MEMORY CMOS 1M × 16 BIT HYPER PAGE MODE DYNAMIC RAM

MB8118165A-60/-70

CMOS 1,048,576 × 16 BIT Hyper Page Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB8118165A is a fully decoded CMOS Dynamic RAM (DRAM) that contains 16,777,216 memory cells accessible in 16-bit increments. The MB8118165A features a "hyper page" mode of operation whereby high-speed random access of up to 1,024-bits of data within the same row can be selected. The MB8118165A DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB8118165A is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

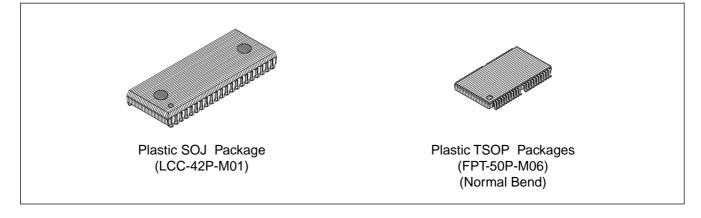
The MB8118165A is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon and twolayer aluminum process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB8118165A are not critical and all inputs are TTL compatible.

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-0.5 to +7.0	V
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-0.5 to +7.0	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	Ιουτ	-50 to +50	mA
Operating Temperature	Торе	0 to 70	°C
Storage Temperature	Тѕтс	-55 to +125	°C

ABSOLUTE MAXIMUM RATINGS (See NOTE)

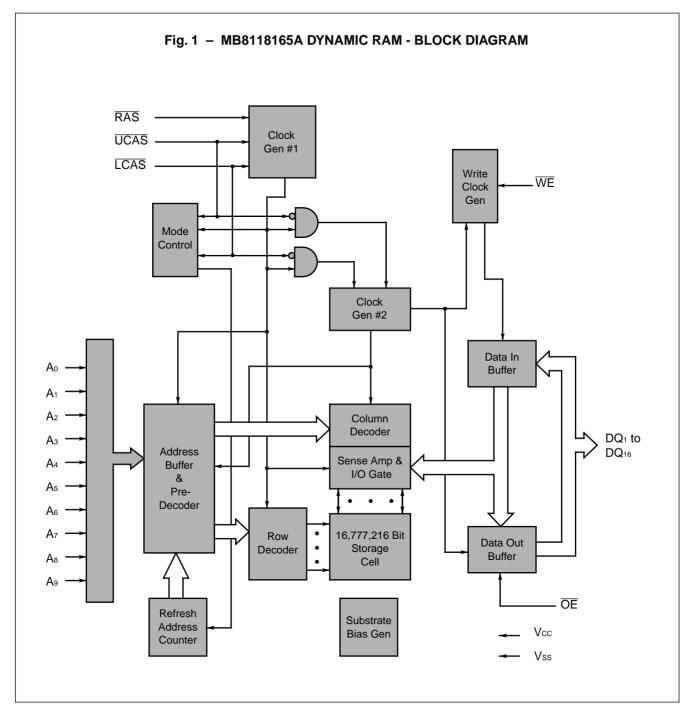
NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


■ PRODUCT LINE & FEATURES

Param	neter	MB8118165A-60	MB8118165A-70	
RAS Access Time		60 ns max.	70 ns max.	
Random Cycle Time		104 ns min.	124 ns min.	
Address Access Time		30 ns max.	35 ns max.	
CAS Access Time		15 ns max.	17 ns max.	
Hyper Page Mode Cycle Ti	me	25 ns min.	30 ns min.	
Low Power Dissipation	Operating current	880 mW max.	825 mW max.	
	Standby current	11 mW max. (TTL level)/5.8	5 mW max. (CMOS level)	

- 1,048,576 words × 16 bit organization
- Silicon gate, CMOS, Advanced Stacked Capacitor Cell
- All input and output are TTL compatible
- 1,024 refresh cycles every 16.4 ms
- Self refresh function


- Early write or \overline{OE} controlled write capability
- RAS only, CAS-before-RAS, or Hidden Refresh
- Hyper page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

PACKAGE

Package and Ordering Information

- 42-pin plastic (400 mil) SOJ, order as MB8118165A-xxPJ
- 50-pin plastic (400 mil) TSOP-II with normal bend leads, order as MB8118165A-xxPFTN

