | P 25 | P 24 | P 23 | P 22 | P 21 | P 20 | Start point set |

*: denote invalid bits.

## - Duty set

Duty can be set in the range from $1 / 4$ duty to $1 / 132$ duty by 4 steps.
Set to $1 / 132$ duty after resetting.

| P15 | P14 | P13 | P12 | P11 | P10 | Duty set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | $1 / 4$ duty set |
| 0 | 0 | 0 | 0 | 0 | 1 | $1 / 8$ duty set |
| 0 | 0 | 0 | 0 | 1 | 0 | $1 / 12$ duty set |
| 0 | 0 | 0 | 0 | 1 | 1 | $1 / 16$ duty set |
|  |  |  | $\downarrow$ |  |  | $\downarrow$ |
| 0 | 1 | 1 | 1 | 1 | 1 | $1 / 128$ duty set |
| 1 | 0 | 0 | 0 | 0 | 0 | $1 / 132$ duty set |

## - Start point (block) register set parameter

Use this parameter to set 6-bit data in the start point (block) register. Then one of 33 start point blocks will be determined.

* Use the Display Start Line Set command (6) for display scroll. Do not use this command for display scroll.

| P25 | P24 | P23 | P22 | P21 | P20 | Start piont setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | $0($ COM0 to 3) |
| 0 | 0 | 0 | 0 | 0 | 1 | $1($ COM4 to 7$)$ |
| 0 | 0 | 0 | 0 | 1 | 0 | $2($ COM8 to 11) |
|  |  |  | $\downarrow$ |  |  | $\downarrow$ |
| 0 | 1 | 1 | 1 | 1 | 1 | $31($ COM124 to 127) |
| 1 | 0 | 0 | 0 | 0 | 0 | $32($ COM128 to 131) |

Set to 0 block (D7 to D0: ***00000) at the time of resetting

* Voltage optimum to liquid crystal drive is changed when the duty is changed. Use the electronic volume and set the voltage to get the optimum display.


## - Duty command setup example

1. Duty $1 / 88$ When 1 (COM4 to COM7) is specified as the start point (block)

Display area COM4 to COM91
2. Duty 1/68 When 26 (COM104 to COM107) is specified as the start point (block)

Display area COM104 to COM131 and COM0 to COM39

* If the COM pin is not shared by the master and slave in the master/slave 2-chip operation (for vertical drive such as SEG132, COM80+COM80), the same duty must be used on the master and slave. Otherwise, display contrast will be different on the master and slave. When you want to disable display on either the master and slave, use the display OFF Mode Select command to set the side you want to disable, so that Vc level is output.


## (19) Partial Display ON/OFF

The LCD partial display is turned on or off by this command.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{WR} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Partial display |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline \text { OFF } \\ & \text { ON } \end{aligned}$ |

## (20) Partial Display Set

This command sets the LCD partial display area. Duty is placed in the state selected by the Duty Set command. When partial display is switched by this command, liquid crystal drive voltage need not be changed. For details, see the description of "6.2.7 Partial Display" in the Function Description.

| A0 | $\frac{E}{R D}$ | $\begin{aligned} & \mathrm{R} / \overline{\mathrm{W}} \\ & \mathrm{WR} \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Partial display |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | Command |
| 1 | 1 | 0 | P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | Display start line |
| 1 | 1 | 0 | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | Display line count |


| P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | Display start line |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
|  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 131 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 132 |


| P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | Display start line |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
|  |  |  |  |  |  | $\downarrow$ |  | $\downarrow$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 131 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 132 |

* The result of display start line added to display line count exceeding 132 should be disregarded.


## (21) Read Modify Write

This command is paired with end command for use. If this command is entered, the column address is not changed by the Display Data Read command. It can be incremented +1 by the Display Data Read command alone. This state s retained until the End command is input. If the End command is input, the column address goes back to the address when the Read Modify Write command is input. This function reduces the MPU loads when changing the data repeated in the specific display area such as blinking cursor.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\overline{\overline{R / \bar{W}}} \overline{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

* A command other than display data Read/Write command can be used in the Read Modify Write mode. However, you cannot use the column address set command.


## - Sequence for cursor display



Fig. 7.2

## (22) End

This command releases the read modify write mode and gets column address back to the initial address of the mode.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\frac{\mathbf{R} / \overline{\mathbf{W}}}{\mathrm{WR}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |



Fig. 7.3

## (23) Built-in Oscillator Circuit ON/OFF

This command starts the built-in oscillator circuit operation. It is enabled only in the master operation mode (M/S = HIGH) when built-in oscillator circuit is valid (CLS = HIGH).
When the built-in power supply is used, the Oscillator Circuit ON command must be executed before the Power Control Set command. (See the description of "(16) power control command"). If the built-in oscillator circuit is turned off when the built-in power supply is used, display failure may occur.

$\left.$| A0 | $\mathbf{E}$ | $\mathbf{R D} / \overline{\mathbf{W}}$ | $\overline{\mathbf{W R}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Built-in oscillator |
| :---: |
| circuit | \right\rvert\,

## (24) Built-in Oscillator Circuit Frequency Select

This command sets the built-in oscillator circuit frequency. The frequency can be selected whether the built-in oscillator circuit is turned on or off.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W} \mathbf{W}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | fosc $\mathbf{k H z}$ | fcL $\mathbf{k H z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Command | Command |
| 1 | 1 | 0 | $*$ | $*$ | $*$ | $*$ | P3 | P2 | P1 | P0 | Oscillation <br> frequency | CL frequency |


| P3 | $\mathbf{P 2}$ | $\mathbf{P 1}$ | P0 | Oscillation <br> frequency <br> fosc $\mathbf{~ H z z}$ | CL frequency <br> fcL $\mathbf{k H z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 120.0 | fosc 120.0 |
| 0 | 0 | 0 | 1 | 100.0 | fosc 100.0 |
| 0 | 0 | 1 | 0 | 88.0 | fosc 88.0 |
| 0 | 0 | 1 | 1 | 76.0 | fosc 76.0 |
| 0 | 1 | 0 | 0 | 120.0 | fosc $/ 2=60.0$ |
| 0 | 1 | 0 | 1 | 100.0 | fosc $/ 2=50.0$ |
| 0 | 1 | 1 | 0 | 88.0 | fosc $/ 2=44.0$ |
| 0 | 1 | 1 | 1 | 76.0 | fosc $/ 2=38.0$ |
| 1 | 0 | 0 | 0 | 120.0 | fosc $/ 4=30.0$ |
| 1 | 0 | 0 | 1 | 100.0 | fosc $/ 4=25.0$ |
| 1 | 0 | 1 | 0 | 88.0 | fosc $/ 4=22.0$ |
| 1 | 0 | 1 | 1 | 76.0 | fosc $/ 4=19.0$ |
| 1 | 1 | 0 | 0 | 120.0 | fosc $/ 8=15.0$ |
| 1 | 1 | 0 | 1 | 100.0 | fosc $/ 8=12.5$ |
| 1 | 1 | 1 | 0 | 88.0 | fosc $/ 8=11.0$ |
| 1 | 1 | 1 | 1 | 76.0 | fosc $/ 8=9.5$ |

(D7 to $\mathrm{D} 0:{ }^{* * * * 0000) ~ i s ~ s e t ~ a f t e r ~ r e s e t t i n g . ~}$

