
µSAP703000-B03

MIDDLEWARE FOR JPEG
(PRELIMINARY)

© 1996

USER'S MANUAL

APPLICABLE DEVICE
V850 FAMILYTM

Document No. U10684EJ1V0UM00 (1st edition)
Date Published March 1996 P
Printed in Japan

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written

consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in

this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual

property rights of third parties by or arising from use of a device described herein or any other liability arising

from use of such device. No license, either express, implied or otherwise, is granted under any patents,

copyrights or other intellectual property rights of NEC Corporation or of others.

V800 series, V850 family, V851, and V852 are trademarks of NEC Corporation.

Green Hills Software is a trademark of Green Hills Software, Inc. of the U.S.A.

UNIX is a registered trademark of X/Open Company Limited, licensed in the U.S.A. and other countries.

Windows is a trademark of Microsoft Corporation.

Sun4 is a trademark of Sun Microsystems, Inc.

PREFACE

Users This manual is aimed at those users involved in the design and development of
application systems based on the V800 series.

Purpose The purpose of this manual is to help users to understand the functions of the
µSAP703000-B03.

Organization This manual includes the following:

• Overview
• Library specifications
• Source lists of sample programs

Reading this manual The “µSAP703000-B03” is referred to as the “AP703000-B03” throughout this manual.

Notation Note : Explanation of item indicated in the text
Caution : Information to which the user should afford special attention
Remark : Supplementary information
Numeric values : Binary : xxxx or xxxxB

Decimal : xxxx
Hexadecimal : 0xXXXX

Units for representing powers of 2 (address space or memory space):
K (kilo) : 210 = 1024
M (mega) : 220 = 10242

Related documents The following tables list related documents. Note that some documents may be
preliminary editions, although this is not indicated in this manual.

• Documents related to the V850 family

Document name Data sheet User’s manual

Product name Hardware Architecture

V851TM IP-8971 IEU-1411 U10243E

V852TM To be determined U10038E

• Documents related to development tools

Document name Document No.

IE-703000-MC User’s Manual Scheduled for release

CA850 User’s Manual Operation (WindowsTM-based) Scheduled for release

Operation (UNIXTM-based) U10553EJ

Assembly language U10543EJ

C EEU-1545

ID850 User’s Manual Operation (Windows-based) Scheduled for release

Installation (Windows-based) Scheduled for release

SM850 User’s Manual Operation (Windows-based) To be determined

Installation (Windows-based) To be determined

RX850 User’s Manual To be determined

AZ850 User’s Manual To be determined

• Documents related to tools produced by Green Hills Software TM, Inc. (GHS)
For more information about GHS tools and related documents, contact:

Green Hills Software, Inc.
One Cramberry Hill Telephone (617) 862-2002
Lexington, MA02173 Fax (617) 863-2633
USA

- i -

CONTENTS

CHAPTER 1 OVERVIEW ... 1

1.1 MIDDLEWARE ... 1

1.2 JPEG .. 1

1.2.1 Overview ... 2

1.2.2 JPEG File Format ... 18

1.3 OUTLINE OF SYSTEM ... 30

1.3.1 Major Functions .. 30

1.3.2 Package Contents .. 31

1.3.3 Operating Environment .. 33

1.3.4 Sample Program .. 35

CHAPTER 2 LIBRARY SPECIFICATIONS ... 37

2.1 FUNCTION... 37

2.1.1 Processing Information for Which Parameters Can Be Set 38

2.1.2 Processing Information That Can Be Selected from a Library 40

2.2 DETAILS OF PROCESSING .. 41

2.2.1 Compression .. 41

2.2.2 Expansion ... 46

2.2.3 Analysis .. 51

2.3 APPn Marker ... 56

2.4 DATA CONVERSION/TRANSFER BETWEEN VRAM-MCU BUFFERS 57

2.4.1 VRAM Configuration .. 58

2.4.2 MCU Buffer Structure ... 60

2.5 DETAILS OF DATA TYPE .. 64

2.5.1 JPEGINFO Structure .. 64

2.5.2 Structure of APPINFO Structure ... 75

2.6 EXTERNAL VARIABLES... 76

2.7 DETAILS OF FUNCTIONS ... 77

2.7.1 Compression .. 77

2.7.2 Expansion ... 79

2.7.3 Analysis .. 81

2.8 DETAILS OF SECTION .. 83

2.9 SELECTING A LIBRARY .. 84

2.9.1 Selecting a Library During Link ... 85

2.9.2 Specifying an Archive File ... 87

- ii -

2.10 CUSTOMIZE .. 89

2.10.1 VRAM Access Function Used During Compression................................. 89

2.10.2 VRAM Access Function Used During Expansion 91

2.11 SYMBOL NAME CONVENTION ... 92

APPENDIX A SAMPLE PROGRAM SOURCE LIST .. 93

APPENDIX B CONSTRAINTS RESTRICTING USE OF HUFFMAN TABLES 101

- iii -

LIST OF FIGURES (1/2)

Figure No. Title Page

1-1. Image Compression/Expansion .. 1

1-2. JPEG Versions .. 2

1-3. JPEG Processing .. 2

1-4. Outline of JPEG Processing ... 3

1-5. Sampling of Image .. 5

1-6. Matrix Components ... 8

1-7. Distribution of Frequency Components .. 8

1-8. Quantized Matrix and Quantization .. 9

1-9. Zigzag Scan and Coding .. 10

1-10. Huffman Encoding ... 12

1-11. Example of Distribution of Bit Length of DC/AC Coefficients ... 13

1-12. Correct Expansion Cannot Be Performed Because of Bit Error in JPEG File 14

1-13. Correct Expansion Can Be Performed Due to Use of Restart Markers 14

1-14. Restart Marker ... 15

1-15. Increase in File Size Caused by Use of Restart Marker ... 16

1-16. Structure of APPn Segment.. 17

1-17. JPEG File Format .. 18

1-18. DCT/Reverse DCT Algorithm ... 29

1-19. Memory Map for Sample Program (with V851) ... 35

2-1. Compression Status Transition .. 41

2-2. Compression Flow... 43

2-3. Expansion Status Transition ... 46

2-4. Expansion Flow ... 48

2-5. Analysis Status Transition .. 51

2-6. Analysis Flow... 53

2-7. Compression When APPn Marker Is Used .. 56

2-8. Expansion When APPn Marker Is Used .. 56

2-9. Data Conversion/Transfer between VRAM-MCU Buffers ... 57

2-10. VRAM Image ... 58

2-11. Storing MCU into Buffer .. 60

2-12. Contents of MCU Buffer .. 62

2-13. Storing Data of Upper Left, 2 x 2 Pixels .. 63

2-14. Specifying Archiver ... 87

2-15. Handling of Archive File by Linker ... 88

- iv -

LIST OF FIGURES (2/2)

Figure No. Title Page

B-1. DHT Segment .. 101

B-2. Determining Values of Compressed Codes ... 103

- v -

LIST OF TABLES (1/2)

Table No. Title Page

1-1. Sampling Ratio and MCU ... 4

1-2. Sampling Ratio and Block ... 6

1-3. Values of DC/AC Components and Bit Length .. 11

1-4. JPEG Markers ... 19

1-5. Recommended Huffman Table ... 26

2-1. Sampling Ratios .. 39

2-2. Screen Sizes ... 39

2-3. Compression Status .. 42

2-4. Compression Status Transition .. 42

2-5. User-Set Members .. 44

2-6. Return Value of jpeg_Compress .. 45

2-7. Compression Result Information Members .. 45

2-8. Expansion Status .. 47

2-9. Expansion Status Transition ... 47

2-10. User-Set Members .. 49

2-11. jpeg_Decompress Return Values ... 50

2-12. Expansion Result Information Members .. 50

2-13. Analysis Status .. 52

2-14. Analysis Status Transition .. 52

2-15. User-Set Members .. 54

2-16. Return Value of jpeg_Analysis ... 55

2-17. Analysis Result Information Members .. 55

2-18. VRAM Setting Members ... 59

2-19. MCU Buffer Configuration ... 60

2-20. Buffer Definition ... 61

2-21. Storing Data of 1 MCU (at 4:1:1) ... 63

2-22. Data Type .. 64

2-23. Members of JPEGINFO Structure .. 65

2-24. Setting of JPEGINFO Structure Member ... 66

2-25. Members of APPINFO Structure .. 75

2-26. External Variables ... 76

2-27. Functions ... 77

2-28. Sections Used by Library .. 83

2-29. File Names of Libraries ... 84

- vi -

LIST OF TABLES (2/2)

Table No. Title Page

2-30. VRAM Access Functions Required During Compression ... 89

2-31. VRAM Access Functions Required During Expansion .. 91

2-32. Symbol Name Convention .. 92

B-1. Value and Bit Length of DC/AC Component ... 101

1

CHAPTER 1 OVERVIEW

CHAPTER 1 OVERVIEW

1.1 MIDDLEWARE

Middleware is a software group that has been tuned to fully exploit the performance of a processor. The

software implements processing that is conventionally performed by hardware. The advent of high-

performance RISC (reduced instruction set computer) processors has spawned the concept of middleware,

with which processing can be realized with ROM/RAM alone, without the need for dedicated hardware.

NEC supplies system solutions that support a wide range of user needs by providing human-machine

interface and signal processing technologies in the form of middleware.

1.2 JPEG

JPEG stands for Joint Photographic Experts Group, an international still image compression/expansion

standard, established in 1991. This standard is laid down in documents ISO/IEC 10918-1 and 2.

Figure 1-1. Image Compression/Expansion

Still image

Compression

Expansion

JPEG file

2

µSAP703000-B03 USER'S MANUAL

1.2.1 Overview

There are several versions of the JPEG standard, such as progressive JPEG, in which an outline of the

image appears first, detail being added subsequently. Lossless JPEG can completely restore an image to

the state existing before compression. These versions, however, are not in general use. The AP703000-

B03 supports only the most commonly used version, called Baseline DCT.

Figure 1-2. JPEG Versions

(1) Flow of JPEG processing

JPEG compression involves compressing data in three steps: <1> DCT, <2> quantization, and <3>

entropy compression. JPEG expansion involves reproducing a compressed image by applying the reverse

of the above procedure: <1> entropy expansion, <2> reverse quantization, and <3> reverse DCT.

Figure 1-3. JPEG Processing

DCT (discrete cosine transform) processing involves the disassembly of frequencies. Quantization

reduces the volume of information by eliminating, from the data obtained as a result of DCT (i.e., data

whose frequency has been disassembled), those frequency components that humans cannot sense.

Entropy encoding is generally known as reversible compression/expansion, while baseline DCT uses a

technology based on Huffman encoding.

The AP703000-B03 performs DCT and quantization as part of the same function. Similarly, entropy

decoding and reverse quantization are performed as part of the same function. This increases the

processing speed.

Compression

DCT Quantization Entropy coding

Reverse DCT Reverse
quantization Entropy decoding

Expansion

Im
ag

e
da

ta

JP
E

G
 fi

le

JPEG Baseline Process
DCT
Sequential
Huffman

Extended DCT-based Process
DCT
Sequential or progressive
Huffman or arithmetic coding

Lossless Process
Sequential
Huffman or arithmetic coding

3

CHAPTER 1 OVERVIEW

(2) YCbCr/RGB

JPEG compresses/expands images in YCbCr color space. If the image data is not YCbCr but RGB,

processing to transform the RGB data into YCbCr for compression, or that to transform YCbCr data into

RGB before displaying the result of expansion, is added.

The Y of YCbCr is luminance (brightness index), and Cb/Cr is chrominance, a color difference (Cb is the

difference in color tone between green and blue, while Cr is the difference in color tone between green

and red). Transformation between YCbCr and RGB can be illustrated as follows:

Y + 0x80 0.29900 0.58700 0.11400 R

Cb = –0.16874 –0.33126 0.50000 G

Cr 0.50000 –0.41869 –0.08131 B

R 1 0 1.40200 Y + 0x80

G = 1 –0.34414 –0.71414 Cb

B 1 1.77200 0 Cr

Figure 1-4. Outline of JPEG Processing

RGB display

RGB-to-YCbCr
transformation

RGB data

YCbCr-to-RGB
transformation

YCbCr display

Reverse DCT
YCbCr data

Quantization

JPEG data
Huffman compression Huffman expansion

JPEG file

Reverse
quantization

DCT

4

µSAP703000-B03 USER'S MANUAL

(3) Sampling and MCU

The minimum unit in which JPEG processing is performed is called an MCU (minimum coded unit). The

MCU is separated into Y/Cb/Cr in units of 8 x 8 pixels, each of which is called a block.

Obtaining four blocks of Y, one block of Cb, and one block of Cr from one MCU can be expressed as a

“sampling ratio of 4:1:1.” Similarly, when obtaining two blocks of Y, one block of Cb, and one block of

Cr from one MCU, the sampling ratio is said to be 4:2:2. When obtaining one block each of Y, Cb, and

Cr from one MCU, the sampling ratio is 4:4:4.

Table 1-1. Sampling Ratio and MCU

MCU Sampling ratio Block

Vertical 16 pixels 4:1:1 Y: 4 blocks
Horizontal 16 pixels (H:V = 2:2) Cb: 1 block, Cr: 1 block

Vertical 8 pixels 4:1:1 Y: 4 blocks
Horizontal 32 pixels (H:V = 4:1) Cb: 1 block, Cr: 1 block

Vertical 8 pixels 4:2:2 Y: 2 blocks
Horizontal 16 pixels Cb: 1 block, Cr: 1 block

Vertical 8 pixels 4:4:4 Y: 1 block
Horizontal 8 pixels Cb: 1 block, Cr: 1 block

Although the JPEG standard covers sampling ratios other than those listed in Table 1-1, the AP703000-

B03 supports only those sampling ratios listed in the table.

JPEG compression starts by dividing the image in this MCU units into grids. Conversely, JPEG expansion

involves arranging the processing result for each MCU in a manner exactly like paving a floor with tiles.

For example, an image is vertically and horizontally divided into 16-pixel units, each at a sampling ratio

of 4:1:1 (H:V = 2:2). Next, the 16 x 16 pixel image is separated into Y, Cb, and Cr components, and the

Y component is divided into four blocks, each block consisting of 8 x 8 pixels. For the Cb and Cr

components, an 8 x 8 pixel image is created from the 16 x 16 pixel image. At this time, the vertically and

horizontally adjacent 4 pixels are averaged. This is called “thinning out.”

5

CHAPTER 1 OVERVIEW

Original 16 x 16 pixel image

YCbCr separation Sampling

Sampling ratio of 4:1:1 (H:V = 2:2)

Original 8 x 16 pixel image

YCbCr separation Sampling

Sampling ratio of 4:2:2

Original 8 x 8 pixel image

YCbCr separation and sampling

Sampling ratio of 4:4:4

Original 8 x 32 pixel image

Sampling ratio of 4:1:1 (H:V = 4:1)

Y

Y

Y

Y

Cb

Cb

Cb

Cb

Cr

Cr

Cr

Cr

Figure 1-5. Sampling of Image

With JPEG compression, a sampling ratio of 4:1:1 is used more often than 4:4:4.