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Max.	Unit
Input Capacitance, A ₀ to A ₉	CIN1	5	pF
Input Capacitance, RAS, LCAS, UCAS, WE, OE	CIN2	5	pF
Input/Output Capacitance, DQ1 to DQ16	CDQ	7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

		42-Pin S (TOP VII		_
Vcc DQ1 DQ2 DQ3 DQ4 Vcc DQ5 DQ6 DQ7 DQ8 N.C. N.C. VCC N.C. N.C. N.C. A0 A1 A2 CC	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \end{array}$	1 Pin Ind	42 41 ex 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22	$V_{SS} = DQ_{16} = DQ_{15} = DQ_{14} = DQ_{13} = DQ_{12} = DQ_{11} = DQ_{10} = DQ_{9} = N.C. = UCAS = OE = A_9 = A_8 = A_7 = A_6 = A_5 = A_4 = V_{SS} = V_{SS} = CS =$

Designator	Function					
A ₀ to A ₉	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
RAS	Row address strobe					
LCAS	Lower column address strobe					
UCAS	Upper column address strobe					
WE	Write enable					
ŌĒ	Output enable					
DQ1 to DQ16	Data Input/Output					
Vcc	+5.0 volt power supply					
Vss	Circuit ground					
N.C	No connection					

50-Pin TSOP (TOP VIEW)

Vcc [DQ1 [DQ2 [DQ3 [DQ4 [DQ5 [DQ5 [DQ6 [DQ7 [DQ8 [N.C. [2 3 4 5 6 7 8 9 10	1 Pin Index	50 49 48 47 46 45 44 43 42 41 40	VSS DQ16 DQ15 DQ14 DQ13 VSS DQ12 DQ11 DQ10 DQ9 N.C.
RAS	16 17 18 19 20 21 22 23		36 35 34 33 32 31 30 29 28 27 26	$ N.C. $ $ UCAS $ $ UCAS $ $ OE $ $ A_9 $ $ A_8 $ $ A_7 $ $ A_6 $ $ A_5 $ $ A_4 $ $ V_{SS} $

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.	
Supply Voltage	1	Vcc	4.5	5.0	5.5	V		
	1	Vss	0	0	0	v		
Input High Voltage, all inputs	1	Vін	2.4		6.5	V	0°C to +70°C	
Input High Voltage, all inputs/ outputs*	1	VIL	-0.3		0.8	V		

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty input bits are required to decode any sixteen of 16,777,216 cell addresses in the memory matrix. Since only ten address bits (A₀ to A₉) are available, the column and row inputs are separately strobed by LCAS or UCAS and RAS as shown in Figure 1. First, ten row address bits are input on pins A₀-through-A₉ and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe (LCAS or UCAS). Both row and column addresses must be stable on or before the falling edges of RAS and LCAS or UCAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min.) + t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways: an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{LCAS} / \overline{UCAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data of DQ₁-DQ₈ is strobed by LCAS and DQ₉-DQ₁₆ is strobed by UCAS and the setup/hold times are referenced to each \overline{LCAS} and \overline{UCAS} because \overline{WE} goes Low before \overline{LCAS} / \overline{UCAS} . in a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{LCAS} / \overline{UCAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs and High-Z state are obtained under the following conditions:

- t_{RAC} : from the falling edge of $\overline{\text{RAS}}$ when t_{RCD} (max.) is satisfied.
- tcac : from the falling edge of $\overline{\text{LCAS}}$ (for DQ1-DQ8) $\overline{\text{UCAS}}$ (for DQ9-DQ16) when trcd is greater than trcd (max.).
- taa : from column address input when trad is greater than trad (max.), and trcd (max.) is satisfied.
- to EA : from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.
- t_{OEZ} : from \overline{OE} inactive.
- t_{OFF} : from \overline{CAS} inactive while \overline{RAS} inactive.
- torregion : from \overline{RAS} inactive while \overline{CAS} inactive.
- twez : from \overline{WE} active while \overline{CAS} inactive.

The data remains valid after either \overline{OE} is inactive, or both \overline{RAS} and \overline{LCAS} (and/or \overline{UCAS}) are inactive, or \overline{CAS} is reactived. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

HYPER PAGE MODE OPERATION

The hyper page mode operation provides faster memory access and lower power dissipation. The hyper page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in which row addresses are common. For each page of memory (within column address locations), any of $1,024 \times 16$ -bits can be accessed and, when multiple MB8118165As are used, CAS is decoded to select the desired memory page. Hyper page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted. Hyper page mode features that output remains valid when CAS is inactive until CAS is reactivated.