[^0]
## (25) Power Control Set

This command sets the built-in power supply circuit function. For details, see the description of "6.7 Power supply circuit" in the Function Description.

|  | $\mathbf{E}$ | $\mathbf{R} / \mathbf{W}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AD | $\mathbf{R} \mathbf{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Selected state |  |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Command |
| 1 | 1 | 0 | 0 | 0 | 0 | P4 | P3 | P2 | P1 | P0 | Register set |


| P4 | P3 | P2 | P1 | P0 | Selected state |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  | Triple step-up |
| 1 | 0 |  |  |  | Double step-up |
| 0 | 1 |  |  |  | VouT = VDD |
|  |  | 0 |  |  | Step-up: OFF |
|  |  | 1 |  |  | Step-up: ON |
|  |  |  | 0 |  | Vc: OFF |
|  |  |  | 1 |  | Vc: ON |
|  |  |  |  | 0 | LCD voltage: OFF |
|  |  |  |  | 1 | LCD voltage: ON |

S1D15E06D00B*: (LCD voltage: V2, V1, MV1)
S1D15E06D00B*: (LCD voltage: V3, V2, V1, MV1, MV2)
An internal clock is required to operate the built-in power supply circuit. During the operation of the built-in power supply circuit, be sure that the internal clock is present inside.
If the built-in oscillator circuit is used, execute the built-in oscillator circuit ON command before the power control set command. If an external oscillator circuit is used, operate the external oscillator circuit before the power control set command.
If the internal clock is cut off during the operation of the built-in power supply circuit, display failure may occur. To avoid this, do not cut it off.
In the slave operation mode, only the parameters (D7 to D0: ${ }^{* * * 00000 \text { ) can be used with the power control set }}$ command. Do not use any other parameter.
100 ms or more should be kept from Vc regulator circuit ON to LCDV circuit ON.


Fig. 7.4

## (26) Step-up CK Frequency Select

This command selects the step-up CK and step-down CK frequencies.

| A0 | $\mathbf{E}$ | $\mathbf{R} / \overline{\mathbf{R D}}$ | $\mathbf{W R}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Command |
| 1 | 1 | 0 | $*$ | P6 | P5 | P4 | $*$ | P2 | P1 | P0 | Register |

*: denote invalid bits.
(fosc/32) is set after resetting.
Step-up CK

|  | P6 | P5 | P4 |  | P2 | P1 | P0 | Step-up CK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | 0 | 1 | 1 | fosc/8 |
| - | - | - | - | - | 1 | 0 | 0 | fosc/16 |
| - | - | - | - | - | 1 | 0 | 1 | fosc/32 |
|  |  | $\downarrow$ |  |  | 1 | 1 | 0 | fosc/64 |
| - | - | - | - | - | 1 | 1 | 1 | fosc/128 |

It should not use the following. ( $\mathrm{P} 2, \mathrm{P} 1, \mathrm{P} 0)=(0,0,0),(0,0,1),(0,1,0)$
Step-down CK

| $*$ | P6 | P5 | P4 | $* \mathbf{0 0 0}$ | P2 | P1 | P0 | Step-down CK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 0 | 1 | 1 | - | - | - | - | fosc/8 |
| - | 1 | 0 | 0 | - | - | - | - | fosc/16 |
| - | 1 | 0 | 1 | - | - | - | - | fosc/32 |
|  | 1 | 1 | 0 |  |  | $\downarrow$ |  | fosc/64 |
| - | 1 | 1 | 1 | - | - | - | - | fosc/128 |

It should not use the following. (P6, P5, P4) $=(0,0,0),(0,0,1),(0,1,0)$

* For S1D15E06D00B* , the step-down CK register is disabled.


## (27) Liquid Crystal Drive Voltage Select

The liquid crystal drive voltage range issued from the liquid crystal drive voltage regulating circuit is selected from 3 states by this command.

| A0 | $\mathbf{E}$ | $\mathbf{R D}$ | $\overline{\mathbf{R} / \mathbf{W}}$ |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0 | Vc voltage <br> output range |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | Command |
| 1 | 1 | 0 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | P1 | P0 | Register |

*: denote invalid bits.

| P1 | P0 | Vc voltage <br> output range |
| :---: | :---: | :---: |
| 0 | 0 | 1.77 to 3.50 V |
| 1 | 0 | 2.53 to 5.00 V |
| 1 | 1 | 3.54 to 7.00 V |

VC voltage output range, 1.77 to $3.50 \mathrm{~V},(\mathrm{D} 1, \mathrm{D} 0)=(0,0)$ is set after resetting.

## (28) Electronic Volume

This command controls liquid crystal drive voltage VC issued from the built-in liquid crystal power supply voltage regulating circuit, and adjusts the liquid crystal display density. For details, see the description of "6.6.2 Voltage Regulating Circuit" in the Function Description.

|  | $\mathbf{E}$ | $\mathbf{R} / \overline{\mathbf{W}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A 0}$ | $\mathbf{R D}$ | $\mathbf{W R}$ | D7 | D6 | $\mathbf{D} 5$ | $\mathbf{D} 4$ | $\mathbf{D} 3$ | $\mathbf{D} 2$ | $\mathbf{D} 1$ | $\mathbf{D} 0$ |  |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Command |
| 1 | 1 | 0 | $*$ | P6 | P5 | P4 | P3 | P2 | P1 | P0 | Register |

*: denote invalid bits.

## - Electronic Volume Register Set

When a 7-bit data to the electronic volume register is set by this command, liquid crystal drive voltage VC assumes one state out of voltage values in 128 states.
After this command is input, and the electronic volume register is set, the electronic volume mode is reset.

| P6 | P5 | P4 | P3 | P2 | P1 | P0 | Vc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | Smaller |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |
|  |  |  | $\downarrow$ |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | $\downarrow$ |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | Larger |

*: denote invalid bits.

## - Electronic volume register set sequence



Fig. 7.5

## (29) Discharge ON/OFF

This command discharges the capacitors connected to the power supply circuit. This command is used when the system power of this IC (S1D15E06 series) is turned off, and the duty is changed. See the description of (3) Power Supply OFF and (4) Changing the Duty in the Instruction Setup: Reference.

| A0 | $\mathbf{E} \mathbf{R D}$ | $\mathbf{R} / \overline{\mathbf{W}}$ |  |  |  |  |  |  | D6 | D5 | D4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D3 | D2 | D1 | D0 | Setting |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | Discharge OFF <br> Discharge ON |

* If this command is executed when the external power supply is used, a large current may flow to damage the IC. If external power supply is used to drive liquid crystal, be sure to turn off the external power supply before executing this command.


## (30) Power Saving

This command establishes the power save mode, thereby ensuring a substantial reduction of current consumption.

| A0 | $\frac{\mathrm{E}}{\mathrm{RD}}$ | $\begin{aligned} & \mathrm{R} / \overline{\mathbf{W}} \\ & \mathrm{WR} \\ & \hline \end{aligned}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Power save mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | OFF |
|  |  |  |  |  |  |  |  |  |  | 1 | ON |

In the power save mode, display data and operation before power saving are maintained. Access to the display data RAM from the MPU is also possible. The current consumption is reduced to the value close to static current if all operations of the LCD display system are stopped and there is no access from the MPU.

In the power save mode, the following occurs:
Stop of oscillator circuit
Stop of LCD power supply circuit
Stop of all liquid crystal drive circuit (Vss level output is issued as the segment and common driver output).
The power save OFF command releases the power save mode. The system goes back to the state before the power save mode.