At a sampling ratio of 4:1:1, the chrominance component is subjected to less processing than the

luminance component. This is because the human eye is more sensitive to changes in brightness than

changes in color, such that a high compression ratio can be realized by omitting that information which

is difficult for the human eye to detect.

6

µSAP703000-B03 USER'S MANUAL

As an example, let’s consider the case in which an image consisting of 640 x 480 pixels is compressed.

To compress this image at a sampling ratio of 4:1:1 (H:V = 2:2), it is divided by 16 pixels both horizontally

and vertically, giving 40 horizontal segments and 30 vertical segments. Six blocks are extracted from each

MCU: four blocks of the Y component, one block of the Cb component, and one block of Cr component.

Consequently, 7200 blocks (= 40 x 30 x 6) are obtained from the entire image. To these 7200 blocks,

DCT, quantization, and Huffman compression are applied in sequence.

Table 1-2. Sampling Ratio and Block

Sampling ratio 640 x 480 pixels Number of blocks Total number

Horizontal Vertical

4:1:1 40 segments 30 segments 6 7200
(H:V = 2:2)

4:1:1 20 segments 60 segments 6 7200
(H:V = 4:1)

4:2:2 40 segments 60 segments 4 9600

4:4:4 80 segments 60 segments 3 14400

As is evident from the above table, more blocks are needed at a sampling ratio of 4:4:4 than at 4:1:1.

The greater the number of blocks, the more processing time is required. Moreover, the size of the resulting

JPEG file also increases.

In JPEG compression, processing is performed on a block-by-block basis after sampling. DCT,

quantization, and entropy encoding are performed based on the information to which of Y or Cb/Cr a given

block belongs.

In JPEG expansion, the result is obtained in units of blocks once entropy decoding, reverse quantization,

and reverse DCT have been completed.

 per MCU of blocks

7

CHAPTER 1 OVERVIEW

(4) DCT

DCT transformation uses the following expression:

DCT

F(u, v) = Σ Σ f (i, j) cos { } cos { }

Reverse DCT

f (i, j) = Σ Σ C(u)C(v)F(u, v) cos { } cos { }

C (w) = (w = 0)

= 1 (w ≠ 0)

Generally, this DCT is applied to 8 x 8 elements with signal processing techniques such as JPEG and

MPEG.

DCT disassembles a frequency of cos (nπ/16) (where n = 0, 1, 2, ... 7) in both the vertical and horizontal

directions.

Generally, relatively few elements of a natural image, such as a photograph, have values, the other

elements tending to have values close to zero when the frequency is disassembled in this way. Even

by approximating those elements having a value close to zero with zero, an image close to the original

can be produced by using the remaining elements. However, the differences between the original image

and an image created in this way are barely visible to the human eye.

1

√ 2

2C(u)C(v) N – 1 N – 1 (2i + 1)uπ (2j + 1)vπ

N i = 0 j = 0 2N 2N

2 N – 1 N – 1 (2i + 1)uπ (2j + 1)vπ

N u = 0 v = 0 2N 2N

8

µSAP703000-B03 USER'S MANUAL

When image data of 8 x 8 pixels is transformed by means of DCT, the first element indicates the average

value for the entire matrix, while the other 63 elements indicate the distortion of color in the matrix. Because

of the difference in nature between the first element in the matrix and the other 63 elements, the first

element is called a DC (direct current) component, while the other 63 elements are called AC (alternating

current) components.

Figure 1-6. Matrix Components

In an 8 x 8 matrix after the application of DCT, the low-frequency components are concentrated at the

left and top edges, while the high-frequency components are concentrated at the right and bottom edges.

If the original image exhibits few changes in tone, such as those that approach monochrome, a matrix

of only low-frequency components (with almost all the high-frequency values being 0) can be obtained.

Conversely, with a delicate image such as a diced pattern, a matrix with several high frequencies can be

obtained.

Figure 1-7. Distribution of Frequency Components

 : DC component

 : AC components

 : DC component

 : AC components

Low frequency

Lo
w

 fr
eq

ue
nc

y

High frequency

H
ig

h
fr

eq
ue

nc
y

9

CHAPTER 1 OVERVIEW

(5) Quantization and zigzag scan

It is said that the human eye can barely recognize changes in high-frequency components but can easily

recognize the most subtle changes in low-frequency components. To increase the compression ratio,

JPEG compression divides low-frequency components by a small value and high-frequency components

by a greater value. This processing is called quantization. To expand compressed data, the data is

multiplied by the same value by which it was divided (reverse quantization). However, the data cannot

be fully restored by applying quantization and reverse quantization (cannot be reversed). This is because,

when data is quantized, only the quotient resulting from division is used as information, the remainder

being ignored. In this way, the JPEG standard enables an increase in the compression ratio without visibly

degrading the image.

Figure 1-8. Quantized Matrix and Quantization

Data obtained by applying DCT to a block of the original image is notable in that the data of the Y component

differs from that of the Cb/Cr component. Therefore, JPEG uses two types of quantized matrixes for the

Y and Cb/Cr components, respectively (in some cases, only one quantized matrix is used). These

quantized matrixes can be defined independently for each image (JPEG file). Information relating to these

quantized matrixes is stored as a DQT segment in the header of the JPEG file.

As shown by the example in Figure 1-8, if most of the values in the obtained matrix are 0, the information

that “there is a sequence of n zeroes followed by a value that is not zero” is interpreted to increase the

compression rate. The JPEG standard refers to this “sequence of zeroes” as “the length of zero run.”

The non-zero values in the matrix obtained as a result of quantization gather in the upper left part of the

matrix most of the time. For this reason, the length of the zero run is counted by JPEG in the sequence

illustrated below (zigzag scan).

Example of quantized matrix Example of quantized 8 x 8 matrix

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

43 –9 0 1 0 0 0 0

–8 –4 0 1 0 0 0 0

0 3 2 0 –1 0 0 0

–1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q (i, j) =

10

µSAP703000-B03 USER'S MANUAL

Figure 1-9. Zigzag Scan and Coding

(6) Entropy encoding

With Baseline DCT version of JPEG, entropy encoding that uses Huffman coding is performed. In entropy

encoding, the absolute values and distribution of the DC and AC components differ.

While the absolute value of an AC component is relatively low, the absolute value of the DC component

tends to be great. This is because the DC component is the average value of a given block. With JPEG,

a difference between the DC component of the current block and the DC component of the preceding block

is calculated for each of the Y, Cb, and Cr components, and this difference is compressed by means of

entropy when the DC component is compressed. For the AC coefficients, the combination of the length

of the zero run and the value of a non-zero coefficient (LEVEL value) is compressed by means of entropy.

The compressed code is called a VLC (Variable Length Code).

In JPEG compression, the DC and AC components are compressed in accordance with different Huffman

encoding conventions. This is referred to as “the DC and AC components using different Huffman tables.”

Moreover, like quantization, because the distribution of values differs between the Y and Cb/Cr components,

separate Huffman tables are usually used for the Y and Cb/Cr components. Consequently, four Huffman

tables are used for JPEG compression. Information relating to these Huffman tables can be defined by

each JPEG file, and is stored as a DHT segment in the JPEG file header.

For entropy encoding of a certain value, an absolute value of n bits can only contain n bits of information.

In other words, a value whose absolute value is n bits can be expressed using n bits. In signal processing,

values are usually defined as follows:

Positive number consisting of n bits: lower n bits of value

Negative number consisting of n bits: lower n bits of value, with the sign inverted

In JPEG compression, entropy encoding follows the above scheme.

43 –9 0 1 0 0 0 0

–8 –4 0 1 0 0 0 0

0 3 2 0 –1 0 0 0

–1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(RUN, LEVEL)
(0, –9)
(0, –8)
(1, –4)
(1, 1)
(1, 3)
(0, –1)
(1, 1)
(0, 2)
(0, 1)
(5, 1)
(5, –1)
EOB

VLC
0000 0001 1000 1
0000 0001 1101 1
0000 0011 001
0110
0010 0101 0
111
0110
0100 0
110
0001 110
0001 111
10

0x01, 0x88,
0x0E, 0xC0,
0xCB, 0x12,
0xBB, 0x21,
0x87, 0x0F,
0x80,

11

CHAPTER 1 OVERVIEW

Table 1-3. Values of DC/AC Components and Bit Length

Value of component Category

0 0

–1, 1 1

–3, –2, 2, 3 2

–7 to –4, 4 to 7 3

–15 to –8, 8 to 15 4

–31 to –16, 16 to 31 5

–63 to –32, 32 to 63 6

–127 to –64, 64 to 127 7

–255 to –128, 128 to 255 8

–511 to –256, 256 to 511 9

–1023 to –512, 512 to 1023 10

–2047 to –1024, 1024 to 2047 11

In JPEG compression, entropy compression of the values in this category is performed.

For example, suppose the Huffman table for the DC component for luminance (Y) follows the convention

shown below:

Huffman compressed code 00 (2 bits) is allocated to a value 0 bits long.

Huffman compressed code 010 (3 bits) is allocated to a value 1 bit long.

Huffman compressed code 011 (3 bits) is allocated to a value 2 bits long.

Huffman compressed code 100 (3 bits) is allocated to a value 3 bits long.

Huffman compressed code 001 (3 bits) is allocated to a value 4 bits long.
.
.
.

If the difference in the DC component of the block of the Y component (difference from the DC component

of the block of the preceding Y component) is “–3,” “–3” is encoded as follows, because it belongs to

category 2.

Huffman compressed code of category 2: 011 (3 bits)

Lower 2 bits of “–3” with sign inverted: 00

3 + 2 = 5 bits

12

µSAP703000-B03 USER'S MANUAL

Figure 1-10. Huffman Encoding

For the AC components, the Huffman table follows the convention shown below:

Compressed code 00 (2 bits) is allocated to a 1-bit value with a zero run of 0.

Compressed code 01 (2 bits) is allocated to a 2-bit value with a zero run of 0.

Compressed code 100 (3 bits) is allocated to a 3-bit value with a zero run of 0.

Compressed code 1010 (4 bits) is allocated to a 4-bit value with a zero run of 0.

Compressed code 1011 (4 bits) is allocated to a 1-bit value with a zero run of 1.

Compressed code 1100 (4 bits) is allocated to a 5-bit value with a zero run of 0.

Compressed code 11010 (5 bits) is allocated to a 2-bit value with a zero run of 1.
.
.
.

Determined from Huffman table

Huffman compressed code Level value

Positive number: lower n bits of value of component
Negative number: lower n bits, with sign inverted
(n: category)

13

CHAPTER 1 OVERVIEW

Figure 1-11. Example of Distribution of Bit Length of DC/AC Coefficients

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 10 20 30 40 50 60 (%)

(bit) (a) Distribution of bit length of DC coefficient

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 10 20 30 40 50 60 (%)

(bit) (b) Distribution of bit length of AC coefficient

14

µSAP703000-B03 USER'S MANUAL

(7) Restart marker

In JPEG compression, a 2-byte marker (restart marker) is inserted in a code for compressing MCU.

The restart marker can be used to expand only the lower part of a JPEG image. If a bit error occurs while

a JPEG file is being transferred, and if that file uses restart markers, expansion can be correctly resumed

from the next restart marker. With a JPEG file that does not use restart markers, the data cannot be

correctly expanded if a bit error occurs.

Figure 1-12. Correct Expansion Cannot Be Performed Because of Bit Error in JPEG File

Figure 1-13. Correct Expansion Can Be Performed Due to Use of Restart Markers

15

CHAPTER 1 OVERVIEW

There are eight types of restart markers, in the value range of 0xFF,0xD0 to 0xFF,0xD7. A restart marker

is inserted in a compressed code every m MCUs, and used in the order of RST0, RST1, and RST2 to

RST7. Following RST7, RST0 is used. The value of m is called the restart interval.

If the restart interval is 3, the image will be as shown in the figure below.

Figure 1-14. Restart Marker

The number of restart markers to be inserted is determined by the size of the image. For example, the

number of restart markers for an image measuring 640 x 480 pixels, for a sampling ratio of 4:2:2 and a

restart interval of 2, is calculated as follows:

MCU (minimum compression unit): 16 x 8 pixels

Restart marker: every 2 MCUs

Therefore,

(640 x 480) ÷ (16 x 8) ÷ 2 = 1200 restart markers

RST0
FF, D0

RST1
FF, D1

RST2
FF, D2

RST3
FF, D3

RST4
FF, D4

RST5
FF, D5

RST6
FF, D6

RST7
FF, D7

RST0
FF, D0

16

µSAP703000-B03 USER'S MANUAL

A restart marker is located on a byte boundary. On the other hand, compressed code is located in bit

units. If one restart marker is inserted, therefore, the data quantity increases to a value equal to the marker,

plus 2 bytes. The number of bytes per restart marker is usually less than 4 bytes, although it tends to

vary slightly. The DC component immediately after a restart marker is compressed not as the difference

from the preceding DC component, but as the value of the DC component itself.

For example, the size of the file for an image measuring 640 x 480 pixels, where the sampling ratio is

4:2:2 and the restart interval is 2, increases by about 4800 bytes (1200 markers x about 4 bytes) relative

to when no restart marker is used.

Figure 1-15. Increase in File Size Caused by Use of Restart Marker

Compressed code

One MCU

DC coefficient of Cr component (difference)

DC coefficient of Cb component (difference)

DC coefficient of Y component (difference)

Restart marker inserted

Byte align

One MCU

Restart marker

DC coefficient of Y component (absolute value)
DC coefficient of Cb component (absolute value)

DC coefficient of Cr component
(absolute value)

17

CHAPTER 1 OVERVIEW

(8) APPn marker

In JPEG compression, an application data segment (APPn segment) can be used so that data not directly

related to JPEG compression/expansion can be embedded in or extracted from the header of a JPEG

file.

There are 16 types of APPn segments. The contents of these segments can be defined by the user.

Figure 1-16. Structure of APPn Segment

There are 16 types of APPn markers, from 0xFF,0xE0 to 0xFF,0xEF, each corresponding to an APPn

segment.

The AP703000-B03 determines whether an APPn segment is to be used during compression. When an

APPn segment is to be used, which of the segments is to be used is specified by selecting the

corresponding APPn marker. An analysis routine that detects the position of an APPn segment in the

JPEG file is also provided.

APPn marker
(2 bytes)

Data length
(2 bytes)

Data
(1 to 65533 bytes)

18

µSAP703000-B03 USER'S MANUAL

1.2.2 JPEG File Format

A JPEG file consists of a header that contains several pieces of information necessary for expanding the

file, and data obtained by means of DCT, quantization, and entropy compression of an image. All the header

data is in byte units (when information is analyzed, however, 1 byte is processed as “4 bits + 4 bits”). Data

is in bit units. All data is accommodated on a byte boundary.