■ DC CHARACTERISTICS

(Recommended o	Note						
Deremete	n Notoo	Cumhal	Conditions		Unit		
Paramete	er Notes	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output high voltage	1	Vон	Іон = -5.0 mA	2.4		—	V
Output low voltage	1	Vol	lo∟ = +4.2 mA	_		0.4	v
Input leakage curren	nt (any input)	lı(L)	$\begin{array}{l} 0 \; V \leq V_{\text{IN}} \leq V_{\text{CC}}; \\ 4.5 \; V \leq V_{\text{CC}} \leq 5.5 \; V; \\ V_{\text{SS}} = 0 \; V; \; \text{All other pins} \\ \text{not under test} = 0 \; V \end{array}$	-10		10	μΑ
Output leakage current		DO(L)	$0 V \le V_{OUT} \le V_{CC};$ Data out disabled	-10	_	10	
Operating current	MB8118165A-60		RAS & LCAS, UCAS cycling;			160	mA
(Average power supply current) 2	MB8118165A-70		t _{RC} = min.	-	_	150	
Standby current	TTL level		$\overline{RAS} = \overline{LCAS} = \overline{UCAS} = V_{IH}$		_	2.0	mA
(Power supply current)	CMOS level	Icc2	$\overline{\text{RAS}} = \overline{\text{LCAS}} = \overline{\text{UCAS}} \ge \text{Vcc} - 0.2 \text{ V}$] —		1.0	
Refresh current #1	MB8118165A-60		$\overline{\text{LCAS}} = \overline{\text{UCAS}} = V_{\text{H}},$		_	160	
(Average power supply current) 2	MB8118165A-70	Іссз	RAS cycling; trc = min.	-		150	mA
Hyper page mode	MB8118165A-60		$\overline{RAS} = V_{IL},$			100	
current 2	MB8118165A-70	Icc4	$\overline{\text{LCAS}} = \overline{\text{UCAS}}$ cycling; there = min.	-		90	mA
Refresh current #2	MB8118165A-60		RAS cycling;			160	
(Average power supply current) 2	MB8118165A-70	Icc5	CAS-before-RAS; t _{RC} = min.	-		150	mA
Refresh current #3	MB8118165A-60	lass	RAS = Vı∟, CAS = Vı∟ Self refresh;			1000	
(Average power supply current)	MB8118165A-70	Іссэ	Self refresh; $t_{RASS} = min.$	-	-	1000	μA

■ AC CHARACTERISTICS

At re	commended operating condition	ons unle	ess other	vise note	ed.)	Notes 3, 4, 5			
Na	Paramatar	Nataa	Symbol	MB8118	3165A-60	MB8118	3165A-70	l Ini4	
No.	Parameter	Notes	Symbol -	Min.	Max.	Min.	Max.	Unit	
1	Time Between Refresh		t REF	—	16.4	_	16.4	ms	
2	Random Read/Write Cycle Time		t RC	104	_	124	_	ns	
3	Read-Modify-Write Cycle Time		t rwc	138		162		ns	
4	Access Time from RAS	6, 9	t rac	_	60	_	70	ns	
5	Access Time from CAS	7, 9	t CAC	_	15	_	17	ns	
6	Column Address Access Time	8, 9	t AA		30		35	ns	
7	Output Hold Time		tон	3	_	3	_	ns	
8	Output Hold Time from CAS		tонс	5	_	5	_	ns	
9	Output Buffer Turn On Delay Time		ton	0		0	_	ns	
10	Output Buffer Turn Off Delay Time	10	toff	_	15	_	17	ns	
11	Output Buffer Turn Off Delay Time from RAS	10	tofr	—	15	—	17	ns	
12	Output Buffer Turn Off Delay Time from WE	10	twez	_	15	_	17	ns	
13	Transition Time		t⊤	1	50	1	50	ns	
14	RAS Precharge Time		t RP	40	_	50	_	ns	
15	RAS Pulse Width		t ras	60	100000	70	100000	ns	
16	RAS Hold Time		t RSH	15	_	17	—	ns	
17	CAS to RAS Precharge Time	21	t CRP	5	_	5	-	ns	
18	RAS to CAS Delay Time 11	, 12, 22	t RCD	14	45	14	53	ns	
19	CAS Pulse Width		t CAS	10	_	13	_	ns	
20	CAS Hold Time		t csн	40	_	50	_	ns	
21	CAS Precharge Time (Normal)	19	t CPN	10	_	10	_	ns	
22	Row Address Set Up Time		t asr	0		0	_	ns	
23	Row Address Hold Time		t rah	10	_	10	_	ns	
24	Column Address Set Up Time		t ASC	0	_	0	_	ns	
25	Column Address Hold Time		tсан	10	_	10	_	ns	
26	Column Address Hold Time from R	AS	t ar	24	_	24	_	ns	
27	RAS to Column Address Delay Time	13	t RAD	12	30	12	35	ns	
28	Column Address to RAS Lead Time	•	t RAL	30	_	35	—	ns	
29	Column Address to CAS Lead Time		t CAL	23		28	—	ns	
30	Read Command Set Up Time		trcs	0		0	_	ns	
31	Read Command Hold Time Referenced to RAS	14	t rrh	0	_	0	_	ns	