* When the external power supply is used, it is recommended to stop the external power supply circuit function when the power save mode is started. For example, when each level of the liquid crystal drive voltage is given from the external resistive divider circuit, it is recommended to add a circuit to cut off the current flowing to the resistive divider circuit when power save function is started. The S1D15E06 series has a liquid crystal display blanking control control pin $\overline{\mathrm{DOF}}$, and the level goes LOW when power save function is started. You can use the $\overline{\mathrm{DOF}}$ output to stop the external power supply circuit function.


## (31) Temperature Gradient Set

The 3-bit data of this command is used to set the temperature gradient characteristics of the liquid crystal drive voltage output from the built-in power supply circuit from eight states to one state. The temperature gradient of the liquid crystal drive voltage can be set according to the liquid crystal temperature gradient to be used. This eliminates the need of a temperature characteristics regulating circuit to be installed outside this IC (S1D15E06 series).
$\left.\begin{array}{|ccc||cccccccc|c|}\hline \text { A0 } & \mathbf{E} & \mathbf{R D} / \overline{\mathbf{W}} & \overline{\mathbf{W R}} & \text { D7 } & \text { D6 } & \text { D5 } & \text { D4 } & \text { D3 } & \text { D2 } & \text { D1 } & \text { D0 }\end{array} \begin{array}{c}\text { Temperature } \\ \text { gradient }\left[\% /{ }^{\circ} \mathbf{C} \text { ] }\right.\end{array}\right]$
*: denote invalid bits.

| P2 | P1 | P0 | Temperature <br> gradient [\%/ ${ }^{\circ}$ C] |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | -0.06 |
| 0 | 0 | 1 | -0.08 |
| 0 | 1 | 0 | -0.10 |
| 0 | 1 | 1 | -0.11 |
| 1 | 0 | 0 | -0.13 |
| 1 | 0 | 1 | -0.15 |
| 1 | 1 | 0 | -0.17 |
| 1 | 1 | 1 | -0.18 |

( D 7 to $\mathrm{D} 0: * * * * * 000$ ) is set after resetting. *: denote invalid bits.

## (32) Status Read

This command reads out the temperature gradient select bit set on the register.

| A0 | $\frac{E}{R D}$ | $\frac{R / \bar{W}}{\overline{W R}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Temperature gradient [\%/ ${ }^{\circ} \mathrm{C}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | Command |
| 1 | 0 | 1 | * | * | * | * | * | P2 | P1 | P0 | Register |

*: denote invalid bits.

| P2 | P1 | P0 | Temperature gradient [ $\% /{ }^{\circ} \mathrm{C}$ ] |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | -0.06 |
| 1 | 0 | 0 | -0.08 |
| 0 | 1 | 0 | -0.10 |
| 1 | 1 | 0 | -0.11 |
| 0 | 0 | 1 | -0.13 |
| 1 | 0 | 1 | -0.15 |
| 0 | 1 | 1 | -0.17 |
| 1 | 1 | 1 | -0.18 |

## (33) Reset

This command resets the column address, page address, read modify write mode and test mode without giving adverse effect to the display data RAM. For details, see the description of " 6.8 Reset" in Function Description. Resetting is carried out after the reset command has been input.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W} \mathbf{W}$ |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0 |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |

Initialization upon application of power supply is carried out by the reset signal to the $\overline{\mathrm{RES}}$ pin. The reset command cannot be used for this purpose.
(34) MLS drive selection command

These are the MLS drive selection commands. These commands changes over between the dispersive drive and nondispersive drive.

| $\mathbf{A 0}$ | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\mathbf{R} / \mathbf{W} \mathbf{W}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Temperature gradient <br> $\left[\% /{ }^{\circ} \mathbf{C}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Command |
| 1 | 1 | 0 | $*$ | $*$ | $*$ | $*$ | P3 | P2 | P1 | P0 | Register |

* indicates the invalid bits.

| $\mathbf{P 3}$ | $\mathbf{P 2}$ | $\mathbf{P 1}$ | $\mathbf{P 0}$ | Temperature gradient <br> $\left[\% /{ }^{\circ} \mathbf{C}\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Dispersive drive |
| 1 | 0 | 0 | 0 | Nondispersive drive |

After resetting, nondispersive drive will be preset in 4 gradation indications. In case the $\mathrm{B} / \mathrm{W}$ indication is selected after resetting, dispersive drive will be preset.

Dispersive drive and nondispersive drive are the LCD drive methods characteristic to the MLS drive.
The S1D15E06 Series is making 4 line MLS drive and, 4 times higher period selection voltage than that of the period being used for indication of 1 line in an ordinary drive (in case of 132 line indication, the period of $1 / 132$ of 1 frame). In case of the dispersive drive, the selection signals will be output for four times, separately, within the period of 1 frame. With this dispersive drive method, it is possible to reduce the frame frequency as compared with the nondispersive drive method. Therefore, when it becomes necessary to reduce the current consumption, we recommend you to use this dive method. However, in case of the drive method where moving pictures are to be indicated, the indication may become flickered and this dispersive drive method is not suitable for indications of moving pictures.

## (35) NOP

This is a Non-Operation command.

| A0 | $\frac{\mathbf{E}}{\mathbf{R D}}$ | $\frac{\mathrm{R} / \overline{\mathbf{W}}}{\mathrm{WR}}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

Note: S1D15E06 series maintains the operation status due to the command. However, when exposed to excessive external noise, internal status may be changed. This makes it necessary to take some measures which reduces noise generation in terms of installation or system configuration, or which protects the system against adverse effect of noise. To cope with sudden noise, it is recommended to refresh the operation status on a periodic basis.