Figure 1-17. JPEG File Format

(1) Header

In JPEG compression, tables are managed in units called “segments” that start with a “marker.” A marker

always consists of 2 bytes, a combination of 0xFF and 1 byte unique to each marker. If a JPEG file is

searched for all occurrences of 0xFF, all the markers used in the file can be detected. However, 0xFF

is also used in the compressed data, not only in the header. To distinguish between the markers and

data, therefore, 0xFF in the compressed data is immediately followed by 0x00, which is meaningless as

compressed data. “0xFF,0x00” is not a marker, instead being compressed data “0xFF.”

The sequence of each segment (such as COM, DQT, SOF, and DHT) of the JPEG header is arbitrary.

The following table lists the JPEG markers.

Data SOS compressed code

SOI

COM

DQT

SOF

DHT

EOI

JPEG header

19

CHAPTER 1 OVERVIEW

Table 1-4. JPEG Markers

Value Contents

0xFF 0x00 Non-marker (compressed data 0xFF)

0xFF 0x01 TEM (temporary marker for arithmetic compression)

0xFF 0x02 to 0xFF 0xBF RES (reserved)

0xFF 0xC0 SOF0 marker (Baseline DCT (Huffman))

0xFF 0xC1 SOF1 marker (Extended sequential DCT (Huffman))

0xFF 0xC2 SOF2 marker (Progressive DCT (Huffman))

0xFF 0xC3 SOF3 marker (Spatial (sequential) lossless (Huffman))

0xFF 0xC4 DHT marker (Huffman table definition segment)

0xFF 0xC5 SOF5 marker (Differential sequential DCT (Huffman))

0xFF 0xC6 SOF6 marker (Differential progressive DCT (Huffman))

0xFF 0xC7 SOF7 marker (Differential spatial (Huffman))

0xFF 0xC8 JPG marker (reserved for JPEG expansion)

0xFF 0xC9 SOF9 marker (Extended sequential DCT (arithmetic))

0xFF 0xCA SOF10 marker (Progressive DCT (arithmetic))

0xFF 0xCB SOF11 marker (Spatial (sequential) lossless (arithmetic))

0xFF 0xCC DAC marker (environment setting segment for arithmetic coding)

0xFF 0xCD SOF12 marker (Differential sequential DCT (arithmetic))

0xFF 0xCE SOF13 marker (Differential progressive DCT (arithmetic))

0xFF 0xCF SOF14 marker (Differential spatial (arithmetic))

0xFF 0xD0 to 0xFF 0xD7 RSTn marker (restart marker)

0xFF 0xD8 SOI marker (header of JPEG file)

0xFF 0xD9 EOI marker (tail of JPEG file)

0xFF 0xDA SOS marker (header of compressed data)

0xFF 0xDB DQT marker (quantization table definition)

0xFF 0xDC DNL marker (number of lines definition)

0xFF 0xDD DRI marker (definition of restart interval)

0xFF 0xDE DHP marker (definition of Huffman table)

0xFF 0xDF EXP marker (expand segment)

0xFF 0xE0 to 0xFF 0xEF APPn marker (reserved for user application)

0xFF 0xF0 to 0xFF 0xFD JPGn marker (reserved for JPEG expansion)

0xFF 0xFE COM marker (comment)

20

µSAP703000-B03 USER'S MANUAL

(a) SOI (Start of image) marker

This marker indicates the beginning of a JPEG file. A JPEG file always starts with this 2-byte marker.

(b) EOI (End of image) marker

This marker indicates the end of a JPEG file. A JPEG file always ends with this 2-byte marker.

(c) DQT (Define quantization table(s)) marker

This marker defines a quantization table.

Two DQT markers, one for the normal luminance component (Luminance quantization table) and the

other for the chrominance component (Chrominance quantization table), are supported.

0xFF 0xD9

EOI

0xFF 0xD8

SOI

DQT

0xFF 0xDB Lq Pq Tq Q0 Q1 Q63

multiple

Lq byte

Lq: length of DQT segment
Pq: fixed to 0 with baseline DCT
Tq: quantization table number (0, 1, 2, 3)
Q0 to Q63: quantization factor (1 to 255)

21

CHAPTER 1 OVERVIEW

(d) DHT (Define Huffman table(s)) marker

This marker defines a Huffman table.

Example

00, 01, 05, 01, 01, 01, 01, 01, 01, 00, 00, 00, 00, 00, 00, 00

If L1 through L16 are as shown above, the meaning is as follows:

Zero 1-bit code

One 2-bit code, 00

Five 3-bit codes, 010, 011, 100, 101, and 110

One 4-bit code, 1110

One 5-bit code, 11110

One 6-bit code, 111110

One 7-bit code, 1111110

One 8-bit code, 11111110

One 9-bit code, 111111110

No other codes

V1 through Vm are the corresponding Huffman codes. For example, the Huffman code corresponding

to compressed code ‘010’ is V2 (in this case, ‘010’ is the second compressed code).

DHT

0xFF 0xC4 Lh Tc Th V1L16 VmL1 L2 V2

Lh byte

multiple

Lh: length of DHT segment
Tc: 0 = DC, 1 = AC
Th: Huffman table number (0, 1)
L1 to L16: indicates how many Huffman codes of i bits in length exist
V1 to Vm: corresponding Huffman code

22

µSAP703000-B03 USER'S MANUAL

(e) APPn (Reserved for application segments) marker

The application data segment is a segment that can be freely used by each application. Usually, this

segment contains the version of the application that created a JPEG file. In some cases, a small JPEG

file is contained as is. This segment can be skipped by only referring to the value of Lp.

APPn

0xFF
0xE0

Lp AP1 AP2 APn
0xEF

Lp byte

Lp: length of APPn segment
AP1 to APn: data peculiar to application

23

CHAPTER 1 OVERVIEW

(f) SOFn (Start of frame) marker

In JPEG compression, that portion of a JPEG file other than the SOI marker and EOI marker is called

a frame. The SOFn segment specifies a quantization table number necessary for expansion. The

SOFn segment is also called a frame header.

With JPEG, color elements such as Y, Cb, and Cr are called components.

Example

0xFF 0xC0, 0x00, 0x11, 0x08, 0x00, 0x90, 0x00, 0xE0, 0x03,

0x01, 0x22, 0x00, 0x02, 0x11, 0x01, 0x03, 0x11, 0x01

If the contents of this segment are as shown above, the meaning will be as follows:

The sampling ratio of the first component (Y) is 2 x 2 and the quantization table number is 0.

The sampling ratio of the second component (Cb) is 1 x 1 and the quantization table number is

1.

The sampling ratio of the third component (Cr) is 1 x 1 and the quantization table number is 1.

SOF0

0xFF 0xC0 Lf P Y X Nf

C1 H1 V1 C2 H2 V2 Tq2 CNf TqNfTq1 HNf VNf

component-spec.
parameters

Lf: length of SOF0 segment
P: number of bits constituting component
 (8 bits are allocated to each color element for 24-bit full color compression. In this case, P = 8)
Y: vertical size of image (number of pixels)
X: horizontal size of image (number of pixels)
Nf: number of components (Nf = 3 in the case of YCbCr, because the number of colors is 3)
Cn: number of nth component
Hn: horizontal sampling ratio of nth component
Vn: vertical sampling ratio of nth component
Tqn: quantization table number used for nth component

24

µSAP703000-B03 USER'S MANUAL

(g) SOS (Start of scan) marker

The SOS segment is also called a scan header. The data constituting a compressed image starts

immediately after the scan header. The scan header specifies the Huffman table number of the

compressed data.

(h) DRI (Define restart interval) marker and RSTn (Restart interval termination) marker

A restart marker is used to minimize the influence of illegal data such as a communication error. A

restart marker is inserted every number of MCUs, as set by the DRI marker.

For example, to insert a marker every four MCUs, restart markers are inserted sequentially, starting

from RST0 and RST1 to RST7, as follows:

[MCU1][MCU2][MCU3][MCU4]RST0[MCU5][MCU6][MCU7][MCU8]RST1 ...

Because the DC coefficient is differential information with JPEG, the preceding DC coefficient is

required to expand an 8 x 8 pixel block. The DC coefficient immediately after a restart marker is a

differential from 0. Consequently, even if data is destroyed in MCU4, MCU5 and subsequent MCUs

can be correctly expanded.

SOS

0xFF 0xDA Ls Ns component-spec.
parameters Ss

Cs1 Td1 Ta1 Td2 Ta2 Csns
Tans

Cs2

Se Ah Al

Tdns

Ls: length of SOS segment
Ns: specifies number of components
Csn: ID of nth component
Tdn: Huffman table number of DC coefficient of nth component
Tan: Huffman table number of AC coefficient of nth component
Ss: fixed to 0 with baseline DCT
Se: fixed to 63 with baseline DCT
Ah: fixed to 0 with baseline DCT
Al: fixed to 0 with baseline DCT

DRI

0xFF 0xDD Lr Ri

Lr: length of DRI segment (4)
Ri: restart interval

25

CHAPTER 1 OVERVIEW

(2) Data

Although the header is stored in a file in units of bytes, data is stored in a file in units of bits (the overall

data is stored in multiples of bytes).

The first point to be noted concerning data is that data 0xFF is immediately followed by 0x00 to distinguish

it from a marker. For expansion, therefore, all occurrences of 0x00 following 0xFF must be ignored. To

do so, data must be read from memory 1 byte at a time, and a judgment made each time to determine

whether each item of byte data is 0xFF. This means that a technique to increase the speed, such as reading

data from memory in blocks of 2 or 4 bytes, cannot be used.

(3) Huffman decoding

Example

FF C4 00 1F 00

00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 00

00 01 02 03 04 05 06 07 08 09 0A 0B

The Huffman table segment shown above is interpreted as follows:

There is no 1-bit Huffman code.

There is one 2-bit Huffman code, ‘00,’ for which the corresponding value is ‘0x00.’

There are five 3-bit Huffman codes: ‘010,’ ‘011,’ ‘100,’ ‘101,’ and ‘110.’ The corresponding values

are ‘0x01,’ ‘0x02,’ ‘0x03,’ ‘0x04,’ and ‘0x05.’

There is one 4-bit Huffman code, ‘1110,’ for which the corresponding value is ‘0x06.’

....

If this interpretation were to be made each time compressed image data is expanded, processing would

take an excessively long time. It is also wasteful to repeat the same processing over and over again.

Actually, therefore, a simple table is created by analyzing the Huffman table segment before starting the

expansion of compressed image data. This table is referenced when the image data is expanded.

26

µSAP703000-B03 USER'S MANUAL

(a) Huffman table initialization

The JPEG standard recommends the creation of the following table:

Table 1-5. Recommended Huffman Table

Number of bits Minimum value of code Maximum value of code Number of minimum code

1 bit Undefined –1 Undefined

2 bits 0x0 0x0 0x0

3 bits 0x2 0x6 0x1

4 bits 0xE 0xE 0x6

5 bits 0x1E 0x1E 0x7

6 bits 0x3E 0x3E 0x8

7 bits 0x7E 0x7E 0x9

8 bits 0xFE 0xFE 0xA

9 bits 0x1FE 0x1FE 0xB

10 bits Undefined –1 Undefined

11 bits Undefined –1 Undefined

12 bits Undefined –1 Undefined

13 bits Undefined –1 Undefined

14 bits Undefined –1 Undefined

15 bits Undefined –1 Undefined

16 bits Undefined –1 Undefined

In the above Huffman code segment, the minimum value of the 3-bit Huffman code is ‘010’ (= 0x02)

while the maximum value is ‘110’ (= 0x06). The minimum code ‘010’ is the second (0x1) of those that

follow ‘00.’

(b) Decoding of DC coefficient

As an example, suppose that the Huffman table segment shown in Table 1-5 is given.

Also suppose that the compressed code has the following value:

0xDA 0x49 (= 1101 1010 0100 1001)

First, the first bit ‘1’ (= 0x1) of the compressed data is compared with the maximum 1-bit value of the

Huffman code table.

0x1 > –1 (maximum 1-bit value of table)

It can be determined, therefore, that the compressed code is not a 1-bit code.

Next, the first 2 bits ‘11’ (= 0x3) are compared with the maximum 2-bit value of the table.

27

CHAPTER 1 OVERVIEW

0x3 > 0x0 (maximum 2-bit value of table)

Therefore, the compressed data is not a 2-bit code, either.

Then, the first 3 bits ‘110’ (= 0x6) are compared with the maximum 3-bit value of the table.

0x6 = 0x6 (maximum 3-bit value of table)

This determines that the compressed code is 3 bits long.

By using this 3-bit compressed code, the position of ‘110’ as a Huffman code must be obtained. To

do this, the minimum 3-bit value ‘0x2’ of the Huffman table is subtracted from compressed code ‘0x6’.

0x6 – 0x2 = 0x4

This means that the 3-bit compressed code is at the 0x4th position. Because the minimum 3-bit code

‘0x2’ is at the 0x1th position (if the table is referenced), the following calculation is performed:

0x4 + 0x1 = 0x5

This indicates that the compressed code is at the 0x5th code position.

Next, the Huffman code segment is referenced.

00 01 02 03 04 05 06 07 08 09 0A 0B

The value of the 0x5th position is ‘05.’ This means that the ‘5’ bits following the compressed code

are a level value.

Next, the decoded 3 bits, ‘110,’ are stripped from the compressed code and discarded.

0xDA 0x49 (= 1101 1010 0100 1001)

↓
0xD2 0x48 (= 1 1010 0100 1001)

The first 5 bits are ‘11010’ (= 0x1A). Because the first sign bit in this case is ‘1’ (indicating a positive

number), the obtained value is ‘0x1A.’ This completes the decoding of the DC coefficient.

(c) Decoding of AC coefficient

Basically, the AC coefficient is decoded in the same manner as the DC coefficient, but with the

following differences:

• The Huffman code table is different.

• The higher 4 bits of the value taken from the Huffman code segment indicate the length of the zero

run, while the lower 4 bits indicate the number of bits of the level value.

28

µSAP703000-B03 USER'S MANUAL

(4) Reverse quantization

Reverse quantization involves multiplying the 8 x 8 pixel matrix obtained as a result of Huffman decoding,

by a quantized matrix defined by the quantization segment.

Because this processing only involves calculating the product of the two values read from memory,

followed by writing the result to another memory address, processing that restores the original sequence

of a zigzag scan is also performed at the same time, so that the number of times memory is accessed

can be reduced and the overall processing speed improved.

Almost all the elements of the matrix obtained as a result of Huffman decoding have a value of ‘0’ (zero).