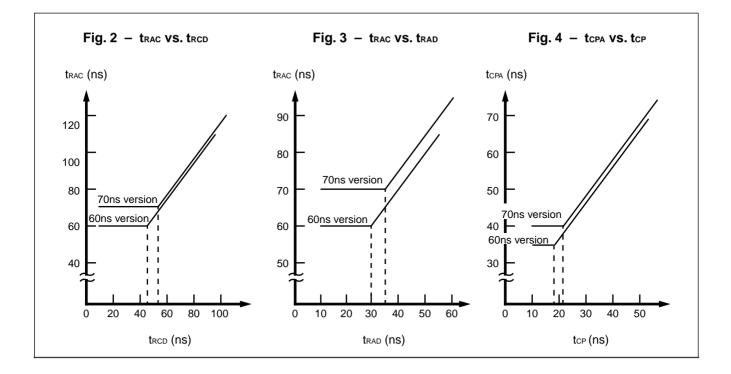
■ AC CHARACTERISTICS (Continued) (At recommended operating conditions unless otherwise noted.) Notes 3 4 5

	commended operating conc				3165A-60	Notes 3 MB8118	1	
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
	Read Command Hold Time				Max.		max.	
32	Referenced to CAS	14	t RCH	0	_	0	-	ns
33	Write Command Set Up Time	15, 20	twcs	0		0	—	ns
34	Write Command Hold Time		twcн	10		10	—	ns
35	Write Hold Time from RAS		twcr	24		24	—	ns
36	WE Pulse Width		twp	10	_	10	—	ns
37	Write Command to RAS Lead Ti	me	trwL	15		17	—	ns
38	Write Command to CAS Lead Ti	me	tcw∟	10		13	—	ns
39	DIN Set Up Time		tos	0		0	—	ns
40	DIN Hold Time		tон	10		10	—	ns
41	Data Hold Time from RAS		t dhr	24		24		ns
42	\overline{RAS} to \overline{WE} Delay Time	20	t rwd	77		89	_	ns
43	CAS to WE Delay Time	20	tcwd	32	_	36	_	ns
44	Column Address to WE Delay Time	20	tawd	47		54		ns
45	\overline{RAS} Precharge Time to \overline{CAS} Ac (Refresh cycles)	tive Time	t RPC	5	_	5	_	ns
46	CAS Set Up Time for CAS-befor Refresh	e-RAS	tcsr	0	_	0	_	ns
47	CAS Hold Time for CAS-before- Refresh	RAS	t CHR	10	_	12	_	ns
48	Access Time from \overline{OE}	9	t oea	_	15		17	ns
49	Output Buffer Turn Off Delay from OE	10	toez	_	15	_	17	ns
50	OE to RAS Lead Time for Valid [Data	toel	10	_	10	—	ns
51	OE to CAS Lead Time		tco∟	5		5	—	ns
52	OE Hold Time Referenced to WE	16	tоен	5	_	5	_	ns
53	OE to Data In Delay Time		toed	15		17	—	ns
54	RAS to Data In Delay Time		trdd	15		17	—	ns
55	CAS to Data In Delay Time		tcdd	15	_	17	—	ns
56	DIN to CAS Delay Time	17	tozc	0		0	—	ns
57	DIN to OE Delay Time	17	t dzo	0	_	0	_	ns
58	OE Precharge Time		t oep	8		8	_	ns
59	OE Hold Time Referenced to CA	S	tоесн	10		10	_	ns
60	WE Precharge Time		twpz	8	_	8	_	ns