Table 7.1 Table of commands in S1D15E06 series

| Command | Command code |  |  |  |  |  |  |  |  |  |  | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A0 | $\overline{\mathrm{RD}}$ | $\overline{\text { WR }}$ | D7 | D6 | D5 | 5 D4 | D3 | D2 | D1 | D0 |  |
| (1) Display ON/OFF | 0 | 1 | 0 | 1 | 0 | 1 | 0 |  |  |  | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | LCD display ON/OFF control. 0: OFF, 1: ON |
| (2) $\begin{aligned} & \text { Display OFF Mode } \\ & \text { Select }\end{aligned}$ | 0 | 1 | 0 | 1 | 0 | 1 | 1 |  |  |  | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | Output level when the display is OFF and in the power save mode $0:$ Vss, $1: \mathrm{Vc}$ |
| (3) $\begin{aligned} & \text { Display Normal } \\ & \text { /Reverse }\end{aligned}$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |  | $\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$ | LCD display normal/reverse 0 : Normal, 1: Reverse |
| $\begin{array}{ll}\text { (4) } & \text { Display All Lighting } \\ \text { ON/OFF }\end{array}$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |  | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | Display All Lighting 0 : Normal display, 1: All ON |
| (5) $\begin{aligned} & \text { Common Output } \\ & \text { Status Select }\end{aligned}$ | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |  |  | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | Selects COM output scan direction. <br> 0 : Normal, 1: Reverse |
| (6) Display Start Line Set | $\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{gathered} 0 \\ \text { Displ } \end{gathered}$ | $0$ | $\begin{gathered} 0 \\ \text { star } \\ * \end{gathered}$ |  | addre |  | 0 $\downarrow$ | Sets display start line. When the display mode is binary, the parameter consists of two bytes. |
| (7) Page Address Set | 0 | 1 | 0 | $\begin{array}{\|l\|} \hline 1 \\ * \end{array}$ | $\begin{aligned} & \hline 0 \\ & * \end{aligned}$ |  | $\begin{aligned} & \hline 1 \\ & \mathrm{~Pa} \end{aligned}$ |  |  |  | 1 | Sets the display RAM page address. |
| (8) Column Address Set | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | $1$ | $\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$ | 0 |  | $\begin{gathered} \hline 0 \\ u m n \end{gathered}$ | $\begin{gathered} 1 \\ \text { in Add } \end{gathered}$ |  |  | $1$ | 1 | Sets the display RAM column address. |
| (9) Display Data Write | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 0 | 0 |  | $\begin{gathered} 1 \\ \text { rites } \end{gathered}$ |  |  |  | 1 | Writes data to the display RAM. |
| (10) Display Data Read | $\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | 0 | 0 |  | $\begin{gathered} 1 \\ \text { eads } \end{gathered}$ |  |  |  | 0 | Reads data to the display RAM. |
| (11) Display Data Input Direction Select | 0 | 1 | 0 | 1 | 0 |  | 0 |  |  |  | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | Display RAM data input direction <br> 0 : Column direction 1: Page direction |
| (12) Column Address Set Direction | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |  | 0 1 | Compatible with display RAM address SEG output <br> 0: Normal 1: Reverse |
| (13) N-line inversion Drive Register Set | $0$ | $1$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 0 \\ * \end{array}$ | $0$ | $1$ | $\begin{aligned} & \hline 1 \\ & \text { Inve } \end{aligned}$ |  |  |  |  | Line invert drive. Sets the line count. |
| (14) N-line ON/OFF | 0 | 1 | 0 | 1 | 1 |  | 0 |  |  |  | $0$ | Resets the line invert drive. 0 : N-line OFF 1: N-line ON |
| (15) Display Mode | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ * \\ \hline \end{array}$ | $1$ | $1$ | $\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$ |  |  |  | 00: 4 gray-scale, 01: binary |
| (16) Gray-scale Pattern Set | $\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{array}{\|llcccccc\|} \hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ \text { Gray-scale pattern } \end{array}$ |  |  |  |  |  |  |  | Selects the contrast of gray-scale bit $(1,0)(0,1)$. |
| (17) Area Scroll Scroll Mode Scroll Start address Scroll End address Display page count | $\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | 0 0 0 1 0 0 0 <br> $*$ 0      <br>  $*$ $*$ $*$ $*$ $*$ Mode <br>  Start address      <br>  End address      <br>  Display page count      |  |  |  |  |  |  |  | When the display mode is binary, the end address consists of two bytes. |
| (18) Duty Set Command Duty Set Static spot (block) set | 0 | 1 | 0 |  | $1$ | 1 Sta | $\begin{gathered} 0 \\ \text { Dut } \\ \text { tatic s } \end{gathered}$ | $\begin{gathered} 1 \\ \text { ty col } \\ \text { spot }( \end{gathered}$ |  | 0 <br> k) |  |  |
| (19) Partial Display ON/OFF | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |  |  | $0$ | $\begin{aligned} & \text { Partial display ON/OFF } \\ & 0: \text { OFF, } 1: \mathrm{ON} \end{aligned}$ |
| (20) Partial Display Set Display Start line Display Line count | 0 | 1 | 0 | 0 |  | $\begin{aligned} & 1 \\ & \text { Sta } \\ & \text { Line } \end{aligned}$ | $\begin{gathered} 1 \\ \text { tart lin } \end{gathered}$ |  |  |  |  |  |
| (21) Read Modify Write | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Increments the column address. Increments +1 in the write mode. Does not increment in the read mode. |
| (22) End | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | Resets read modify write functions. |
| (23) Built-in Oscillator Circuit ON/OFF | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |  |  | 0 1 | Built-in oscillator circuit operation 0: OFF, 1: ON |
| (24) Built-in Oscillator Circuit Frequency Select | 0 1 | $\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | 0 | $1$ | $0$ | $1$ |  | $1$ <br> quen | $\begin{gathered} \hline 1 \\ \text { ncy } \end{gathered}$ | 1 |  |
| (25) Power Control Set | $\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ * \end{array}$ | $0$ | $1$ | $0$ |  | $\begin{aligned} & 1 \\ & \text { eratio } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \text { on st } \end{aligned}$ | $\begin{gathered} \hline 1 \\ \text { tate } \end{gathered}$ | Selects built-in power supply operation state. |



## Instruction Setup Example (Reference)

(1) Initial setup


Note: *1 Display data RAM contents are not determined even in the initialized state after resetting. See " 6.7 Reset Circuit" in the " 6 . Function Description".
*2 100 ms or more should be kept from Vc regulator circuit ON to LCDV circuit ON.

* Numerals in the command parenthesis correspond to the numerals of the items in Command Description.
(2) Data display


Note: * Display data RAM contents are not determined after end of initialization. Write data to all the Display data RAM used for display. See "9. Display data write" in the "7. Command Description".
(3) Power OFF


Note: * This IC controls the circuit of the liquid crystal drive power supply system using the VDD-Vss power supply circuit. If the VDD-Vss power supply is cut off with voltage remaining in the liquid crystal drive power supply system, voltage not controlled will be issued from the SEG and COM pins, and this may result in display failure. To avoid this, follow the above-mentioned power off sequence.
(4) How to change the duty


Note: * Execution of the above sequence causes display to be turned off temporarily (for the time from Power Saving command ON to Power Saving command OFF plus 200 ms (frame frequency 60 Hz ) upon switching of the duty. Temporary display failure may occur if Duty Change command is executed during liquid crystal display without executing the above-mentioned setup example. Follow the setup example when the duty is changed as discussed above.
(5) Refresh

It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of unexpected noise.


## 8. ABSOLUTE MAXIMUM RATINGS

Table 8
$\mathrm{Vss}=0 \mathrm{~V}$ unless otherwise specified.

| Item |  | Symbol | Specified value | $\begin{gathered} \text { Unit } \\ \hline V \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Power voltage (1) |  | VDD | -0.3 to +4.0 |  |
| Power voltage (2) |  | V3, Vout | -0.3 to +17.0 |  |
| Power voltage (3) |  | $\mathrm{V}_{2}, \mathrm{~V}_{1}, \mathrm{Vc}, \mathrm{MV}_{1}, \mathrm{MV} 2$ | -0.3 to V3 |  |
| Input voltage |  | Vin | -0.3 to VDD+0.3 |  |
| Output voltage |  | Vo | -0.3 to VDD+0.3 |  |
| Operating temperature |  | Topr | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | TCP bare chip | Tstr | $\begin{aligned} & -55 \text { to }+100 \\ & -55 \text { to }+125 \end{aligned}$ |  |



Fig. 8
Notes: 1. Voltages $\mathrm{V}_{3}, \mathrm{~V}_{2}, \mathrm{~V}_{1}, \mathrm{Vc}, \mathrm{MV}_{1}, \mathrm{MV}_{2}$ and MV 3 (Vss) must always meet the conditions of $\mathrm{V}_{3} \geq \mathrm{V}_{2} \geq \mathrm{V}_{1} \geq \mathrm{V}_{\mathrm{c}} \geq \mathrm{MV}_{1} \geq \mathrm{MV}_{2} \geq \mathrm{MV}_{3}$ (Vss).
2. Voltage Vout must always meet the conditions of Vout $\geq$ Vdd and Vout $\geq$ Vc.
3. If the LSI has been used in excess of the absolute maximum rating, it may be subjected to permanent breakdown. So in the normal operation, the LSI is preferred to be used under the condition of electrical characteristics. If this condition is not met, LSI operation error may occur and LSI reliability may be deteriorated.