The normal CPU requires several clocks to execute the multiplication or memory access (read or write).

The AP703000-B03 inserts one expression to identify whether the value of an element is ‘0.’ If the value

is ‘0,’ that element is rejected.

(5) Actuality of DCT/reverse DCT

DCT is equivalent to repeating the following one-dimensional calculation twice (vertically and horizontally).

F(u,v) = 2C(u)C(v)/N*ΣΣf (i, j)*cos {(2i + 1)uπ/2N} *cos {(2j + 1)vπ/2N}

= 2C(u)C(v)/N*Σcos {(2i + 1)uπ/2N} *Σf (i, j)*cos {(2j + 1)vπ/2N}

The number of constants required for two dimensions and eight orders (N = 8; i.e., 8 x 8 matrix) is 32.

Actually, however, this can be decreased by applying the formulae of a trigonometric function to the

subsequent seven.

cos(nπ/16) (n = 0, 1, 2, ... 31)

↓
cos (nπ/16) (n = 1, 2, 3, 4, 5, 6, 7)

If the following value has been calculated in advance, the number of times multiplication is executed can

be reduced.

f (0, j) ± f (7, j), f (1, j) ± f (6, j), ...

Further, the vertical and horizontal routines can be used commonly if the DCT expression is changed as

follows:

g (i, v) = Σf (i, j)*cos {(2j + 1)vπ/16}

f (u, v) = Σg (i, v)*cos {(2i + 1)uπ/16}

29

CHAPTER 1 OVERVIEW

Figure 1-18. DCT/Reverse DCT Algorithm

Actually, the pointer of f (i, j) and the pointer of work area g (i, v) are passed as arguments to the DCT

routine. By allocating this work area to high-speed RAM, the processing speed can be increased.

f (i, j)

g (i, v)

F (u, v)

30

µSAP703000-B03 USER'S MANUAL

1.3 OUTLINE OF SYSTEM

1.3.1 Major Functions

(1) Sampling ratio

The following four sampling ratios are supported.

• 4:1:1 [H:V = 2:2] (The screen size is a multiple of 16 both vertically and horizontally.)

• 4:1:1 [H:V = 4:1] (The screen size is a multiple of 32 horizontally, and of 8 vertically.)

• 4:2:2 [H:V = 2:1] (The screen size is a multiple of 16 horizontally, and of 8 vertically.)

• 4:4:4 [H:V = 1:1] (The screen size is a multiple of 8 both vertically and horizontally.)

(2) Coordinates (x, y)

Assuming VRAM specification for both YCbCr and RGB, an image can be expanded at any point in VRAM

and can be compressed at any point in VRAM.

(3) Quantization table

Up to two quantization tables can be set.

A default quantization table is provided for compression, but a user-defined quantization table can also

be used.

The value written to the DQT header is used for expansion.

(4) Huffman table

Up to four Huffman tables can be set.

A default Huffman table is provided for compression, but a user-defined Huffman table can also be used.

The value written to the DHT header is used for expansion.

(5) Restart marker

Whether restart markers are to be used can be specified for compression. If they are used, the restart

interval can be changed.

The value of the DRI header is used for expansion.

31

CHAPTER 1 OVERVIEW

1.3.2 Package Contents

The package includes the following libraries and sample source.

(1) NEC version

nec lib850 libjpegc.a

libjcs11.a

libjcs21.a

libjcs22.a

libjcs41.a

libjcy.a

libjcr.a

libjpegd.a

libjds11.a Each library

libjds21.a (See Section 2.9 .)

libjds22.a

libjds41.a

libjdhb.a

libjdhl.a

libjdy.a

libjdr.a

libjpega.a

libjpeg.a

smpl850 jpeg start.s :Start up

jpeg.h :Header file 1

jpegasm.h :Header file 2

main.c :Sample main

table.c :Table

fish.c :Sample JPEG

tpycc.c :Sample source (for YCbCr)

tprgb.c :Sample source (for RGB)

getmcu.c :C getmcu sample

putmcu.c :C putmcu sample

makeycc :make file (for YCbCr)

makergb :make file (for RGB)

jpegarce.exe :For DOS Execution file creating

jpegarc :For Sun4 archive specification file

dfile :Link directive

32

µSAP703000-B03 USER'S MANUAL

(2) GHS version

ghs lib850 libjpegc.a

libjcs11.a

libjcs21.a

libjcs22.a

libjcs41.a

libjcy.a

libjcr.a

libjpegd.a

libjds11.a Each library

libjds21.a (See Section 2.9 .)

libjds22.a

libjds41.a

libjdhb.a

libjdhl.a

libjdy.a

libjdr.a

libjpega.a

libjpeg.a

smpl850 jpeg start.s :Start up

jpeg.h :Header file 1

jpegasm.h :Header file 2

main.c :Sample main

table.c :Table

fish.c :Sample JPEG

tpycc.c :Sample source (for YCbCr)

tprgb.c :Sample source (for RGB)

gemcu.c :C getmcu sample

putmcu.c :C putmcu sample

makeycc :make file (for YCbCr)

makergb :make file (for RGB)

jpegarce.exe :For DOS Execution file creating

jpegarc :For Sun4 archive specification file

make.lnk :Section specification

Each library can be re-linked. For details of how to perform link, refer to the manual supplied with the

linker.

33

CHAPTER 1 OVERVIEW

1.3.3 Operating Environment

(1) Applicable CPU

V850 family

(2) Compiler package used

GHS (Green Hills Software, Inc.) compiler

C cross compiler V850 Ver.1.8.7B or later

NEC compiler package

CA850 Ver.1.00 or later

(3) Memory capacity

The amount of ROM/RAM required for each library is as follows. However, the total differs depending

on which sampling ratio is selected.

When using RGB, more memory is required.

ROM size (units: bytes)

Sampling ratio BASE 4:4:4 4:2:2 4:1:1 4:1:1

Processing [H:V = 1:1] [H:V = 2:1] [H:V = 2:2] [H:V = 4:1]

Compression YCbCr 5.5K 0.7K 0.7K 1.0K 1.0K

RGB 0.8K 1.0K 1.5K 1.5K

Expansion YCbCr 4.5K 0.5K 0.5K 0.7K 0.7K

RGB 0.7K 0.7K 1.1K 1.1K

Analysis 1.5K

34

µSAP703000-B03 USER'S MANUAL

RAM size (units: bytes)

Sampling ratio BASE 4:4:4 4:2:2 4:1:1 4:1:1

Processing [H:V = 2:2] [H:V = 2:2] [H:V = 2:2] [H:V = 4:1]

Compression JPEGINFO 128

Work1 256

Work2 3072

MCU 384 512 768 768

Stack 128

Subtotal 3584 384 512 768 768

Expansion JPEGINFO 128

Work1 256

Work2 8192

MCU 384 512 768 768

Stack 128

Subtotal 8704 384 512 768 768

Analysis JPEGINFO 128

Work1 256

Stack 128

Subtotal 512

Example The required memory size is as shown in the table below, provided conditions are as follows:

YCbCr/RGB: YCbCr

Selected processing: Compression/expansion

Sampling ratio: Only “4:1:1 [H:V = 2:2]” for both compression/expansion

ROM size (bytes) RAM size (bytes)

Compression Compression BASE + compression 4:1:1 Compression BASE + compression MCU 4:1:1
= 5.5K + 1.0K = 3584 + 768
= 6.5K = Approx. 5K

Expansion Expansion BASE + expansion 4:1:1 Expansion BASE + expansion MCU 4:1:1
= 4.5K + 0.7K = 8704 + 768
= 5.2K = Approx. 10K

Total Approx. 11.7K Approx. 15K

35

CHAPTER 1 OVERVIEW

1.3.4 Sample Program

The package includes the sources of sample programs for compression, expansion, and analysis. Use

these sources as system examples. For details of the sources, see APPENDIX A .

Figure 1-19 shows an example of mapping the sample programs.

Figure 1-19. Memory Map for Sample Program (with V851)

Peripheral I/O area

Internal RAM image

Stack area

Unused

Data having no initial value
(compression, expansion, analysis)

Data having an initial value
(compression, expansion, analysis)

Unused

VRAM area

Unused

Internal ROM image

Program (compression, expansion, analysis)
Conversion table data

(compression, expansion, analysis)

 Interrupt/exception vector table

0xFFFFFF

0xFFF000

0xFFE400

0xFFE000

0x900000

0x800000

0x300000

0x200000

0x100000

0x008000

0x000160

0x000000

36

µSAP703000-B03 USER'S MANUAL

[MEMO]

37

CHAPTER 2 LIBRARY SPECIFICATIONS

CHAPTER 2 LIBRARY SPECIFICATIONS

2.1 FUNCTION

The library group provided with the AP703000-B03 enables the following three types of processing to be

performed:

(1) Compression

Image data is compressed and a JPEG file is created.

(2) Expansion

The JPEG file is expanded and displayed on the screen.

(3) Analysis

Information, such as screen size, is obtained from the JPEG file.

xxx.jpg Analysis
result

JPEG
analysis

JPEG file Library Analysis buffer

Conversion
to MCU data

JPEG
compression

Library JPEG file VRAM

xxx.jpg

Conversion
to data for
VRAM

JPEG
expansion

xxx.jpg

JPEG file Library VRAM

38

µSAP703000-B03 USER'S MANUAL

The following two types of processing information can be set by the libraries:

<1> Processing information that can be set by parameters

The user can set parameters in an application for the following six items:

• Huffman table

• Quantization table

• Sampling ratio (1)

• Restart marker

• Screen size (horizontal, vertical)

• Coordinates (x, y)

<2> Processing information that can be selected by the libraries

The user can select parameters for the following three items from the libraries.

• Sampling ratio (2)

• VRAM (YCbCr/RGB)

• Huffman expansion procedure

2.1.1 Processing Information for Which Parameters Can Be Set

The items for which the user can set parameters in an application are as follows. For details, see Section

2.5.

(1) Huffman table

Set four Huffman tables, for the DC luminance component, AC luminance component, DC chrominance

component, and AC chrominance component.

Compression Although a default table is provided, a user-defined table can also be set.

Expansion The value in the DHT header is used.

(2) Quantization table

Set two quantization tables for the luminance and chrominance components.

Compression Although a default table is provided, a user-defined table can also be set.

A parameter called Quality is also provided in a library. A defined table processed with

Quality specified is handled as a quantization table.

Expansion The value in the DQT header is used.

39

CHAPTER 2 LIBRARY SPECIFICATIONS

(3) Sampling ratio (1)

Compression Four sampling ratios are supported: 4:4:4 [H:V = 1:1], 4:2:2 [H:V = 2:1], 4:1:1 [H:V = 2:2],

and 4:1:1 [H:V = 4:1].

This information is appended to the JPEG header.

Expansion Four sampling ratios are supported: 4:4:4 [H:V = 1:1], 4:2:2 [H:V = 2:1], 4:1:1 [H:V = 2:2],

and 4:1:1 [H:V = 4:1].

The sampling ratio used is automatically identified and, therefore, can be ignored by the

user.

Table 2-1. Sampling Ratios

Sampling ratio 4:1:1 4:2:2 4:4:4

Color Normal Fairly clear Clear

File size Reference value (x1) About x4/3 About x2

(4) Restart marker

Compression Whether restart markers are used can be selected.

To use restart markers, any value can be specified.

Expansion The value of the DRI header is used.

(5) Screen size (horizontal, vertical)

Compression and expansion The sizes that can be set are as follows:

Table 2-2. Screen Sizes

Sampling ratio Holizontal Vertical

4:4:4 [H:V = 1:1] Multiple of 8 Multiple of 8

4:2:2 [H:V = 2:1] Multiple of 16 Multiple of 8

4:1:1 [H:V = 2:2] Multiple of 16 Multiple of 16

4:1:1 [H:V = 4:1] Multiple of 32 Multiple of 8

(6) Coordinates (x, y)

Compression and expansion Assuming that a VRAM specification for both YCbCr/RGB, image

data can be expanded at any point in VRAM, and also compressed

at any point in VRAM.

40

µSAP703000-B03 USER'S MANUAL

2.1.2 Processing Information That Can Be Selected from a Library

The items that the user can select from the libraries are as follows. For details of making the selection,

see Section 2.9 .

(1) Sampling ratio (2)

Although the sampling ratios described in Sampling ratio (1) are supported by default, libraries are

provided to enable each sampling ratio to be set in detail. For example, if it is known that a sampling ratio

of 4:4:4 is not necessary, selection of that library can be omitted. This function enables a slight reduction

in the code size.

(2) VRAM (YCbCr/RGB)

The VRAM input/output portion (VRAM-MCU (Minimum Coded Unit) data transfer block between buffers)

can be selected from the following:

Default VRAM specifications assumed by the libraries for both YCbCr/RGB.

User-created VRAM specifications other than the above.

For details, see Sections 2.4 and 2.10 .

(3) Huffman expansion

Methods which perform search starting from the point having the highest probability of statistical branch,

as well as those which use a loop, are provided.

41

CHAPTER 2 LIBRARY SPECIFICATIONS

2.2 DETAILS OF PROCESSING

2.2.1 Compression

Image data is compressed and a JPEG file is created.

(1) Function

Function name Description

jpeg_CompressInit JPEG compression library initialization

jpeg_Compress JPEG compression

(2) Status transition

The transition of the compression status is shown below.

Figure 2-1. Compression Status Transition

A Not used

<1> Initialization

 (jpeg_Compresslnit)

<6> Normal termination, initialization

 (jpeg_Compresslnit)
B Initialized

<9> Abnormal termination, initialization

 (jpeg_Compresslnit)
<2> Start

 (jpeg_Compress)

C Compression

<3> Compression ends

 (JPEG_OK)

<4> Buffer save request

 (JPEG_CONT)
<7> Resumption

 (jpeg_Compress)

<5> Detection of error

 (JPEG_ERR)

D Normal
termination E Continue F Abnormal

termination

<8> Forced termination, initialization (jpeg_Compresslnit)

42

µSAP703000-B03 USER'S MANUAL

Table 2-3. Compression Status

Status Explanation

A Not used Status in which library has never been initialized since being started, such that
compression cannot be executed

B Initialized Status in which library has been initialized, allowing compression to be executed

C Compressed Compression execution status

D Normal termination Status in which compression has terminated normally

E Continue Status in which processing has been aborted because the JPEG file storage buffer
has become full during compression and a request to save the contents of the buffer
has been issued. Compression can be continued.

F Abnormal termination Status in which processing has been terminated because an error was detected
during compression. Compression cannot be continued.

Table 2-4. Compression Status Transition

Status transition Explanation Function/return value

<1> A –> B Library initialization Function: jpeg_CompressInit

<2> B –> C Start of compression Function: jpeg_Compress

<3> C –> D Normal termination Return value: JPEG_OK

<4> C –> E Processing aborted and request to save data in buffer is Return value: JPEG_CONT
issued because the JPEG file storage buffer is full.