(Continued)

■ AC CHARACTERISTICS (Continued) (At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

	commended operating conditions unit	NOLES .					
No.	Parameter Notes	Symbol	MB8118	165A-60	MB8118	Unit	
NO.	Farameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
61	WE to Data In Delay Time	twed	15	—	17	—	ns
62	Hyper Page Mode RAS Pulse Width	t RASP	_	100000		100000	ns
63	Hyper Page Mode Read/Write Cycle Time	thpc	25	_	30	—	ns
64	Hyper Page Mode Read-Modify-Write Cycle Time	t HPRWC	69		79	_	ns
65	Access Time from CAS Precharge 9, 18	tсра	_	35	_	40	ns
66	Hyper Page Mode CAS Precharge Time	t _{CP}	10	—	10	—	ns
67	Hyper Page Mode RAS Hold Time from CAS Precharge	t RHCP	35	_	40	_	ns
68	Hyper Page Mode CASPrecharge to WE Delay Time20	t CPWD	52		59		ns

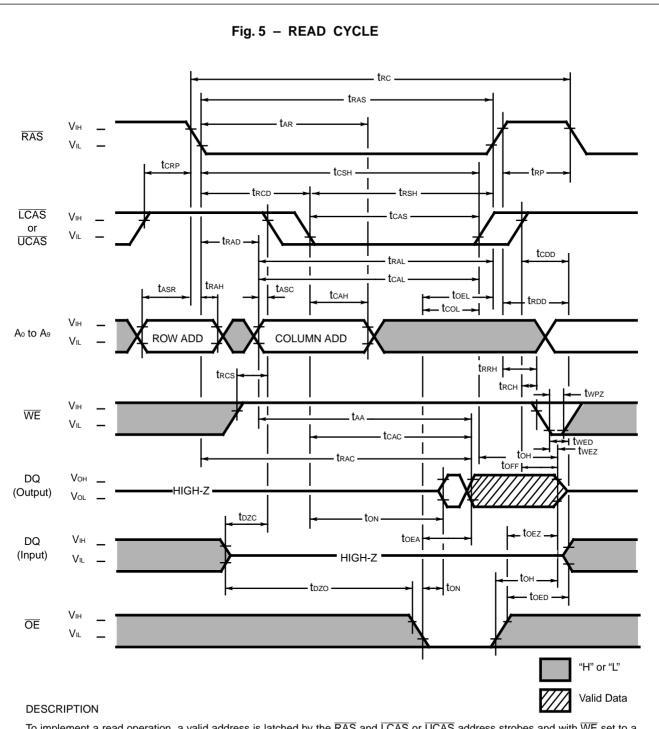

Notes: 1. Referenced to Vss.

2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

Icc depends on the number of address change as $\overline{RAS} = V_{IL}$, $\overline{UCAS} = V_{IH}$, $\overline{LCAS} = V_{IH}$ and $V_{IL} > -0.3$ V. Icc1, Icc3 Icc4 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{UCAS} = V_{IH}$, $\overline{LCAS} = V_{IH}$.

Icc2 is specified during $\overline{RAS} = V_{IH}$ and $V_{IL} > -0.3 V$.