## 9. DC CHARACTERISTICS

Vss $=0 \mathrm{~V}, \mathrm{VDD}=2.7 \mathrm{~V} \pm 10 \%$ and $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.
Table 9.1

| Item |  | Symbol | Conditions |  | Specified value |  |  | Unit | Applicable pin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  |  | Typ. | Max. |  |  |
| Working voltage (1) | Operation enabled |  | Vdd |  |  | 1.7 | - | 3.6 | V | VDd *1 |
| Working voltage (2) | Operation recommended | Vout |  |  | VDD | - | 16.0 | Vout |  |
| Working voltage (3) | Operation enabled Operation enabled Operation enabled Operation enabled Operation enabled Operation enabled | V <br> Vc <br> $V_{2}$ <br> $V_{1}$ <br> MV 1 <br> MV2 | Applicable to S1D15E06D01**** |  | 3.4 <br> 1.7 <br> Vc <br> Vc <br> Vss <br> Vss |  | $\begin{gathered} \hline 14.0 \\ 7.0 \\ V_{3} \\ V_{3} \\ V_{c} \\ \text { Vc } \end{gathered}$ | $\begin{gathered} \mathrm{V}_{3} * 2 \\ \mathrm{Vc}_{\mathrm{c}} \\ \mathrm{~V}_{2} \\ \mathrm{~V}_{1} \\ \mathrm{M} \mathrm{~V}_{1} \\ \mathrm{M} \end{gathered}$ |  |
| Working voltage (4) | Operation enabled <br> Operation enabled | V3 <br> Vc <br> $\mathrm{V}_{2}$ <br> $V_{1}$ <br> $M V_{1}$ <br> $M V_{2}$ | Applicable to S1D15E06D03**** |  | 3.4 <br> 1.7 <br> Vc <br> Vc <br> Vss <br> Vss | - - - - | $\begin{gathered} 16.0 \\ 8.0 \\ V_{3} \\ V_{3} \\ V_{c} \\ V_{c} \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{3} * 2 \\ \mathrm{~V}_{\mathrm{c}} \\ \mathrm{~V}_{2} \\ \mathrm{~V}_{1} \\ M \mathrm{~V}_{1} \\ \mathrm{M}{ }_{2} \end{gathered}$ |
| High-level input voltage Low-level input voltage |  | Vinc <br> VILC | $\mathrm{V} D \mathrm{D}=1.7 \mathrm{~V}$ to 3.6V |  | $\begin{array}{\|c\|} \hline 0.8 \times \operatorname{VDD} \\ \mathrm{Vss} \end{array}$ | - | $\begin{array}{\|c} \mathrm{VDD} \\ 0.2 \times V D D \end{array}$ |  | $\begin{aligned} & * 3 \\ & * 3 \end{aligned}$ |
| High-level output voltage Low-level output voltage |  | Vohc <br> Volc | $\begin{aligned} & \hline \mathrm{VDD}=1.7 \mathrm{~V} \\ & \text { to } 3.6 \mathrm{~V} \end{aligned}$ | $\begin{array}{l\|l\|} \hline \text { lOH }=-0.25 \mathrm{~mA} \\ \text { loL }=0.25 \mathrm{~mA} \end{array}$ | $\left\lvert\, \begin{gathered} 0.8 \times \mathrm{VdD} \\ \mathrm{Vss} \end{gathered}\right.$ | - | $\begin{gathered} \mathrm{VDD} \\ 0.2 \times \mathrm{V}_{\mathrm{DD}} \end{gathered}$ |  | $\begin{aligned} & \hline * 4 \\ & * 4 \end{aligned}$ |
| Input leak current Output leak current |  | $\begin{aligned} & \text { ILI } \\ & \text { ILO } \end{aligned}$ | VIIN=VdD or Vss |  | $\begin{aligned} & \hline-1.0 \\ & -3.0 \end{aligned}$ | — | $\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & * 5 \\ & * 6 \end{aligned}$ |
| LCD driver ON resistance |  | Ron | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & V_{3}=7.2 \mathrm{~V} \\ & V_{3}=4.8 \mathrm{~V} \end{aligned}$ | - | $\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 2.3 \\ & 4.6 \end{aligned}$ | k $\Omega$ | $\begin{gathered} \text { SEGn } \\ \text { COMn *7 } \end{gathered}$ |
| Static current consumption |  | $\begin{gathered} \hline \mathrm{IDDQ} \\ \mathrm{I} 3 \mathrm{Q} \end{gathered}$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | $\begin{aligned} & \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{3}=14.0 \mathrm{~V} \end{aligned}$ | - | $\begin{aligned} & 0.2 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{gathered} \hline \mathrm{VDD} \\ \mathrm{~V}_{3} \end{gathered}$ |
| Input pin capacity |  | CIN | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | $\mathrm{f}=1 \mathrm{MHz}$ | - | 20 | 25 | pF |  |
| Oscillation frequency | Built-in oscillation | fosc | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ <br> Max. freq | uency | 110 | 120 | 130 | kHz | *8 |

[* See the description on P.57.]

Table 9.2

| Item |  | Symbol | Conditions | Specified value |  |  | Unit | Applicable pin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  | Typ. | Max. |  |  |
|  | Input voltage |  | VdD <br> Vdd | Double boosting Triple boosting | $\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$ | — | $\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$ | V | VdD |
|  | Boosted output voltage (1) | Vout | S1D15E06D01**** | - | - | 14.0 | Vout |  |
|  | Boosted output voltage (2) | Vout | S1D15E06D03**** | - | - | 16.0 | Vout |  |
|  | Working voltage for voltage control circuit | Vc |  | 1.8 | - | 8.0 | Vc *9 |  |

Dynamic current consumption (1): Built-in power is turned on during display.
$\mathrm{Ta}=25^{\circ} \mathrm{C}$
This is the current consumed by the entire IC including the built-in power supply.