<5> C –> F Processing terminated because error was detected Return value: JPEG_ERR

<6> D –> B Library initialization after normal termination Function: jpeg_CompressInit

<7> E –> C Compression resumption Function: jpeg_Compress

<8> E –> B Library initialization after forced termination Function: jpeg_CompressInit

<9> F –> B Library initialization after abnormal termination Function: jpeg_CompressInit

Others Transition impossible None

43

CHAPTER 2 LIBRARY SPECIFICATIONS

(3) Processing flow

The following figure shows the flow of application processing using the compression library.

Figure 2-2. Compression Flow

User application Library

Start

<1> Sets compression
parameter

<2> Calls compression
initialization function

Initializes compression library

<3> Calls compression function

<5> Buffer save processing Compression

<4> Checks return value

End

jpeg_Compresslnit

jpeg_Compress

JPEG_CONT

JPEG_OK/
JPEG_ERR

44

µSAP703000-B03 USER'S MANUAL

<1> Setting compression parameter

Define variables having JPEGINFO type structure, as defined by header file “jpeg.h,” and set

members (see Section 2.5.1). When executing new compression, the members must be set first.

When continuing processing, the members need not be set again.

Subsequently, do not set parameters.

Table 2-5. User-Set Members

Member Data to be set

Quality Quantization factor

Sampling Sampling ratio

Restart Restart interval

Width Horizontal size of compressed image

Height Vertical size of compressed image

StartX Start x coordinate of compressed image

StartY Start y coordinate of compressed image

VRAM_Bptr First address of VRAM

VRAM_W_Pixel Number of pixels in horizontal direction

VRAM_H_Pixel Number of pixels in vertical direction

VRAM_Line_Byte Number of bytes equivalent to VRAM address difference of 1 pixel in vertical direction

VRAM_Pixel_Byte Number of bytes equivalent to VRAM address difference of 1 pixel in horizontal direction

VRAM_Gap1_Byte Number of bytes equivalent to VRAM address difference of Y/Cb or R/G component of
same pixel

VRAM_Gap2_Byte Number of bytes equivalent to VRAM address difference of Y/Cr or R/B component of
same pixel

JPEG_Buff_Bptr First address of JPEG file storage buffer

JPEG_Buff_Eptr End address of JPEG file storage buffer

MCU_Buff_Bptr First address of MCU buffer

DQT_Y_Bptr First address of quantization table for luminance component

DQT_C_Bptr First address of quantization table for chrominance component

DHT_DC_Y_Bptr First address of Huffman table for DC luminance component

DHT_DC_C_Bptr First address of Huffman table for DC chrominance component

DHT_AC_Y_Bptr First address of Huffman table for AC luminance component

DHT_AC_C_Bptr First address of Huffman table for AC chrominance component

APP_Info_Bptr When APPn marker is supported: first address of APPINFO structure variable
When APPn marker is not supported: 0

Work1_Bptr First address of buffer for library work area

Work2_Bptr First address of buffer for library work area

45

CHAPTER 2 LIBRARY SPECIFICATIONS

<2> Calling compression initialization function [jpeg_CompressInit]

Call the compression initialization function by using the pointer to the structure set in <1>, above,

as an argument.

This function initializes the data required for compression and sets the compression library to an

executable status. Call this function first when executing new compression. When continuing

compression, this function need not be called.

<3> Calling compression function [jpeg_Compress]

Call the compression function by using the pointer to the structure set in <2>, above, as an argument.

<4> Checking return value [JPEG_OK/JPEG_ERR/JPEG_CONT]

The return value of jpeg_Compress is as follows:

Table 2-6. Return Value of jpeg_Compress

Return value Meaning Explanation

JPEG_OK Normal termination Compression terminated normally.
Start from <1> again to execute new compression.

JPEG_ERR Abnormal termination Processing aborted because error was detected.
Error details are stored in member “ErrorState” of JPEGINFO
structure.
Start from <1> again to execute new compression.

JPEG_CONT Continue Processing has been stopped because specified JPEG file storage
buffer is full.
Start from <1> again to forcibly terminate processing and execute new
compression.
To continue, execute <5> buffer save processing and start from <3>
again.

Table 2-7. Compression Result Information Members

Member Data to be stored

ErrorState Error status

FileSize JPEG file size

<5> Buffer save processing

Save the contents of the JPEG file storage buffer.

46

µSAP703000-B03 USER'S MANUAL

2.2.2 Expansion

Expansion involves expanding the JPEG file and displaying it on the screen.

(1) Function

Function name Description

jpeg_DecompressInit JPEG expansion library initialization

jpeg_Decompress JPEG expansion

(2) Status transition

The status transition during expansion is illustrated below.

Figure 2-3. Expansion Status Transition

A Not used

<1> Initialization
 (jpeg_Decompresslnit)

<6> Normal termination, initialization

 (jpeg_Decompresslnit)
B Initialized

<9> Abnormal termination, initialization

(jpeg_Decompresslnit)
<2> Start
 (jpeg_Decompress)

C Expansion

<3> Expansion terminated

 (JPEG_OK)

<4> Buffer update request

 (JPEG_CONT) <7> Resumption
 (jpeg_Decompress)

<5> Detection of error
 (JPEG_ERR)

D Normal
termination E Continue F Abnormal

termination

<8> Forced termination, initialization (jpeg_Decompresslnit)

47

CHAPTER 2 LIBRARY SPECIFICATIONS

Table 2-8. Expansion Status

Status Explanation

A Not used Status in which library has never been initialized since start and expansion cannot
be executed

B Initialized Status in which library has been initialized and expansion can be executed

C Expansion Expansion execution status

D Normal termination Status in which expansion has been terminated normally

E Continue Status in which expansion in buffer to which JPEG file has been stored has been
terminated, but processing has been aborted because JPEG file end code cannot
be found, causing buffer update request to be issued. Expansion can be
continued.

F Abnormal termination Status in which processing has been terminated because error was detected during
expansion. Expansion cannot be continued.

Table 2-9. Expansion Status Transition

Status transition Explanation Function/return value

<1> A –> B Library initialization Function: jpeg_DecompressInit

<2> B –> C Start of expansion Function: jpeg_Decompress

<3> C –> D Normal termination Return value: JPEG_OK

<4> C –> E Data in JPEG file storage buffer has been expanded but Return value: JPEG_CONT
JPEG file end code cannot be found.
Therefore, processing has been aborted and updating of
data in the buffer has been requested.

<5> C –> F Processing terminated because error was detected Return value: JPEG_ERR

<6> D –> B Library initialization after normal termination Function: jpeg_DecompressInit

<7> E –> C Resumption of expansion Function: jpeg_Decompress

<8> E –> B Library initialization after forced termination Function: jpeg_DecompressInit

<9> F –> B Library initialization after abnormal termination Function: jpeg_DecompressInit

Others Transition impossible None

48

µSAP703000-B03 USER'S MANUAL

(3) Processing flow

The following figure illustrates the flow of processing of an application that uses the expansion library.

Figure 2-4. Expansion Flow

User application Library

Start

<1> Sets expansion
parameter

<2> Calls expansion
initialization function

Initializes expansion library

<3> Calls loading

Expansion

<5> Checks return value

End

jpeg_Decompresslnit

jpeg_Decompress

JPEG_CONT

JPEG_OK/
JPEG_ERR

<4> Calls expansion

processing

function

49

CHAPTER 2 LIBRARY SPECIFICATIONS

<1> Setting expansion parameters

Define the variable of the JPEGINFO structure defined by header file “jpeg.h” and set members (see

Section 2.5.1). The members must be set when executing new expansion. When continuing

expansion, the members need not be set again.

Subsequently, do not set parameters.

Table 2-10. User-Set Members

Member Data to be set

StartX Start x coordinate of expanded image

StartY Start y coordinate of expanded image

VRAM_Bptr First address in VRAM

VRAM_W_Pixel Number of pixels in horizontal direction

VRAM_H_Pixel Number of pixels in vertical direction

VRAM_Line_Byte Number of bytes equivalent to VRAM address differing by one pixel in vertical direction

VRAM_Pixel_Byte Number of bytes equivalent to VRAM address differing by one pixel in horizontal
direction

VRAM_Gap1_Byte Number of bytes equivalent to VRAM address difference of Y/Cb or R/G component for
same pixel

VRAM_Gap2_Byte Number of bytes equivalent to VRAM address difference of Y/Cr or R/B component for
same pixel

JPEG_Buff_Bptr First address of JPEG file storage buffer

JPEG_Buff_Eptr End address of JPEG file storage buffer

MCU_Buff_Bptr First address of MCU buffer

APP_Info_Bptr 0

Work1_Bptr First address of library work area buffer

Work2_Bptr First address of library work area buffer

<2> Calling expansion initialization function [jpeg_DecompressInit]

Call the expansion initialization function by using the pointer to the structure defined in <1>, above,

as an argument.

This function initializes the data required for expansion and sets the expansion library to executable

status. Call this function first when executing new expansion. When continuing expansion, this

function need not be called.

<3> Buffer loading (updating) processing

Load data into the JPEG file storage buffer and update it.

<4> Calling expansion function [jpeg_Decompress]

Call the expansion function by using the pointer to the structure used in <2> as an argument.

50

µSAP703000-B03 USER'S MANUAL

<5> Checking return value [JPEG_OK/JPEG_ERR/JPEG_CONT]

The return value of jpeg_Decompress is as follows:

Table 2-11. jpeg_Decompress Return Values

Return value Meaning Explanation

JPEG_OK Normal termination Expansion has terminated normally.
Start from <1> again to execute new expansion.

JPEG_ERR Abnormal termination Processing terminated because an error occurred.
Details of the error are stored in the member of JPEGINFO structure
“ErrorState.”
Start from <1> again to execute new expansion.

JPEG_CONT Continue Processing terminated because JPEG file end code cannot be found
after expansion in the specified JPEG file storage buffer.
To forcibly terminate and execute new expansion, start from <1> again.
To continue, execute <3> buffer update processing, then start from <4>
again.

Table 2-12. Expansion Result Information Members

Member Data to be stored

ErrorState Error status

FileSize JPEG file size

Sampling Sampling ratio

Restart Restart interval

Width Horizontal size of image

Height Vertical size of image

51

CHAPTER 2 LIBRARY SPECIFICATIONS

2.2.3 Analysis

Analysis analyzes the JPEG file and obtains the following data:

<1> Sampling ratio

<2> Restart interval

<3> Size of image (horizontal/vertical)

<4> JPEG file size

<5> Application data (APP data)

(1) Function

Function name Description

jpeg_AnalysisInit JPEG analysis library initialization

jpeg_Analysis JPEG analysis

(2) Status transition

The following figure illustrates the status transition during analysis.

Figure 2-5. Analysis Status Transition

A Not used

<1> Initialization

 (jpeg_Analysislnit)

<6> Normal termination, initialization

 (jpeg_Analysislnit)
B Initialized

<9> Abnormal termination, initialization

 (jpeg_Analysislnit)
<2> Start
 (jpeg_Analysis)

C Analysis

<3> Analysis terminated

 (JPEG_OK)

<4> Buffer updating
 request

 (JPEG_CONT) <7> Resumption

 (jpeg_Analysis)

<5> Detection of error

 (JPEG_ERR)

D Normal
termination E Continue F Abnormal

termination

<8> Forced termination, initialization (jpeg_Analysislnit)

52

µSAP703000-B03 USER'S MANUAL

Table 2-13. Analysis Status

Status Explanation

A Not used Status in which library has never been initialized since start and analysis cannot be
executed

B Initialized Status in which library has been initialized and analysis can be executed

C Expansion Analysis execution status

D Normal termination Status in which analysis has been terminated normally

E Continue Status in which analysis in buffer to which JPEG file has been stored has been
terminated, but processing has been aborted because JPEG file end code cannot
be found, causing buffer update request to be issued. Analysis can be continued.

F Abnormal termination Status in which processing has been terminated because error was detected during
analysis. Analysis cannot be continued.

Table 2-14. Analysis Status Transition

Status transition Explanation Function/return value

<1> A –> B Library initialization Function: jpeg_AnalysisInit

<2> B –> C Start of analysis Function: jpeg_Analysis

<3> C –> D Normal termination Return value: JPEG_OK

<4> C –> E Data in JPEG file storage buffer has been analyzed but Return value: JPEG_CONT
end code of JPEG file cannot be found. Therefore,
processing is aborted and updating of the data in the buffer
has been requested.

<5> C –> F Processing terminated because error was detected Return value: JPEG_ERR

<6> D –> B Library initialization after normal termination Function: jpeg_AnalysisInit

<7> E –> C Resumption of analysis Function: jpeg_Analysis

<8> E –> B Library initialization after forced termination Function: jpeg_AnalysisInit

<9> F –> B Library initialization after abnormal termination Function: jpeg_AnalysisInit

Others Transition impossible None

53

CHAPTER 2 LIBRARY SPECIFICATIONS

(3) Processing flow

The following figure illustrates the flow of processing of an application that uses the analysis

library.

Figure 2-6. Analysis Flow

User application Library

Start

<1> Sets analysis
parameter

<2> Calls analysis
initialization function

Initializes analysis library

<3> Buffer loading

Analysis

<5> Checks return value

End

jpeg_Analysislnit

jpeg_Analysis

JPEG_CONT

JPEG_OK/
JPEG_ERR

<4> Calls analysis function

processing

54

µSAP703000-B03 USER'S MANUAL

<1> Setting of analysis parameters

Define the variable of the JPEGINFO structure defined by header file “jpeg.h” and set members (see

Section 2.5.1). The members must be set to execute new analysis. When continuing analysis, the

members need not be set again.

Subsequently, do not set parameters.

Table 2-15. User-Set Members

Member Data to be set

JPEG_Buff_Bptr First address of JPEG file storage buffer

JPEG_Buff_Eptr End address of JPEG file storage buffer

APP_lnfo_Bptr When APPn marker is supported: first address of APPINFO structure variable
When APPn marker is not supported: 0

Work1_Bptr First address of library work area buffer

<2> Calling analysis initialization function [jpeg_AnalysisInit]

Call the analysis initialization function by using the pointer to the structure defined in <1>, above,

as an argument.

This function initializes the data required for analysis and sets the analysis library to executable

status. Call this function first when executing new analysis. When continuing analysis, this function

need not be called.

<3> Buffer loading (updating) processing

Load data into the JPEG file storage buffer and update it.

<4> Calling analysis function [jpeg_Analysis]

Call the analysis function by using the pointer to the structure used in <2> as an argument.

55

CHAPTER 2 LIBRARY SPECIFICATIONS

<5> Checking return value [JPEG_OK/JPEG_ERR/JPEG_CONT]

The return value of jpeg_Analysis is as follows:

Table 2-16. Return Value of jpeg_Analysis

Return value Meaning Explanation

JPEG_OK Normal termination Analysis has been terminated normally.
Start from <1> again to execute new analysis.

