

74FCT841A•74FCT841B 10-Bit Transparent Latch with TRI-STATE® Outputs

General Description

The bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The 'FCT841A/B is a 10-bit transparent latch, a 10-bit version of the 'FCT373A.

FACTTM FCTA/B utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCTA features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

FACT FCTB features an undershoot corrector in addition to a split ground bus for superior performance.

Ordering Code: See Section 8

Features

- NSC 74FCT841A/B is pin and functionally equivalent to IDT 74FCT841A/B
- High Speed parallel latches
- Buffered common latch enable
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- IOL = 48 mA (com)
- CMOS power levels
- 4 kV minimum ESD immunity

7-94

Functional Description

The 'FCT841A/B consists of ten D-type latches with TRI-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition.

On the LE HIGH-to-LOW transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH the bus output is in the high impedance state.

A	X	х	x	z	High Z
н	н	L	L	z	High Z
ј н	н	н	н	z	High Z
н	L	х	NC	z	Latched
L L	н	L	L	L	Transparent
L	н	н	н	н	Transparent
L	L	х	NC	NC	Latched

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

ŌE

Z = High Impedance

NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate progagation delays.

7-95

841A•841B

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Terminal Voltage with Respect to GNI 74FCTA/B	D (VTERM) -0.5V to +7.0V
Temperature under Bias (T _{BIAS}) 74FCTA/B	-55°C to +125°C
Storage Temperature (T _{STG}) 74FCTA/B	-55°C to +125°C
DC Output Current ((IOUT)	120 mA
Note 1: Absolute maximum ratings are those val	ues beyond which damage

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum ratings conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables.

■ 6501122 0075531 614 ■NSC1

Recommended Operating Conditions

Supply Voltage (V _{CC})	
74FCTA/B	4.75V to 5.25V
Input Voltage	OV to V _{CC}
Output Voltage	0V to V _{CC}
Operating Temperature (T _A) 74FCTA/B	0°C to +70°C
Junction Temperature (Tj) PDIP	140°C

Note: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from -40° C to $+125^{\circ}$ C.

DC Characteristics for 'FCTA/B Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; V_{HC} = V_{CC} -0.2V

0	B	74FCTA/B			Unita	Conditions		
Symbol	Parameter	Min	Тур	Max	Units	Conditions		
VIH	Minimum High Level Input Voltage	2.0			v			
VIL	Maximum Low Level Input Voltage			0.8	V			
l _{IH}	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_l = V_{CC}$ $V_l = 2.7V$ (Note 2)	
Ι _{IL}	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	$V_l = 0.5V$ (Note 2) $V_l = GND$	
loz	Maximum TRI-STATE Current			10.0 10.0 10.0 10.0	μΑ	V _{CC} = Max	$V_{O} = V_{CC}$ $V_{O} = 2.7V \text{ (Note 2)}$ $V_{O} = 0.5V \text{ (Note 2)}$ $V_{O} = \text{GND}$	
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$V_{CC} = Min; I_{IN} = -18 \text{ mA}$		
los	Short Circuit Current	75	- 120		mA	V _{CC} = Max (Note 1) V _O = GND		
V _{OH}	Minimum High Level Output Voltage	2.8 V _{HC}	3.0 V _{CC}		v	$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC};$ $I_{OH} = -32 \ \mu A$		
		2.4 2.4	4.3 4.3		•		$I_{OH} = -300 \mu\text{A}$ $I_{OL} = -24 \text{mA}$ (Con	
V _{OL}	Maximum Low Level Output Voltage		gnd Gnd	0.2 0.2	v	$\label{eq:VCC} \begin{array}{l} V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{HC}; \\ I_{OH} = 300 \ \mu\text{A} \end{array}$		
			0.3 0.3	0.5 0.5	•	$V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	l _{OH} = 300 μA l _{OL} = 48 mA (Com)	
lcc	Maximum Quiescent Supply Current		0.2	1.5	mA			
∆I _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	$V_{CC} = Max$ $V_{IN} = 3.4V$ (Note 3)	I	
ICCD	Dynamic Power Supply Current (Note 4)			0.50	mA/MHz	$V_{CC} = Max$ Outputs Open $\overline{OE} = GND$ $LE = V_{CC}$ One Input Toggling 50% Duty Cycle	VIN ≥ VHC VIN ≤ 0.2V	