Display mode in 4 gray-scale at $\mathrm{fFR}=80 \mathrm{~Hz}$
Table 9.3 Display entirely in white Code: Iss (1)

| VdD | Boosting | V3 Voltage | 1/132 | DUTY | 1/100 | DUTY | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ. | Max. | Typ. | Max. |  |  |
| 2.7 V | Triple | 10V | 68 | 112 | 67 | 111 | $\mu \mathrm{A}$ | *10 |
|  |  | 12 V | 81 | 134 | 71 | 117 |  |  |
| 3.6 V | Double | 10 V | 73 | 121 | 63 | 104 |  |  |
|  | Triple | 12 V | 93 | 154 | 83 | 137 |  |  |

Display mode in 4 gray-scale at $\mathrm{ffR}^{\mathrm{F}}=80 \mathrm{~Hz}$
Table 9.4 Display: Heavy load display Code: Iss (1)

| Vdd | Boosting | V3 Voltage | 1/132 | DUTY | 1/100 | DUTY | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ. | Max. | Typ. | Max. |  |  |
| 2.7 V | Triple | 10 V | 241 | 400 | 187 | 310 | $\mu \mathrm{A}$ | *10 |
|  |  | 12 V | 373 | 619 | 313 | 519 |  |  |
| 3.6 V | Double | 10V | 189 | 313 | 146 | 242 |  |  |
|  | Triple | 12 V | 380 | 630 | 314 | 521 |  |  |

## Display mode in binary at fFR $\mathbf{= 6 0 \mathrm { Hz }}$

Table 9.5 Display entirely in white Code: ISS (1)

| Vdd | Boosting | V3 Voltage | 1/132 | DUTY | 1/100 | DUTY | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ. | Max. | Typ. | Max. |  |  |
| 2.7V | Triple | 10V | 65 | 108 | 50 | 83 | $\mu \mathrm{A}$ | *10 |
|  |  | 12 V | 72 | 120 | 56 | 93 |  |  |
| 3.6 V | Double | 10 V | 57 | 95 | 44 | 73 |  |  |
|  | Triple | 12 V | 82 | 136 | 63 | 104 |  |  |

[* See the description on P.57.]

Display mode in binary at $\mathrm{f}_{\mathrm{FR}}=60 \mathrm{~Hz}$
Table 9.6 Display Heavy load display Code: ISS (1)

| Vdd | Boosting | V3 Voltage | 1/132 | DUTY | 1/100 | DUTY | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ. | Max. | Typ. | Max. |  |  |
| 2.7 V | Triple | 10V | 188 | 312 | 135 | 224 | $\mu \mathrm{A}$ | *10 |
|  |  | 12 V | 313 | 520 | 226 | 300 |  |  |
| 3.6 V | Double | 10 V | 150 | 249 | 108 | 143 |  |  |
|  | Triple | 12 V | 322 | 534 | 232 | 308 |  |  |

Current consumption under power saving mode: Vss $=0 \mathrm{~V}, \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Table 9.7

| Item | Symbol | Condition | Specified value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |  |
| Sleep state | IDDS1 |  | - | 0.2 | 5 | $\mu \mathrm{~A}$ |  |

[* See the description on P.57.]

## [Reference Data 1]

- Dynamic current consumption (1) during LCD display when internal power is used


Fig. 9.1

## [Reference Data 2]

- Dynamic current consumption (2) during LCD display when internal power is used


Fig. 9.2
[* See the description on P.57.]
[Reference Data 3]

- Dynamic current consumption (3) during access


Indicates the current consumption when the checker pattern is always written by fcyc. When not accessed, only Iss(1) remains.

Conditions: Built-in voltage used
Triple boosting
$\mathrm{V}_{3}=12.0 \mathrm{~V}, \mathrm{VDD}=2.7 \mathrm{~V}$
$\mathrm{Ta}=25^{\circ} \mathrm{C}$
fFR=80Hz 1/132 Duty

Fig. 9.3
[Reference Data 4]

- Operating voltage range (S1D15E06D01****)


Fig. 9.4.1

- Operating voltage range (S1D15E06D03****)


Fig. 9.4.2
[* See the description on P.57.]

- Relationship between oscillation frequency fosc, display clock frequency fCL and liquid crystal frame fFR

Table 9.8

| Item | fcL | Display mode | fFR |
| :---: | :---: | :---: | :---: |
| Built-in oscillator <br> circuit used | See p. 24 | Binary display <br> 4 gray-scale | (fCL $\times$ DUTY)/4 <br> (fcL $\times$ DUTY)/8 |
| Built-in oscillator circuit <br> not used | External input (fcL) | Binary display <br> 4 gray-scale | (fCL $\times$ DUTY)/4 <br> (fcL $\times$ DUTY)/8 |

( $\mathrm{f} F \mathrm{R}$ indicates the cycle of rewriting one screen; it does not indicate FR signal cycle.)
[Asterisked references]
*1. Does not guarantee if there is an abrupt voltage variation during MPU access.
*2. For VDD and V3 system operating voltage range, see Fig. 9.5. Applicable when the external power supply is used.
 RES and TEST pins
*4. D0 to D7, FR, $\overline{\mathrm{DOF}}, \mathrm{CL}, \mathrm{F} 1, \mathrm{~F} 2$ and CA pins
*5. $\mathrm{A} 0, \overline{\mathrm{RD}}(\mathrm{E}), \overline{\mathrm{WR}}(\mathrm{R} / \overline{\mathrm{W}}), \overline{\mathrm{CS} 1}, \mathrm{CS} 2, \mathrm{CLS}, \mathrm{M} / \mathrm{S}, \mathrm{C} 86, \mathrm{P} / \mathrm{S}, \overline{\mathrm{RES}}$ and TEST pins
*6. Applicable when D0 to D5, D6(SCL), D7(S1), CL, FR, DOF, F1, F2 and CA pins have a high impedance.
*7. Indicates the resistance when 0.1 V voltage is applied between the output pin SEGn or COMn and each power supply ( $\mathrm{V}_{2}$, $\mathrm{V}_{1}$, Vc, MV1, MV2).
RoN $=0.1 \mathrm{~V} / \Delta \mathrm{I}$ (where $\Delta \mathrm{I}$ denotes current when 0.1 V is applied when power is on).
*8. For the relationship between oscillation frequency and frame frequency, see Table 9.8. The standard values of the external input item are recommended ones.
*9. The VC voltage regulating circuit should be adjusted within the electronic volume operation range.
*10. Indicates the current consumed by a single IC when display is on. Use the electronic volume for voltage regulation. Also use the internal oscillator circuit. The current due to LCD panel capacity and wiring capacity is not included. Applicable when there is access from the MPU.

## 10. TIMING CHARACTERISTICS

(1) System path read/write characteristics 1 ( 80 system MPU)


Fig. 10.1
Table 10.1.1
$\left[\mathrm{VDD}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Address hold time Address setup time | A0 | taH8 taws |  | 0 | - | ns |
| System write cycle time System read cycle time | $\frac{\overline{\mathrm{WR}}}{\mathrm{RD}}$ | twcycs trcyc8 |  | $\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$ | - |  |
| Control LOW-pulse width (Write) Control LOW-pulse width (Read) Control HIGH-pulse width (Write) Control HIGH-pulse width (Read) | $\begin{aligned} & \hline \overline{\mathrm{WR}} \\ & \overline{\mathrm{RD}} \\ & \hline \mathrm{WR} \\ & \hline \mathrm{RD} \\ & \hline \end{aligned}$ | tcclw tcCLR tcchw tcCHR |  | $\begin{gathered} \hline 60 \\ 100 \\ 60 \\ 100 \\ \hline \end{gathered}$ | 二 |  |
| Data setup time Data hold time | D0 to D7 | $\begin{aligned} & \hline \text { tDS8 } \\ & \text { tDH8 } \end{aligned}$ |  | 20 10 | - |  |
| RD access time Output disable time |  | $\begin{gathered} \hline \text { tACC8 } \\ \text { to } 8 \end{gathered}$ | CL=100pF | $\overline{10}$ | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ |  |

Table 10.1.2
$\left[\mathrm{VDD}=2.4 \mathrm{~V}\right.$ to $3.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min. |  |
|  |  |  |  |  |  |  |