- 3. An initial pause (RAS = CAS = V_H) of 200 μs is required after power-up followed by any eight RASonly cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 2$ ns.
- 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- Assumes that tRCD ≤ tRCD (max.), tRAD ≤ tRAD (max.). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig.2 and 3.
- 7. If $t_{RCD} \ge t_{RCD}$ (max.), $t_{RAD} \ge t_{RAD}$ (max.), and $t_{ASC} \ge t_{AA} t_{CAC} t_T$, access time is t_{CAC} .
- 8. If trad \geq trad (max.) and tasc \leq taa tcac tt, access time is taa.
- 9. Measured with a load equivalent to two TTL loads and 50 pF.
- 10. toff, toff, twez and toez are specified that output buffer change to high mpedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.) + 2tr + tasc (min.).
- 13. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only; if tRAD is greater than the specified tRAD (max.) limit, access tome is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs is specified as a reference point only. If twcs ≥ twcs (min.) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min.).
- 17. Either tozc or tozo must be satisfied.
- 18. tcpa is access time from the selection of a new column address (that is caused by changing both UCAS and LCAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.).
- 19. Assumes that \overline{CAS} -before- \overline{RAS} refresh.
- 20. twcs, tcwb, tawb, tawb and tcPwb are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twcs ≥ twcs (min.), the cycle is an early write cycle and Dout pin will maintain high impedance state through out the entire cycle. If tcwb ≥ tcwb (min.), tawb ≥ tawb (min.) and tcPwb ≥ tcPwb (min.) the cycle is a read-modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin, and write operation can be executed by satisfying trwb, tcwb, and trab specifications.
- 21. The last CAS rising edge.
- 22. The first CAS falling edge.