DC Characteristics for 'FCTA/B Family Devices

Typical values are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: V_{CC} = 5.0V \pm 5%, T_A = 0°C to +70°C; V_{CH} = V_{CC} - 0.2V (Continued)

Symbol	Parameter	74FCTA/B			Units	Openditions	
	Farameter	Min	Тур	Max	Units	Conditions	
lc	Total Power Supply Current (Note 6)			5.5		V _{CC} = Max Outputs Open OE = GND	$V_{\text{IN}} \ge V_{\text{HC}}$ $V_{\text{IN}} \le 0.2 \text{V}$
				6.0	mA	LE = V _{CC} f _I = 10 MHz One Bit Toggling 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GND
				9.0		(Note 5) $V_{CC} = Max$ Outputs Open $\overline{OE} = GND$	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V
				14.5		LE = V _{CC} f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GND

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter is guaranteed but not tested.

Note 3: Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: Ic = IQUIESCENT + INPUTS + IDYNAMIC

 $I_{\rm C} = I_{\rm CC} + \Delta I_{\rm CC} D_{\rm H} N_{\rm T} + I_{\rm CCD} \left(f_{\rm CP}/2 + f_{\rm I} N_{\rm I}\right)$

I_{CC} = Quiescent Current

 ΔI_{OC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL Inputs High

NT = Number of Inputs at DH

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = input Frequency

NI = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

		Test	74FCTA T _A , V _{CC} = Com		74FCTB T _A , V _{CC} = Com		Units	Fig. No.
Symbol	Parameter	Conditions						
			Min	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay Dn to Qn (LE = High)	$C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$		9.0		6.5	ns	2-9
t _{PLH} t _{PHL}	Propagation Delay Dn to Qn (LE $=$ High)	$\begin{array}{l} C_{L} = 300 \ pF \ (Note \ 1) \\ R_{L} = 500 \Omega \end{array}$		13.0		13.0	ns	2-9
ts∪	Data to LE Setup Time	$C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$	2.5		2.5		ns	2-10
ţн	Data to LE Hold Time	$C_L = 50 \text{ pF}$ $R_L = 500\Omega$	2.5		2.5		ns	2-10
^t PHL ^t PLH	Propagation Delay LE to On	$C_L = 50 \text{ pF}$ $R_L = 500\Omega$		12.0		8.0	ns	2-9
		$\begin{array}{l} C_L = 300 \mbox{ pF (Note 1)} \\ R_L = 500 \Omega \end{array}$		16.0		15.5	ns	2-9
tw	LE Pulse Width High	$C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$	4.0		4.0		ns	2-9

NATIONAL SEMICOND (LOGIC) 61E D 🖿 6501122 0075533 497 MSC1

		Test			74	74FCTB		Fig.
Symbol	Parameter	Conditions			; = Com	Units		
		Min Max Min Max		•				
tpzh tpzL	Output Enable Time (OE to On)	$C_L = 50 pF$ $R_L = 500\Omega$	-	11.5	τ	8.0	ns	2-'
		C _L = 300 pF (Note 1) R _L = 500Ω		23.0		14.0	ns	2-'
t _{PHZ} t _{PLZ}	Output Disable Time (OE to On)	$C_{L} = 5 \text{ pF (Note 1)}$ $R_{L} = 500\Omega$		7.0		6.0	'ns	2-'
		$C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$		8.0		7.0	ns	2-'

Note 1: These parameters are guaranteed but not tested.

Capacitance $T_A = +25^{\circ}C$, f = 1.0 MHz

Symbol	Parameter (Note 1)	Conditions	Тур	Max	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	10	pF
COUT	Output Capacitance	V _{OUT} = 0V	8	12	pF

Note 1: This parameter is measured at characterization but not tested.

7-98

....

19.3