JPEG_ERR Abnormal termination Processing has been terminated because an error occurred.
Details of the error are stored in JPEGINFO structure member
“ErrorState.”
Start from <1> again to execute new analysis.

JPEG_CONT Continue Processing has been terminated because the JPEG file end code
cannot be found after analysis in a specified JPEG file storage buffer
was completed.
To forcibly terminate and execute new analysis, start from <1> again.
To continue, execute <3> buffer updating processing, then start from
<4> again.

Table 2-17. Analysis Result Information Members

Member Data to be stored

ErrorState Error status

Sampling Sampling ratio

Restart Restart interval

Width Horizontal size of image

Height Vertical size of image

FileSize JPEG file size

APP_Info_Bptr The address and data size of an APPn marker are stored to a member of a specified
APPINFO structure variable only when the address of the APPINFO structure variable is set
in this member when initial parameters are set.

56

µSAP703000-B03 USER'S MANUAL

2.3 APPn Marker

The processing sequences when the APPn marker is supported are shown below.

(1) Compression

The flow of the processing of an application that uses the compression library when the APPn marker is

supported is shown below.

Figure 2-7. Compression When APPn Marker Is Used

(2) Expansion

The flow of the processing of an application that uses the expansion library when the APPn marker is

supported is shown below.

Figure 2-8. Expansion When APPn Marker Is Used

Start

<1> Create APP data

<2> Compression

End

<1> Creating APP data

Define the variable of the APPINFO structure defined by header file

"jpeg.h" by using the APP data and set members.

For details, see Section 2.5.2.

<2> Compression

For details, see Section 2.2.1.

Start

<1> Analysis supporting
APP

<2> Expansion

<1> Analysis supporting APP

For details, see Section 2.2.3.

<2> Expansion

For details, see Section 2.2.2.

<3> APP processing

Perform processing supporting the APPn marker based

on the data stored in the APPINFO structure variable in <1>, above.<3> APP processing

End

57

CHAPTER 2 LIBRARY SPECIFICATIONS

(3) Analysis

For details of how to use the analysis library when the APPn marker is supported, see Section 2.2.3 .

2.4 DATA CONVERSION/TRANSFER BETWEEN VRAM-MCU BUFFERS

The following figure outlines the processing performed for the library.

Figure 2-9. Data Conversion/Transfer between VRAM-MCU Buffers

With JPEG compression, the MCU is the basic unit of processing (for details of the MCU, see Section 2.4.2).

Compression involves conversion from VRAM data to MCU, while expansion involves conversion from MCU

to VRAM data.

The library provides functions for converting or transferring data between the VRAM-MCU buffers in MCU

units by default.

The user can create his or her own functions by using these conversion routines (such as when a

monochrome image is to be displayed). For details, see Section 2.10 .

Conversion
to MCU data

JPEG
compression

Library JPEG file VRAM

xxx.jpg

(a) Compression

Conversion
to VRAM
data

JPEG
expansion

xxx.jpg

JPEG file Library VRAM

(b) Expansion

58

µSAP703000-B03 USER'S MANUAL

2.4.1 VRAM Configuration

The VRAM configuration assumed by the library (default conversion routine) is shown below.

• Both Y/Cb/Cr and R/G/B are continuous

• Can be accessed in byte units

• 24-bit full color

Figure 2-10. VRAM Image

The members of the JPEGINFO structure shown in Table 2-18 must be set. For details of the JPEGINFO

structure, see Section 2.5.1 .

Y Cb Cr Y Cb · · ·

Y Cb Cr Y Cb · · ·

Y Cb Cr Y Cb · · ·

Y Cb Cr Y Cb · · ·

· · · · ·
· · · · ·
· · · · ·

Remarks 1. Data is input/output in block (MCU) units in the horizontal direction.

2. : 1 pixel

(a) YCbCr

R G B R G · · ·

R G B R G · · ·

R G B R G · · ·

R G B R G · · ·

· · · · ·
· · · · ·
· · · · ·

(b) RGB

59

CHAPTER 2 LIBRARY SPECIFICATIONS

Table 2-18. VRAM Setting Members

Member Explanation

VRAM_W_Pixel Number of pixels in horizontal direction of assumed image

VRAM_H_Pixel Number of pixels in vertical direction of assumed image

VRAM_Line_Byte Number of bytes equivalent to VRAM address difference of one pixel in vertical direction

VRAM_Pixel_Byte Number of bytes equivalent to VRAM address difference of one pixel in horizontal
direction

VRAM_Gap1_Byte YCbCr:

Number of bytes equivalent to VRAM address difference of Y and Cb components of
same pixel

RGB:

Number of bytes equivalent to VRAM address difference of R and G components of
same pixel

VRAM_Gap2_Byte YCbCr:

Number of bytes equivalent to VRAM address difference of Y and Cr components of
same pixel

RGB:

Number of bytes equivalent to VRAM address difference of R and B components of
same pixel

Setting Example

[VRAM specification] [Setting member of JPEGINFO structure variable]

Number of horizontal pixels of assumed image : 320 x.VRAM_W_Pixel = 320 ;

Number of vertical pixels of assumed image : 240 x.VRAM_H_Pixel = 240 ;

Number of horizontal bytes of VRAM : 0x3C0 x.VRAM_Line_Byte = 0x3C0 ;

Mode : YCbCr x.VRAM_Pixel_Byte = 3 ;

1 pixel : 3 bytes x.VRAM_Gap1_Byte = 1 ;

Y = Cb = Cr = 1 byte/continuous x.VRAM_Gap2_Byte = 2 ;

JPEGINFO structure variable : x

–>

60

µSAP703000-B03 USER'S MANUAL

2.4.2 MCU Buffer Structure

When using the JPEG library (compression/expansion), the user must prepare an MCU buffer to store data.

The MCU buffer stores data sampled in MCU units when compression is executed. DCT processing is

performed on the stored data. If the VRAM is of RGB type, data is converted to YCbCr type and then stored.

When expansion is executed, the result of reverse DCT processing is output in MCU units.

The configuration of the MCU buffer is as follows:

Table 2-19. MCU Buffer Configuration

Declaration Size (bytes) Sampling ratio

short name [3] [64] 384 Only 4:4:4 supported

short name [4] [64] 512 Up to 4:2:2 supported

short name [6] [64] 768 Up to 4:1:1 supported

Configure the buffer in the following manner:

(1) Define the entity in the application and pass the pointer to the member of the JPEGINFO structure variable.

For details of the JPEGINFO structure, see Section 2.5 .

(2) The data is 8 bits long. It must be declared as being of short type (16 bits), however, because the data

is used internally as a work buffer.

(3) Specify any name for name.

(4) A buffer must be prepared for each JPEGINFO structure variable.

Store each MCU into the buffer as shown below.

Figure 2-11. Storing MCU into Buffer

Y component
1st block

Y component
2nd block

 Y component
3rd block

Y component
4th block

Cb component
block

Cr component
block

(a) 4:1:1

Y component
1st block

Y component
2nd block

Cb component
block

Cr component
block

(b) 4:2:2

Y component
block

Cb component
block

Cr component
block

(c) 4:4:4

61

CHAPTER 2 LIBRARY SPECIFICATIONS

Define the following buffer.

Table 2-20. Buffer Definition

Processing Required size

Compression Buffer supporting compression sampling ratio.

Example When executing compression at a sampling ratio of 4:2:2, regardless of the
supported library, define name [4] [64] as the buffer.

Expansion, analysis Define buffer with maximum size of supported library.

Example If library supports sampling ratios of 4:4:4 and 4:2:2, define name [4] [64] as
buffer.

The contents of the buffer are shown below.

62

µSAP703000-B03 USER'S MANUAL

Figure 2-12. Contents of MCU Buffer

0 1 ··· 7

8 9

(a) 4:4:4

name [0] []

Y

(b) 4:2:2

0 1 ··· 7

8 9

name [1] []

Cb

0 1 ··· 7

8 9

name [2] []

Cr

0 1 ··· 7

8 9

name [0] []

Y0

0 1 ··· 7

8 9

name [2] []

Cb

0 1 ··· 7

8 9

name [3] []

Cr

(c) 4:1:1 [H:V = 2:2]

0 1 ··· 7

8 9

name [0] []

Y0

0 1 ··· 7

8 9

name [4] []

Cb

0 1 ··· 7

8 9

name [5] []

Cr

0 1 ··· 7

8 9

name [0] []

Y0

0 1 ··· 7

8 9

name [4] []

Cb

0 1 ··· 7

8 9

name [5] []

Cr

name [1] []

Y1

name [1] []

Y1

name [2] []

Y2

name [3] []

Y3

name [1] []

Y1

name [2] []

Y2

name [3] []

Y3

(d) 4:1:1 [H:V = 4:1]

Remark 0, 1, ... : value of second element of matrix for MCU buffer

63

CHAPTER 2 LIBRARY SPECIFICATIONS

An example where the MCU buffer is defined as buff [6] [64] at a sampling ratio of 4:1:1 is shown below.

Table 2-21. Storing Data of 1 MCU (at 4:1:1)

Matrix Data stored

buff [0] [] Y component (upper left, 8 x 8 pixels)

buff [1] [] Y component (upper right, 8 x 8 pixels)

buff [2] [] Y component (upper left, 8 x 8 pixels)

buff [3] [] Y component (lower right, 8 x 8 pixels)

buff [4] [] Cb component (16 x 16 pixels: However, average of 2 x 2 pixels for one element)

buff [5] [] Cr component (16 x 16 pixels: However, average of 2 x 2 pixels for one element)

Figure 2-13. Storing Data of Upper Left, 2 x 2 Pixels

<1> <2>

<3> <4>

buff [0] []

Y0

<5>

buff [4] []

Cb

<6>

buff [5] []

Cr

buff [1] []

Y1

buff [2] []

Y2

buff [3] []

Y3

 Component Storage position

Y component <1> buff [0] [0], <2> buff [0] [1], <3> buff [0] [8], <4> buff [0] [9]

Cb component <5> buff [4] [0]

Cr component <6> buff [5] [0]

64

µSAP703000-B03 USER'S MANUAL

2.5 DETAILS OF DATA TYPE

There are two data types, as shown in Table 2-22. Declare all the variables of these structures, and the

variables that pass an address to a member, as external variables.

Table 2-22. Data Type

Classification Data type name Data type Description

Common JPEGINFO Structure Compression, expansion, analysis parameter setting

APPINFO Structure APPn marker information saving

2.5.1 JPEGINFO Structure

The member configuration of the JPEGINFO structure is shown in the table below.

This same structure is used for JPEG compression, expansion, and analysis processing.

65

CHAPTER 2 LIBRARY SPECIFICATIONS

Table 2-23. Members of JPEGINFO Structure

Member Type Bytes Explanation

ErrorState long 4 Error status

FileSize long 4 JPEG file size

Quality char 1 Quantization factor

Sampling char 1 Sampling ratio

Restart ushort 2 Restart interval

Width ushort 2 Horizontal size of image

Height ushort 2 Vertical size of image

StartX ushort 2 Processing start x coordinate (for assumed image)

StartY ushort 2 Processing start y coordinate (for assumed image)

CurrentX ushort 2 Current x coordinate (for assumed image)

CurrentY ushort 2 Current y coordinate (for assumed image)

VRAM_Bptr uchar* 4 VRAM first address

VRAM_W_Pixel ushort 2 Number of pixels in horizontal direction of assumed image

VRAM_H_Pixel ushort 2 Number of pixels in vertical direction of assumed image

VRAM_Line_Byte short 2 Number of bytes equivalent to VRAM address difference of one pixel in
vertical direction

VRAM_Pixel_Byte short 2 Number of bytes equivalent to VRAM address difference of one pixel in
horizontal direction

VRAM_Gap1_Byte short 2 Number of bytes equivalent to VRAM address difference of YCb or RG

VRAM_Gap2_Byte short 2 Number of bytes equivalent to VRAM address difference of YCr or RB

JPEG_Buff_Bptr uchar* 4 First address of JPEG file storage buffer

JPEG_Buff_Eptr uchar* 4 End address of JPEG file storage buffer

MCU_Buff_Bptr short* 4 First address of MCU buffer

RGB_Buff_Bptr short* 4 First address of RGB buffer

DQT_Y_Bptr char* 4 First address of quantization table (for luminance component)

DQT_C_Bptr char* 4 First address of quantization table (for chrominance component)

DHT_DC_Y_Bptr char* 4 First address of Huffman table (for DC luminance component)

DHT_DC_C_Bptr char* 4 First address of Huffman table (for DC chrominance component)

DHT_AC_Y_Bptr char* 4 First address of Huffman table (for AC luminance component)

DHT_AC_C_Bptr char* 4 First address of Huffman table (for AC chrominance component)

APP_Info_Bptr APPINFO* 4 First address of APPINFO structure variable

Work1_Bptr long* 4 First address of library work area 1

Work2_Bptr long* 4 First address of library work area 2

Work3 char 36 Library work area 3

Remark uchar: unsigned char, ushort: unsigned short

66

µSAP703000-B03 USER'S MANUAL

Table 2-24. Setting of JPEGINFO Structure Member

Member Compression Expansion Analysis

User setting IN/OUT User setting IN/OUT User setting IN/OUT

ErrorState x OUT x OUT x OUT

FileSize x OUT x OUT x OUT

Quality o IN x Reserved field x Reserved field

Sampling o IN x OUT x OUT

Restart o IN x OUT x OUT

Width o IN x OUT x OUT

Height o IN x OUT x OUT

StartX o IN o IN x Reserved field

StartY o IN o IN x Reserved field

CurrentX x Reserved field x Reserved field x Reserved field

CurrentY x Reserved field x Reserved field x Reserved field

VRAM_Bptr o IN o IN x Reserved field

VRAM_W_Pixel o IN o IN x Reserved field

VRAM_H_Pixel o IN o IN x Reserved field

VRAM_Line_Byte o IN o IN x Reserved field

VRAM_Pixel_Byte o IN o IN x Reserved field

VRAM_Gap1_Byte o IN o IN x Reserved field

VRAM_Gap2_Byte o IN o IN x Reserved field

JPEG_Buff_Bptr o IN o IN o IN

JPEG_Buff_Eptr o IN o IN o IN

MCU_Buff_Bptr o IN o IN x Reserved field

RGB_Buff_Bptr x Reserved field x Reserved field x Reserved field

DQT_Y_Bptr o IN x Reserved field x Reserved field

DQT_C_Bptr o IN x Reserved field x Reserved field

DHT_DC_Y_Bptr o IN x Reserved field x Reserved field

DHT_DC_C_Bptr o IN x Reserved field x Reserved field

DHT_AC_Y_Bptr o IN x Reserved field x Reserved field

DHT_AC_C_Bptr o IN x Reserved field x Reserved field

APP_Info_Bptr o IN o IN o IN

Work1_Bptr o IN o IN o IN

Work2_Bptr o IN o IN x Reserved field

Work3 x Reserved field x Reserved field x Reserved field

67

CHAPTER 2 LIBRARY SPECIFICATIONS

Remark o: Must be set by the user.

x: Must not be set by the user.