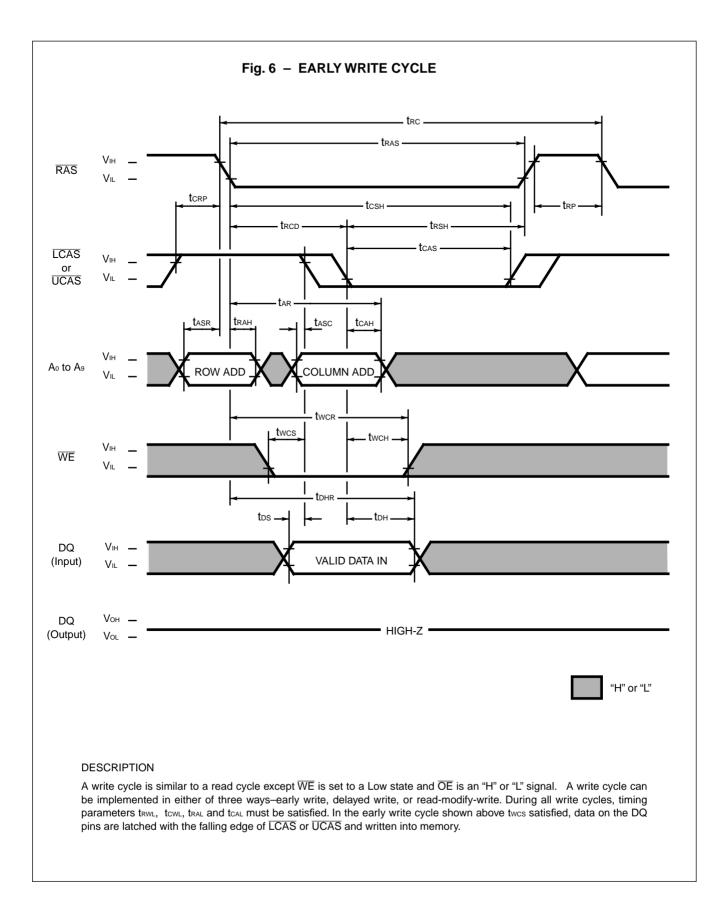


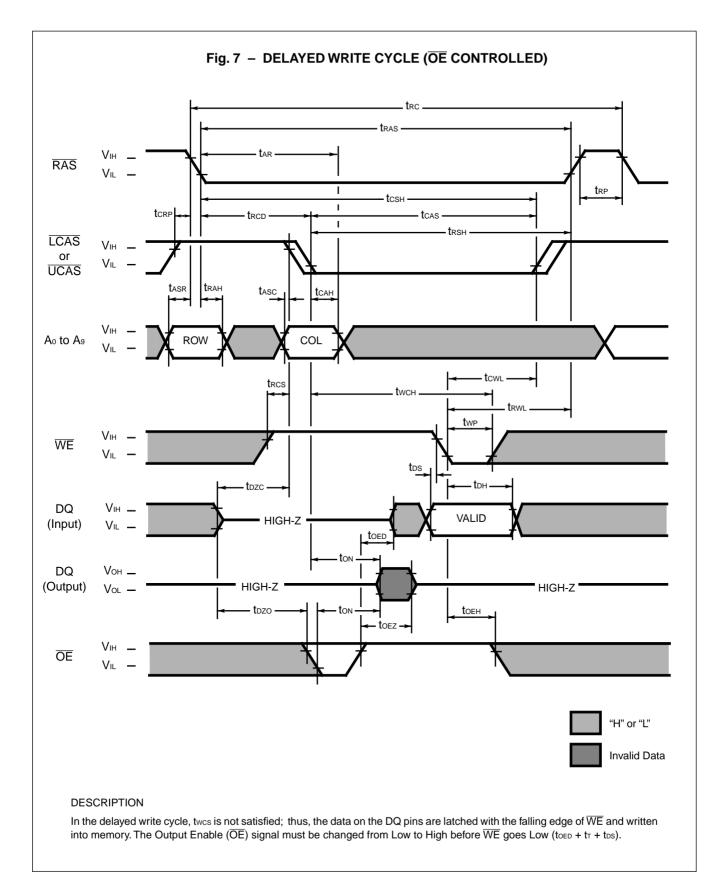
■ FUNCTIONAL TRUTH TABLE

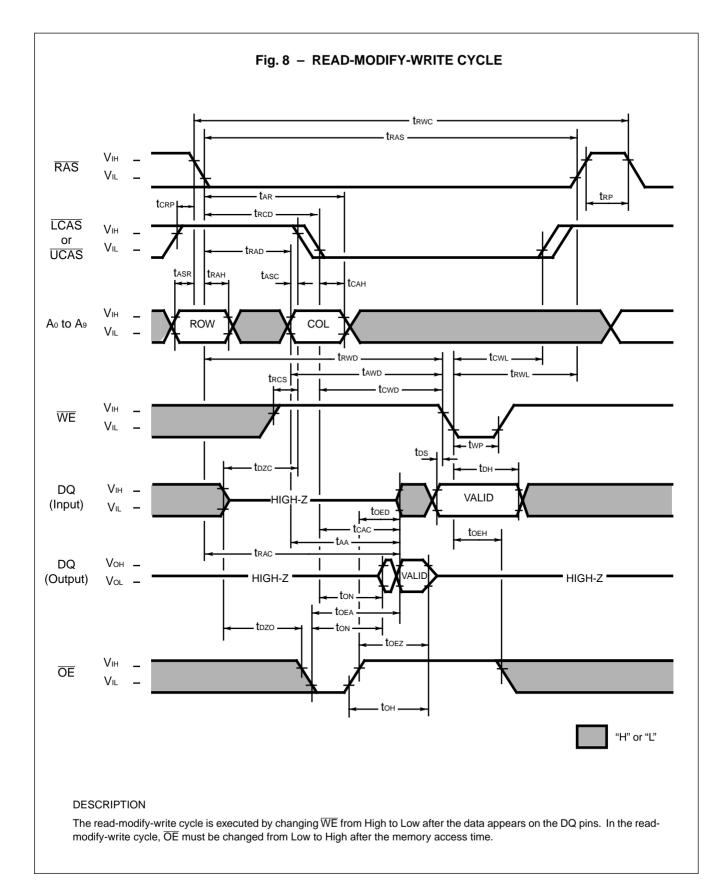
		Clo	ock Inj	put		Add	ress	Ir	nput/Out	tput Da	ta		
Operation Mode	RAS	1045	UCAS	WE	ŌĒ	Row	Column	DQ₁ t	o DQଃ	DQ₀ t	o DQ 16	Refresh	Note
	I NAS	LUAS	UCAS		UL	NUW	Column	Input	Output	Input	Output		
Standby	Н	Н	Н	Х	Х	—	—	—	High-Z	_	High-Z	—	
Read Cycle	L	L H L	H L L	Н	L	Valid	Valid	_	Valid High-Z Valid	_	High-Z Valid Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L H L	H L L	L	х	Valid	Valid	Valid Valid	High-Z	 Valid Valid	High-Z	Yes*	twcs ≥ twcs (min.)
Read-Modify- Write Cycle	L	L H L	H L L	H→L	L→H	Valid	Valid	Valid Valid	Valid High-Z Valid	 Valid Valid	High-Z Valid Valid	Yes*	
RAS-only Refresh Cycle	L	н	н	х	х	Valid	_	_	High-Z	_	High-Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	L	х	х	_	_	_	High-Z	_	High-Z	Yes	tcsr≥tcsr (min.)
Hidden Refresh Cycle	H→L	L H L	H L L	Н→Х	L		_		Valid High-Z Valid	_	High-Z Valid Valid	Yes	Previous data is kept