Table 10.1.3
$\left[\mathrm{VDD}=1.7 \mathrm{~V}\right.$ to $2.4 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Address hold time Address setup time | A0 | tAH8 taW8 |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | - | ns |
| System write cycle time System read cycle time | $\frac{\overline{\mathrm{WR}}}{\overline{\mathrm{RD}}}$ | twcycs trcyc8 |  | $\begin{aligned} & 400 \\ & 600 \end{aligned}$ | - |  |
| Control LOW-pulse width (Write) Control LOW-pulse width (Read) Control HIGH-pulse width (Write) Control HIGH-pulse width (Read) | $\begin{aligned} & \hline \overline{\mathrm{WR}} \\ & \frac{\mathrm{RD}}{} \\ & \hline \mathrm{WR} \\ & \hline \mathrm{RD} \\ & \hline \end{aligned}$ | tcclw tcCLR tcchw tcchr |  | $\begin{aligned} & \hline 100 \\ & 250 \\ & 140 \\ & 250 \\ & \hline \end{aligned}$ | 二 |  |
| Data setup time Data hold time | D0 to D7 | $\begin{aligned} & \text { tDS8 } \\ & \text { tDH8 } \\ & \hline \end{aligned}$ |  | 40 20 | - |  |
| $\overline{\mathrm{RD}}$ access time Output disable time |  | $\begin{gathered} \hline \text { taCC8 } \\ \text { toH } \end{gathered}$ | CL= 100pF | $\overline{10}$ | $\begin{aligned} & 200 \\ & 200 \end{aligned}$ |  |

*1. This is in case of making the access by $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$, setting the $\overline{\mathrm{CS} 1}=\mathrm{LOW}$.
*2. This is in case of making the access by $\overline{\mathrm{CS}} 1$, setting the $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}=\mathrm{LOW}$.
*3. Input signal rise and fall time ( $\mathrm{tr}, \mathrm{tf}$ ) must not exceed 15 ns . When the system cycle time is used at a high speed, it is specified by $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tCYC8}-\mathrm{tCCLW}-\mathrm{tCCHW})$ or $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tCYC8}-\mathrm{tCCLR}-\mathrm{tCCHR})$.
*4. Timing is entirely specified with reference to $20 \%$ or $80 \%$ of VdD.
*5. tCCLW and tCCLR are specified in terms of the overlapped period when CS1 is at LOW $(\mathrm{CS} 2=\mathrm{HIGH})$ level and $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ are at LOW level.
(2) System path read/write characteristics 2 ( 68 system MPU)


Fig. 10.2
Table 10.2.1

| $\left[\mathrm{VDD}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter |  | Signal | Symbol | Condition | Specified value |  | Unit |
|  |  | Min. |  |  | Max. |  |
| Address hold time Address setup time |  |  | A0 | taH6 taw6 |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | - | ns |
| System write cycle time System read cycle time |  | E | twcyc6 trcyc6 |  | $\begin{aligned} & 200 \\ & 300 \end{aligned}$ | - |  |
| Data setup time Data hold time |  | D0 to D7 | $\begin{aligned} & \text { tDS6 } \\ & \text { tDH6 } \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 10 \end{aligned}$ | - |  |
| Access time Output disable time |  |  | tACC6 toH6 | CL=100pF | $\overline{10}$ | $\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$ |  |
| Enable HIGH-pulse width | Read Write | E | tewhr tewhw |  | $\begin{aligned} & \hline 100 \\ & 60 \\ & \hline \end{aligned}$ | - |  |
| Enable LOW-pulse width | Read Write | E | tewLR tewLw |  | $\begin{aligned} & \hline 100 \\ & 60 \\ & \hline \end{aligned}$ | - |  |

Table 10.2.2
$\left[\mathrm{VDD}=2.4 \mathrm{~V}\right.$ to $3.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter |  | Signal | Symbol | Condition | Specified value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  |  | Max. |  |
| Address hold time Address setup time |  |  | A0 | $\begin{aligned} & \hline \text { tAH6 } \\ & \text { tAW6 } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | - | ns |
| System write cycle time System read cycle time |  | E | twcyc6 trcyc6 |  | $\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$ | - |  |  |
| Data setup time Data hold time |  | D0 to D7 | $\begin{aligned} & \hline \text { tDS6 } \\ & \text { tDH6 } \end{aligned}$ |  | 30 15 | - |  |  |
| Access time Output disable time |  |  | $\begin{gathered} \hline \text { tACC6 } \\ \text { toH6 } \end{gathered}$ | CL= 100pF | $\overline{10}$ | $\begin{aligned} & \hline 120 \\ & 120 \\ & \hline \end{aligned}$ |  |  |
| Enable HIGH-pulse width | Read Write | E | tewhr tewhw |  | $\begin{aligned} & 150 \\ & 80 \end{aligned}$ | - |  |  |
| Enable LOW-pulse width | Read Write | E | tewLR tewLw |  | $\begin{aligned} & 150 \\ & 80 \\ & \hline \end{aligned}$ | - |  |  |

## Table 10.2.3

$\left[\mathrm{VDD}=1.7 \mathrm{~V}\right.$ to $2.4 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right]$

| Parameter |  | Signal | Symbol | Condition | Specified value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  |  | Max. |  |
| Address hold time Address setup time |  |  | A0 | tAH6 taw6 |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | 二 | ns |
| System write cycle time System read cycle time |  | E | twcyc6 trcyc6 |  | $\begin{aligned} & \hline 400 \\ & 600 \\ & \hline \end{aligned}$ | - |  |
| Data setup time Data hold time |  | D0 to D7 | $\begin{aligned} & \text { tDS6 } \\ & \text { tDH } \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 20 \end{aligned}$ | - |  |
| Access time Output disable time |  |  | $\begin{gathered} \hline \text { tACC6 } \\ \text { toH6 } \end{gathered}$ | $\mathrm{CL}=100 \mathrm{pF}$ | $\overline{10}$ | $\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$ |  |
| Enable HIGH-pulse width | Read Write | E | tewhr tewhw |  | $\begin{aligned} & 250 \\ & 100 \\ & \hline \end{aligned}$ | - |  |
| Enable LOW-pulse width | Read Write | E | tEWLR tewLw |  | $\begin{aligned} & 250 \\ & 140 \\ & \hline \end{aligned}$ | - |  |

*1 This is in case of making the access by E, setting the $\overline{\mathrm{CS} 1}=$ LOW.
*2 This is in case of making the access by CS1, setting the $\mathrm{E}=\mathrm{HIGH}$.
*3 The rise time and the fall time ( $\operatorname{tr} \& \mathrm{tf}$ ) of the input signals should be set to 15 ns or less. When it is necessary to use the system cycle time at high speed, the rise time and the fall time should be so set to conform to $(\operatorname{tr}+\mathrm{tf}) \leq(\mathrm{t} C V C 6-\mathrm{t}$ EWLW-tEWHW) or $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{t}$ CYC6-tEWLR-tEWHR $)$.
*4 All the timing should basically be set to $20 \%$ and $80 \%$ of the "VDD".
*5 tEWLW, tEWLR should be set to the overlapping zone where the $\overline{\mathrm{CS} 1}$ is on the LOW level (CS2 $=$ HIGH level) and where the E is on the HIGH level.
(3) Serial interface