Because these members are used by the library, the user must never attempt to set them.

IN: Must be set by the user.

OUT: Library sets value (return value).

Reserved field: Reserved for library

[IN] indicates <1> in the figure below, while [OUT] indicates <4> because of the specifications

of the library.

User application

Referencing OUT is meaningless in <2> because

the initialization function does not return a value

(see Section 2.7).

IN must not be set by the user in <3> because

setting by the user is prohibited (see Section 2.2).

jpeg_Compresslnit

jpeg_Decompresslnit

jpeg_Analysislnit

jpeg_Compress

jpeg_Decompress

jpeg_Analysis

<1>

<2>

<3>

<4>

68

µSAP703000-B03 USER'S MANUAL

Next, the details of each member are described.

(1) ErrorState

Classification Explanation

Compression Stores error status.

Expansion

Analysis

For details of the error status, see Section 2.7 .

(2) FileSize

Classification Explanation

Compression Stores size of JPEG file.

Expansion

Analysis

(3) Quality

Classification Value Explanation

Compression 0 to 100 Set quantization factor.

Expansion – Reserved field

Analysis

The quantization factor is used to perform processing on a defined quantization table. By setting this factor

appropriately, the quality of the image can be adjusted.

Quantization factor 0 ··· 75 ··· 100

Status of image Mosaic ··· Normal ··· Clear

Compression rate High ··· Recommended value ··· Low

The lower the value of the factor, the smaller the size of the JPEG file created, but the more pronounced

the “mosaic” effect. The higher the value, the finer the image, but the larger the size of the JPEG file

created.

If the quantization factor is 75, the same table is created both before and after processing. It is therefore

recommended that the coefficient be set to 75.

69

CHAPTER 2 LIBRARY SPECIFICATIONS

(4) Sampling

Classification Value Explanation

Compression SAMPLE11 Set sampling ratio.
SAMPLE21 Four sampling ratios are supported. This information is appended to the
SAMPLE22 JPEG header.
SAMPLE41

Expansion SAMPLE11 Sampling ratio is automatically stored from JPEG file. Four sampling ratios
SAMPLE21 are supported. Because the expansion library automatically identifies the
SAMPLE22 sampling ratio being used, the user does not have to consider the sampling
SAMPLE41 ratio.

Analysis Higher 4 bits: Sampling ratio is automatically stored from JPEG file.
[0x1 to 0x4]
Lower 4 bits:
[0x1 to 0x4]

SAMPLEn is defined by header file “jpeg.h” for compression/expansion.

Sampling SAMPLE22 SAMPLE21 SAMPLE11

(sampling ratio) (4:1:1[H:V = 2:2]) (4:2:2[H:V = 2:1]) (4:4:4[H:V = 1:1])

Color Normal Fairly clear Clear

File size Reference value (x1) About x4/3 About x2

(5) Restart

Classification Value Explanation

Compression 0 to 65535 Set value of restart interval.

Value Restart interval Explanation

0 None DRI header/RSTn marker is not inserted.

Other than 0 Provided Inserts RSTn marker for each specified MCU.

Expansion 0 to 65535 Value of restart interval is automatically stored from JPEG file.

Analysis Value Restart interval Explanation

0 None DRI header/RSTn marker is not included.

Other than 0 Provided RSTn marker is inserted for each specified
MCU.

70

µSAP703000-B03 USER'S MANUAL

(6) Width, Height

Classification Value Explanation

Compression 0 to 65535 Set horizontal/vertical size of image to be compressed.
(conditional)

Expansion 0 to 65535 Horizontal/vertical size of compressed image is automatically stored from
(conditional) JPEG file.

Analysis 0 to 65535

The “value” is limited as follows, depending on the sampling ratio, for compression/expansion.

Sampling ratio Width (horizontal value) Height (vertical value)

4:4:4 [H:V = 1:1] Multiple of 8 Multiple of 8

4:2:2 [H:V = 2:2] Multiple of 16 Multiple of 8

4:1:1 [H:V = 2:2] Multiple of 16 Multiple of 16

4:1:1 [H:V = 4:1] Multiple of 32 Multiple of 8

(7) StartX, StartY

Classification Value Explanation

Compression 0 to 32767 Set start coordinates (x, y) of image to be compressed.

Expansion 0 to 32767 Set start coordinates (x, y) of image to be expanded.

Analysis – Reserved field

(8) CurrentX, CurrentY

Classification Explanation

Compression Current coordinates are stored.

Expansion

Analysis Reserved field

User reference is limited as follows depending on how the library is used.

Applicable library Usage User reference

jpeg_getMCU_xx Default Prohibited

jpeg_putMCU_xx User-created Reference is permitted in each function only.

For details of “jpeg_getMCU_xx” and “jpeg_putMCU_xx,” see Sections 2.4 and 2.10 .

71

CHAPTER 2 LIBRARY SPECIFICATIONS

(9) VRAM_Bptr

Classification Explanation

Compression Specify first address of VRAM.

Expansion

Analysis Reserved field

(10) VRAM_W_Pixel, VRAM_H_Pixel, VRAM_Line_Byte, VRAM_Pixel_Byte, VRAM_Gap1_Byte,

VRAM_Gap2_Byte

Classification Explanation

Compression Set specifications of image to be assumed.

Expansion

Analysis Reserved field

The contents to be set are as follows:

Member Explanation

VRAM_W_Pixel Number of pixels in horizontal direction

VRAM_H_Pixel Number of pixels in vertical direction

VRAM_Line_Byte Number of bytes equivalent to VRAM address difference of one pixel in
vertical direction

VRAM_Pixel_Byte Number of bytes equivalent to VRAM address difference of one pixel in
horizontal direction

VRAM_Gap1_Byte YCbCr:
Number of bytes equivalent to VRAM address difference of Y and Cb
components of same pixel
RGB:
Number of bytes equivalent to VRAM address difference of R and G
components of same pixel

VRAM_Gap2_Byte YCbCr:
Number of bytes equivalent to VRAM address difference of Y and Cr
components of same pixel
RGB:
Number of bytes equivalent to VRAM address difference of R and G
components of same pixel

(11) JPEG_Buff_Bptr

Classification Explanation

Compression Specify first address of JPEG file storage buffer.

Expansion

Analysis

72

µSAP703000-B03 USER'S MANUAL

(12) JPEG_Buff_Eptr

Classification Explanation

Compression Set end address of buffer specified by member “JPEG_Buff_Bptr.”

Expansion

Analysis

(13) MCU_Buff_Bptr

Classification Explanation

Compression Set first address of MCU buffer.

Expansion

Analysis Reserved field

(14) RGB_Buff_Bptr

Classification Explanation

Compression Reserved field

Expansion

Analysis

(15) DQT_Y_Bptr, DQT_C_Bptr

Classification Explanation

Compression Specify first address of quantization table.

Expansion Reserved field

Analysis

The specified quantization table is as follows:

Member Explanation

DQT_Y_Bptr For luminance component

DQT_C_Bptr For chrominance component

End address = first address + buffer size.

For details, see Section 2.4.2 .

73

CHAPTER 2 LIBRARY SPECIFICATIONS

(16) DHT_DC_Y_Bptr, DHT_DC_C_Bptr, DHT_AC_Y_Bptr, DHT_AC_C_Bptr

Classification Explanation

Compression Specify first address of Huffman table.

Expansion Reserved field

Analysis

The specified quantization table is as follows:

Member Explanation

DHT_DC_Y_Bptr For DC luminance component

DHT_DC_C_Bptr For DC chrominance component

DHT_AC_Y_Bptr For AC luminance component

DHT_AC_C_Bptr For AC chrominance component

(17) APP_Info_Bptr

Classification Explanation

Compression Set as follows:

APPn marker Setting

Supported Specify first address of APPINFO structure variable.

Not supported Set 0.

Expansion Set 0.

Analysis Set as follows:

APPn marker Setting

Supported Specify first address of APPINFO structure variable.

Not supported Set 0.

For the details of the APPINFO structure, see Section 2.5.2 .

74

µSAP703000-B03 USER'S MANUAL

(18) Work1_Bptr

Classification Explanation

Compression Declare the buffer as being of “long type: 256 bytes” for the library work area,

Expansion

Analysis

Locating this buffer in internal RAM will result in an increase in the processing speed of the library.

(19) Work2_Bptr

Classification Explanation

Compression Declare a buffer of the following size as being of “long type” for the library
work area, and specify the first address of the buffer.

Expansion Compression Expansion

Size (bytes) 3072 8192

Analysis Reserved field

(20) Work3

Classification Explanation

Compression Fixed work area of library.

Expansion

Analysis

and specify the first address of the buffer.

75

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.2 Structure of APPINFO Structure

The member configuration of the APPINFO structure is shown below.

This structure is commonly used for JPEG compression/analysis, provided the APPn marker is supported.

Table 2-25. Members of APPINFO Structure

Member Type Bytes Explanation

APP00_Buff_Bptr uchar* 4 First address of APP0 data

· · · ·
· · · ·
· · · ·

APP15_Buff_Bptr uchar* 4 First address of APP15 data

APP00_BuffSize ushort 2 Length of APP0 data

· · · ·
· · · ·
· · · ·

APP15_BuffSize ushort 2 Length of APP15 data

Each of these members is described in detail below.

(1) APPn_Buff_Bptr

Compression Analysis

User setting Required Prohibited

IN/OUT IN OUT

Compression Analysis

Used [APPn] Note 1 Note 3

Not used [APPn] Note 2 Note 4

Notes 1. Declare a data storage buffer, store data into the buffer, and specify the first address of the

buffer in the corresponding member.

2. Specify 0 for the corresponding member.

3. The address of the APPn marker (absolute address of the JPEG file) is stored in the

corresponding member.

4. 0 is stored in the corresponding member.

76

µSAP703000-B03 USER'S MANUAL

(2) APPn_BuffSize

Compression Analysis

User setting Required Prohibited

IN/OUT IN OUT

Compression Analysis

Used [APPn] Note 1 Note 3

Not used [APPn] Note 2 Note 4

Notes 1. Set a data size for the corresponding member.

2. Specify 0 for the corresponding member.

3. The length of the APPn segment is stored in the corresponding member.

4. 0 is stored in the corresponding member.

2.6 EXTERNAL VARIABLES

The following external variables are provided.

Table 2-26. External Variables

External variable Type Size (bytes) Explanation

jpeg_DQT_Y char 64 Quantization table (for luminance component)

jpeg_DQT_C char 64 Quantization table (for chrominance component)

jpeg_DHT_DC_Y char About 50 Huffman table (for DC luminance component)

jpeg_DHT_DC_C char About 50 Huffman table (for DC chrominance component)

jpeg_DHT_AC_Y char About 300 Huffman table (for AC luminance component)

jpeg_DHT_AC_C char About 300 Huffman table (for AC chrominance component)

77

CHAPTER 2 LIBRARY SPECIFICATIONS

2.7 DETAILS OF FUNCTIONS

The following functions are provided.

Table 2-27. Functions

Classification Function name Description

Compression jpeg_CompressInit JPEG compression library initialization

jpeg_Compress JPEG compression, main

Expansion jpeg_DecompressInit JPEG expansion library initialization

jpeg_Decompress JPEG expansion, main

Analysis jpeg_AnalysisInit JPEG analysis library initialization

jpeg_Analysis JPEG analysis, main

2.7.1 Compression

(1) jpeg_CompressInit

Classification Compression (1/2)

Function name jpeg_CompressInit

Outline Initializes JPEG compression library.

Syntax #include “jpeg.h”

void jpeg_CompressInit (JPEGINFO*cInfo)

Argument Argument Type Explanation

cInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value None

Description Initializes the JPEG compression library and sets a compression executable status. For

an explanation of how to set the members of cInfo, see Section 2.5.1 .

78

µSAP703000-B03 USER'S MANUAL

(2) jpeg_Compress

Classification Compression (2/2)

Function name jpeg_Compress

Outline Compression, main

Syntax #include “jpeg.h”

long jpeg_Compress (JPEGINFO*cInfo)

Argument Argument Type Explanation

cInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value Error code

Error code Explanation

JPEG_OK Normal termination

JPEG_CONT Continue

JPEG_ERR Abnormal termination

For details, see Figure 2-1 .

Error details are stored in member “ErrorState” of cInfo when processing terminates

abnormally.

Description Performs JPEG compression specified by cInfo.

For an explanation of how to set the members of cInfo, see Section 2.5.1 .

The value stored in member “ErrorState” of cInfo is as follows:

Value Meaning

0x00000001 Area specification for compressed image is
undefined.

0x00000002 Sampling ratio at which compression
cannot be executed is specified (if
compression of a JPEG file has been
executed at 4:2:2 even though link was
executed with library for compression at
4:2:2 not specified).

0x00000005 The values of Tc and Tp of the DHT
header are undefined.

79

CHAPTER 2 LIBRARY SPECIFICATIONS

2.7.2 Expansion

(1) jpeg_DecompressInit

Classification Expansion (1/2)

Function name jpeg_DecompressInit

Outline Initializes JPEG expansion library.

Syntax #include “jpeg.h”

void jpeg_DecompressInit (JPEGINFO*dInfo)

Argument Argument Type Explanation

dInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value None

Description Initializes the JPEG expansion library and sets the expansion executable status. For

an explanation of how to set the members of dInfo, see Section 2.5.1 .

(2) jpeg_Decompress

Classification Expansion (2/2)

Function name jpeg_Decompress

Outline Expansion, main

Syntax #include “jpeg.h”

long jpeg_Decompress (JPEGINFO*dInfo)

Argument Argument Type Explanation

dInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value Error code

Error code Explanation

JPEG_OK Normal termination

JPEG_CONT Continue

JPEG_ERR Abnormal termination

For details, see Figure 2-3 .

Error details are stored in member “ErrorState” of dInfo when processing terminates

abnormally.

80

µSAP703000-B03 USER'S MANUAL

Description Executes the JPEG expansion specified by dInfo.

For an explanation of how to set the members of dInfo, see Section 2.5.1 .

The value stored in member “ErrorState” of dInfo is as follows:

Value Meaning

0x00000001 Area specification for expanded image is
undefined.

0x00000002 Sampling ratio at which expansion cannot
be executed has been specified (if
expansion of a JPEG file has been
executed at 4:2:2 even though link was
executed with expansion library at 4:2:2
not specified).

0x00000003 Value of Pq of DQT header is not set to 0.

0x00000004 Quantization table number (Tp) of DQT
header is other than 0, 1, 2, or 3.