Figure 10.3

## Table 10.3.1

$\left[\mathrm{VDD}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Serial clock period | SCL | tscyc |  | 100 | - | ns |
| SCL HIGH pulse width |  | tsHW |  | 40 | - |  |
| SCL LOW pulse width |  | tsLw |  | 40 | - |  |
| Address setup time |  | tsAS |  | 80 | - |  |
| Address hold time |  | tsAH |  | 80 | - |  |
| Data setup time | SI | tsDS |  | 20 | - |  |
| Data hold time |  | tsDH |  | 20 | - |  |
| CS-SCL time |  | CS | tcss |  | 80 | - |
|  |  | tcsh |  | 150 | - |  |

Table 10.3.2
$\left[\mathrm{VDD}=2.4 \mathrm{~V}\right.$ to $3.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Serial clock period | SCL | tscyc |  | 125 | - | ns |
| SCL HIGH pulse width |  | tshw |  | 50 | - |  |
| SCL LOW pulse width |  | tslw |  | 50 | - |  |
| Address setup time | A0 | tsas |  | 100 | - |  |
| Address hold time |  | tsah |  | 100 | - |  |
| Data setup time | SI | tsDS |  | 30 | - |  |
| Data hold time |  | tsdh |  | 30 | - |  |
| CS-SCL time | CS | tcss |  | 100 | - |  |
|  |  | tcsh |  | 200 | - |  |

Table 10.3.3
$\left[\mathrm{VDD}=1.7 \mathrm{~V}\right.$ to $2.4 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Serial clock period | SCL | tscyc |  | 154 | - | ns |
| SCL HIGH pulse width |  | tsHw |  | 60 | - |  |
| SCL LOW pulse width |  | tsLW |  | 60 | - |  |
| Address setup time | AO | tsAS |  | 120 | - |  |
| Address hold time |  | tSAH |  | 140 | - |  |
| Data setup time | SI | tsDS |  | 40 | - |  |
| Data hold time |  | tsDH |  | 40 | - |  |
| CS-SCL time | CS | tcss |  | 120 | - |  |
|  |  | tcsH |  | 350 | - |  |

*1. Input signal rise and fall time ( $\mathrm{tr}, \mathrm{tf}$ ) must not exceed 15 ns .
*2. Timing is entirely specified with reference to $20 \%$ or $80 \%$ of VDD.
(4) Display control output timing


Fig. 10.4
Table 10.4.1
$\left[\mathrm{VDD}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| FR delay time | FR | tDFR | $C L=50 p F$ | - | 125 | 312 | ns |
| F1, F2 delay time | F1, F2 | tDF1, tF2 |  | - | 125 | 312 | ns |
| CA delay time | CA | tDCA |  | - | 125 | 312 | ns |

Table 10.4.2
$\left[\mathrm{VDD}=2.4 \mathrm{~V}\right.$ to $3.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ]

| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| FR delay time | FR | tDFR | $C L=50 \mathrm{pF}$ | - | 150 | 360 | ns |
| F1, F2 delay time | F1, F2 | tDF1, tF2 |  | - | 150 | 360 | ns |
| CA delay time | CA | tDCA |  | - | 150 | 360 | ns |

Table 10.4.3
$\left[\mathrm{VDD}=1.7 \mathrm{~V}\right.$ to $2.4 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right]$

| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| FR delay time | FR | tDFR | $C \mathrm{~L}=50 \mathrm{pF}$ | - | 225 | 514 | ns |
| F1, F2 delay time | F1, F2 | tDF1, tF2 |  | - | 225 | 514 | ns |
| CA delay time | CA | tDCA |  | - | 225 | 514 | ns |

*1. Valid only in master operation
*2. Timing is entirely specified with reference to $20 \%$ or $80 \%$ of VdD.
(5) Reset input timing


Fig. 10.5
Table 10.5.1

| $\left[\mathrm{VDD}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
|  |  |  |  | Min. | Typ. | Max. |  |
| Reset time |  | tR |  | - | - | 0.5 | $\mu \mathrm{s}$ |
| Reset LOW pulse width | RES | trw |  | 0.5 | - | - |  |

Table 10.5.2

| $\left[\mathrm{VDD}=2.4 \mathrm{~V}\right.$ to $3.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right]$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
|  |  |  |  | Min. | Typ. | Max. |  |
| Reset time |  | tR |  | - | - | 1.0 | $\mu \mathrm{s}$ |
| Reset LOW pulse width | RES | trw |  | 1.0 | - | - |  |

## Table 10.5.3

| Parameter | Signal | Symbol | Condition | Specified value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Reset time |  | tR |  | - | - | 1.5 | $\mu \mathrm{s}$ |
| Reset LOW pulse width | $\overline{\mathrm{RES}}$ | trw |  | 1.5 | - | - |  |

*1. Timing is entirely specified with reference to $20 \%$ or $80 \%$ of VDD.

## 11. MPU INTERFACE (Reference Example)

The S1D15E06 series can be connected to the 80 series MPU and 68 series MPU. Use of a serial interface allows operation with a smaller number of signal lines.
You can expand the display area using the S1D15E06 series as a multi-chip. In this case, the IC to be accesses can be selected individually by the chip select signal. After initialization by the $\overline{\operatorname{RES}}$ pin, each input terminal of the S1D15E06 series must be placed under normal control.
(1) 80 series MPU


Fig. 11.1
(2) 68 series MPU


Fig. 11.2
(3) Serial interface


Fig. 11.3

## 12. CONNECTION BETWEEN LCD DRIVERS (Reference example)

You can easily expand the liquid crystal display area using the S1D15E06 series as a multi-chip. In this case, use the same model as the master and slave systems.

S1D15E06 (Master) $\longleftarrow$ S1D15E06 (Slave)


Fig. 12 Master/slave connection example (S1D15E06)

## 13. LCD PANEL WIRING (Reference example)

You can easily expand the liquid crystal display area using the S1D15E06 series as a multi-chip. In the case of multichip configuration, use the same models.
(1) Single chip configuration example


Fig. 13.1 Single chip configuration example (S1D15E06)
(2) Double chip configuration example


Fig. 13.2 Double chip configuration example (S1D15E06)

## 14. S1D15E06T00A*** TCP PIN LAYOUT

Note: This does not specify the TCP outside shape.
Reference

15. TCP DIMENSIONS (Reference example)


## 16. CAUTIONS

Cautions must be exercised on the following points when using this Development Specification:

1. This Development Specification is subject to change for engineering improvement.
2. This Development Specification does not guarantee execution of the industrial proprietary rights or other rights, or grant a license. Examples of applications described in This Development Specification are intended for your understanding of the Product. We are not responsible for any circuit problem or the like arising from the use of them.
3. Reproduction or copy of any part or whole of this Development Specification without permission of our company, or use thereof for other business purposes is strictly prohibited.

For the use of the semi-conductor, cautions must be exercised on the following points:

## [Cautions against Light]

The semiconductor will be subject to changes in characteristics when light is applied. If this IC is exposed to light, operation error may occur. To protect the IC against light, the following points should be noted regarding the substrate or product where this IC is mounted:
(1) Designing and mounting must be provided to get a structure which ensures a sufficient resistance of the IC to light in practical use.
(2) In the inspection process, environmental configuration must be provided to ensure a sufficient resistance of the IC to light.
(3) Means must be taken to ensure resistance to light on all the surfaces, backs and sides of the IC


[^0]:    * The above-mentioned value is a Typ. value at $25^{\circ} \mathrm{C}$. There is a tolerance of $\pm 12 \%$ at $25^{\circ} \mathrm{C}$.