0x00000005 Values of Tc and Tp of DHT header are
undefined.

0x00000006 Number of components of SOS header is
other than 3.

0x00000007 Huffman table number specified by SOS
header is incorrect.

0x00000008 Value of Ss of SOS header is other than 0.

0x00000009 Value of Se of SOS header is other than
63.

0x0000000A Values of Ah and Al of SOS header are
other than 0.

0x0000000B Value other than 8 is set for P of SOF
header.

0x0000000C Value of Nf of SOF header is too great.

0x0000000D Unknown marker appears.

0x0000000E RSTn marker is illegal.

81

CHAPTER 2 LIBRARY SPECIFICATIONS

2.7.3 Analysis

(1) jpeg_AnalysisInit

Classification Analysis (1/2)

Function name jpeg_AnalysisInit

Outline Initializes JPEG analysis library.

Syntax #include “jpeg.h”

void jpeg_AnalysisInit (JPEGINFO*aInfo)

Argument Argument Type Explanation

aInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value None

Description Initializes the JPEG analysis library and sets an analysis executable status.

For an explanation of how to set the members of aInfo, see Section 2.5.1 .

(2) jpeg_Analysis

Classification Analysis (2/2)

Function name jpeg_Analysis

Outline Analysis, main

Syntax #include “jpeg.h”

long jpeg_Analysis (JPEGINFO*aInfo)

Argument Argument Type Explanation

aInfo JPEGINFO* Pointer to JPEGINFO structureNote

Note For details of the JPEGINFO structure, see Section 2.5.1 .

Return value Error code

Error code Explanation

JPEG_OK Normal termination

JPEG_CONT Continue

JPEG_ERR Abnormal termination

For details, see Figure 2-5 .

Error details are stored in member “ErrorState” of aInfo when processing terminates

abnormally.

82

µSAP703000-B03 USER'S MANUAL

Description Executes the JPEG analysis specified by aInfo.

For an explanation of how to set the members of aInfo, see Section 2.5.1 .

The value stored in member “ErrorState” of aInfo is as follows:

Value Meaning

0x00000006 Number of components of SOS header is
other than 3.

0x00000007 Huffman table number specified by SOS
header is incorrect.

0x00000008 Value of Ss of SOS header is other than 0.

0x00000009 Value of Se of SOS header is other than
63.

0x0000000A Values of Ah and Al of SOS header are
other than 0.

0x0000000B Value other than 8 is set in P of SOF
header.

0x0000000C Value of Nf of SOF header is too great.

0x0000000D Unknown marker has appeared.

83

CHAPTER 2 LIBRARY SPECIFICATIONS

2.8 DETAILS OF SECTION

Table 2-28 lists the sections defined (used) by the library.

Table 2-28. Sections Used by Library

Classification Section name Type Explanation

Compression .JPCTEXT text Text for compression

.JPCTBL rodata Table data for compression

.JPCDATA data Data having initial value for compression

.JPCBSS bss Data having no initial value for compression

Expansion .JPDTEXT text Text for expansion

.JPDTBL rodata Table data for expansion

.JPDDATA data Data having initial value for expansion

.JPDBSS bss Data having no initial value for expansion

Analysis .JPATEXT text Text for analysis

.JPATBL rodata Table data for analysis

.JPADATA data Data having initial value for analysis

.JPABSS bss Data having no initial value for analysis

Common processing .JPJTEXT text Text for common processing

.JPJTBL rodata Table data for common processing

.JPJDATA data Data having initial value for common
processing

.JPJBSS bss Data having no initial value for common
processing

84

µSAP703000-B03 USER'S MANUAL

2.9 SELECTING A LIBRARY

Table 2-29 lists those files available as libraries.

Table 2-29. File Names of Libraries

Classification File name Explanation Select

Compression libjpegc.a Compression base Note 1

libjcs11.a Sampling ratio 4:4:4 [H:V = 1:1] supported Note 2

libjcs21.a Sampling ratio 4:2:2 [H:V = 2:1] supported

libjcs22.a Sampling ratio 4:1:1 [H:V = 2:2] supported

libjcs41.a Sampling ratio 4:1:1 [H:V = 4:1] supported

libjcy.a YCbCr supported Note 3

libjcr.a RGB supported

Expansion libjpegd.a Expansion base Note 4

libjds11.a Sampling ratio 4:4:4 [H:V = 1:1] supported Note 2

libjds21.a Sampling ratio 4:2:2 [H:V = 2:1] supported

libjds22.a Sampling ratio 4:1:1 [H:V = 2:2] supported

libjds41.a Sampling ratio 4:1:1 [H:V = 4:1] supported

libjdhb.a Huffman “branch mode” supported Note 5

libjdhl.a Huffman “loop mode” supported

libjdy.a YCbCr supported Note 6

libjdr.a RGB supported

Analysis libjpega.a Analysis base Note 7

Common processing libjpeg.a Common processing Note 8

Notes 1. This must be selected when using the compression library.

2. Select a supported sampling ratio.

3. Either of these must be selected when using the default “jpeg_getMCU_xx” library.

4. This must be selected when using the expansion library.

5. One of these must be selected.

6. Either of these must be selected when using the default “jpeg_putMCU_xx” library.

7. This must be selected when using the analysis library.

8. This must be selected when using the JPEG library.

85

CHAPTER 2 LIBRARY SPECIFICATIONS

2.9.1 Selecting a Library During Link

The following three items allow the user to select a library during link.

• Non-link of unnecessary object

• Selection of YCbCr/RGB of VRAM

• Selection of Huffman expansion routine to be used

Use the following command to select a library:

jpegarce.exe: for DOS

jpegarc: for Sun4TM

Caution For DOS, execute the command from the command line, not from within Windows.

When this function is executed, file “archive” is created. If a file having the same name already exists, that

file is overwritten. This file is in the make file and is referenced during linking.

(1) Non-link of unnecessary object

When the command that creates file “archive” is executed, the following messages are displayed.

Unnecessary objects are not linked if you enter data in response to these messages in sequence.

Do you need JPEG compress library? (Y/N)

.

.

.

Do you need 4:2:2 compress library? (Y/N)

.

.

.

Do you need 4:4:4 compress library? (Y/N)

.

.

.

For example, where only a sampling ratio of 4:2:2 is required, the archive file related to the sampling ratios

is selected as follows:

Selected file

libjcs21.a, libjds21.a

File not selected

libjcs11.a, libjcs22.a, libjcs41.a,

libjds11.a, libjds22.a, libjds41.a

86

µSAP703000-B03 USER'S MANUAL

(2) Whether to use the default VRAM access function

The following message is displayed. Input “Y” or “N” in response.

Do you need default VRAM access library? (Y/N)

Entering “Y” causes the following message to appear. Select the necessary item.

Please enter VRAM type RGB or YCbCr? (Y/R)

If the default VRAM access function is not used, the user must create the following functions:

• Compression: jpeg_getMCU_22, jpeg_getMCU_41, jpeg_getMCU_21, jpeg_getMCU_11

• Expansion: jpeg_putMCU_22, jpeg_putMCU_41, jpeg_putMCU_21, jpeg_putMCU_11

For details, see Section 2.10 .

(3) Selecting the Huffman expansion routine to be used

For Huffman expansion, the following message is displayed. Select “L” or “B” as appropriate.

Choose which huffman routine do you use, LOOP or BRANCH? (L/B)

The following archive file will be selected:

• Loop: libjdhl.a

• Branch: libjdhb.a

87

CHAPTER 2 LIBRARY SPECIFICATIONS

2.9.2 Specifying an Archive File

When the command that specifies the creation of an archive file is executed, file “archive” is created. This

command passes the contents of the file, in @archive format to the argument of the linker in the make file.

For details of the options, refer to the manual supplied with the linker.

Figure 2-14. Specifying Archiver

make file

.

.

.

Id850 -o $@ -D dfile $ (OBJ) @archive ; NEC version

Ix -o $@ $ (OBJ) @archive ; GHS version

libjpegc.a

libjcs22.a

libjcy.a

libjpegd.a

libjds22.a

libjdhb.a

libjdy.a

libjpeg.a

Archive specification

file "archive"

.

.

.

88

µSAP703000-B03 USER'S MANUAL

Archive file libjpeg.a contains a default library. Always specify libjpeg.a at the end of an archive specification

file.

The linker searches for a specified archive file if an unresolved symbol exists in the object. When a symbol

is found, the object file including the symbol is extracted from the archive file and linked.

Figure 2-15. Handling of Archive File by Linker

Objects

Linker

Specified archive files

Searches for unresolved symbol

Object including found

symbol is linked.

89

CHAPTER 2 LIBRARY SPECIFICATIONS

2.10 CUSTOMIZE

This section explains how the user can create VRAM access functions without using the default values.

AP703000-B03 provides getmcu.c and putmcu.c, which are used as samples when the user creates VRAM

access functions.

2.10.1 VRAM Access Function Used During Compression

The functions required for VRAM access during compression are as follows:

Table 2-30. VRAM Access Functions Required During Compression

Function name Supported sampling ratio

jpeg_getMCU_22 4:1:1 [H:V = 2:2]

jpeg_getMCU_41 4:1:1 [H:V = 4:1]

jpeg_getMCU_21 4:2:2

jpeg_getMCU_11 4:4:4

These functions read data from VRAM in MCU units, convert the format of the data into YCbCr format, and

store the data into the MCU buffer in a specific format. The functions corresponding to unnecessary sampling

ratios need not be created. The user may not arbitrarily specify function names. Instead, the same function

names as those listed in this table must be used.

The specifications of each function are as shown below.

Function name jpeg_getMCU_xx (xx = 22, 41, 21, 11)

Outline Exchanges/transfers data from VRAM to MCU buffer.

Syntax #include “jpeg.h”

void jpeg_getMCU_22 (JPEGINFO*cInfo)

void jpeg_getMCU_41 (JPEGINFO*cInfo)

void jpeg_getMCU_21 (JPEGINFO*cInfo)

void jpeg_getMCU_11 (JPEGINFO*cInfo)

Argument First address of JPEGINFO structure

Return value None

Description Exchanges or transfers the data of the VRAM coordinates, specified by cInfo members

“CurrentX” and “CurrentY,” to the MCU buffer specified by cInfo member “MCU_Buff_Bptr.”

Caution Ensure that the contents of registers r20, r21, and r29 are not lost.

90

µSAP703000-B03 USER'S MANUAL

The size of one MCU corresponding to each sampling ratio is as shown in Figure 2-12. If the VRAM is

of RGB type each pixel, converted into YCbCr format, corresponds to the figure.

Store data in the MCU buffer in the format shown in Figure 2-11.

The following information is required by this function.

JPEGINFO->MCU_Buff_Bptr First address of MCU buffer

JPEGINFO->CurrentX x coordinate of corresponding MCU

JPEGINFO->CurrentY y coordinate of corresponding MCU

If 16-bit displacement of the load/store instruction is used when this routine is described in assembler, the

processing speed can be increased.

Suppose the following is executed:

*mcu=Y0;

*(mcu+1) = Y1;

*(mcu+2) = Y2;

*(mcu+3) = Y3;

At this time, the following are stored into the registers:

r7 mcu

r10 Y0

r11 Y1

r12 Y2

r13 Y3

If the following description is made, the amount of address calculation is substantially reduced, resulting

in a higher processing speed.

st.h r10, 0x0 [r7]

st.h r11, 0x2 [r7]

st.h r12, 0x4 [r7]

st.h r13, 0x6 [r7]

Define the value of the symbol in an assembler file as follows (same as #define of C in the case of the GHS

version).

VRAM_GAP1 .set 1 ··· Address difference between Y and Cb of same pixel of VRAM

VRAM_GAP2 .set 2 ··· Address difference between Y and Cr of same pixel of VRAM

91

CHAPTER 2 LIBRARY SPECIFICATIONS

Assuming that the address of the Y component of the pixel of VRAM to be accessed is in r8, execute the

instruction as follows:

ld.b 0x0 [r8], r10

ld.b VRAM_GAP1 [r8], r11

ld.b VRAM_GAP2 [r8], r12

andi 0xFF, r10, r10

andi 0xFF, r11, r11

andi 0xFF, r12, r12

As a result, the following are stored into the registers.

r10 Value of Y component

r11 Value of Cb component

r12 Value of Cr component

2.10.2 VRAM Access Function Used During Expansion

The functions required for VRAM access during expansion are as follows:

Table 2-31. VRAM Access Functions Required During Expansion

Function name Supported sampling ratio

jpeg_putMCU_22 4:1:1 [H:V = 2:2]

jpeg_putMCU_41 4:1:1 [H:V = 4:1]

jpeg_putMCU_21 4:2:2

jpeg_putMCU_11 4:4:4

These functions write YCbCr-format data, stored in the MCU buffer in a specific format, to VRAM. The

functions corresponding to unnecessary sampling ratios need not be created. The user may not arbitrarily

determine the function names. Instead, the same function names as those listed in this table must be used.

The specifications of each function are as shown below.

Function name jpeg_putMCU_xx (xx = 22, 41, 21, 11)

Outline Exchanges and transfers data from the MCU buffer to VRAM.

Syntax #include “jpeg.h”

void jpeg_putMCU_22 (JPEGINFO*dInfo)

void jpeg_putMCU_41 (JPEGINFO*dInfo)

void jpeg_putMCU_21 (JPEGINFO*dInfo)

void jpeg_putMCU_11 (JPEGINFO*dInfo)

92

µSAP703000-B03 USER'S MANUAL

Argument First address of JPEGINFO structure

Return value None

Description Exchanges the data of the MCU buffer specified in dInfo member “MCU_Buff_Bptr” into

data for VRAM, and transfers the data to the VRAM coordinates specified by dInfo

member “CurrentX” and “CurrentY.”

Caution Ensure that the contents of registers r20, r21, and r29 are not lost.

The format in which data is stored into the MCU is shown in Figure 2-11.

The size of one MCU corresponding to each sampling ratio is shown in Figure 2-12. If the VRAM is of RGB

type each pixel, converted into YCbCr format, corresponds to the figure.

The following information is required for this function.

JPEGINFO->MCU_Buff_Bptr First address of MCU buffer

JPEGINFO->CurrentX x coordinate of corresponding MCU

JPEGINFO->CurrentY y coordinate of corresponding MCU

2.11 SYMBOL NAME CONVENTION

The names of the symbols used in the JPEG library are determined according to the following convention.

When you define symbols in an application, ensure that the same symbol names are not used.

Table 2-32. Symbol Name Convention

Classification Convention

Function Prefixes “jpeg_”.

Variable Prefixes “jpeg_”.

Data type JPEGINFO
APPINFO

Constant JPEG_OK
JPEG_ERR
JPEG_CONT
SAMPLE11
SAMPLE21
SAMPLE22
SAMPLE41