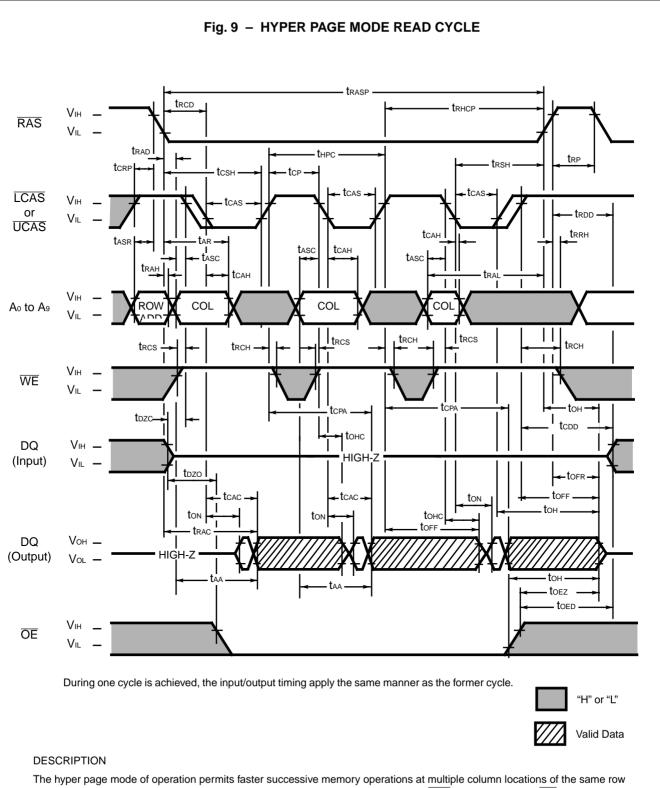
Note: X ; "H" or "L"

* ; It is impossible in Hyper Page Mode.

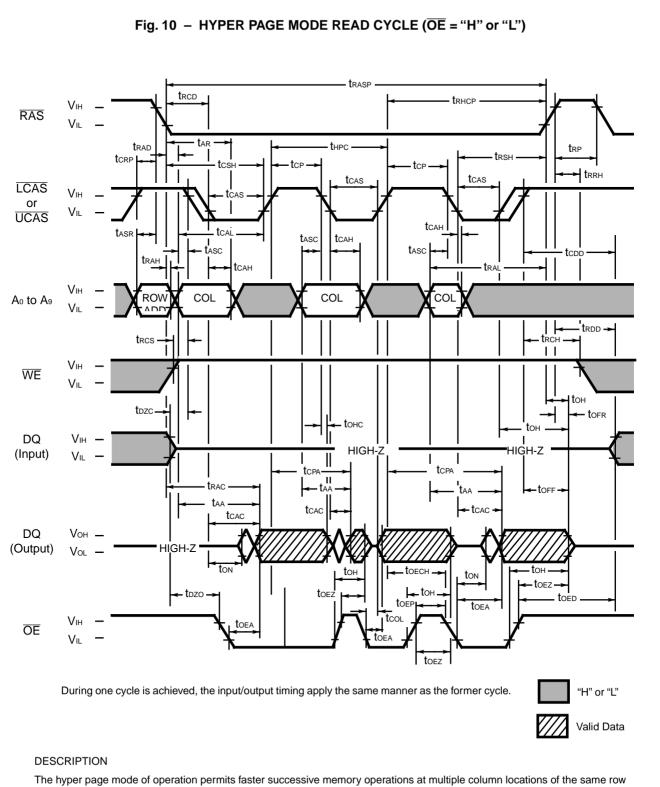

To implement a read operation, a valid address is latched by the \overline{RAS} and \overline{LCAS} or \overline{UCAS} address strobes and with \overline{WE} set to a High level and \overline{OE} set to a low level, the output is valid once the memory access time has elapsed. DQ₈-DQ₁₆ pins is valid when \overline{RAS} and \overline{CAS} are High or until \overline{OE} goes High. The access time is determined by $RAS(t_{RAC})$, $\overline{LCAS}/\overline{UCAS}(t_{CAC})$, \overline{OE} (toral) or column addresses (t_{AA}) under the following conditions:

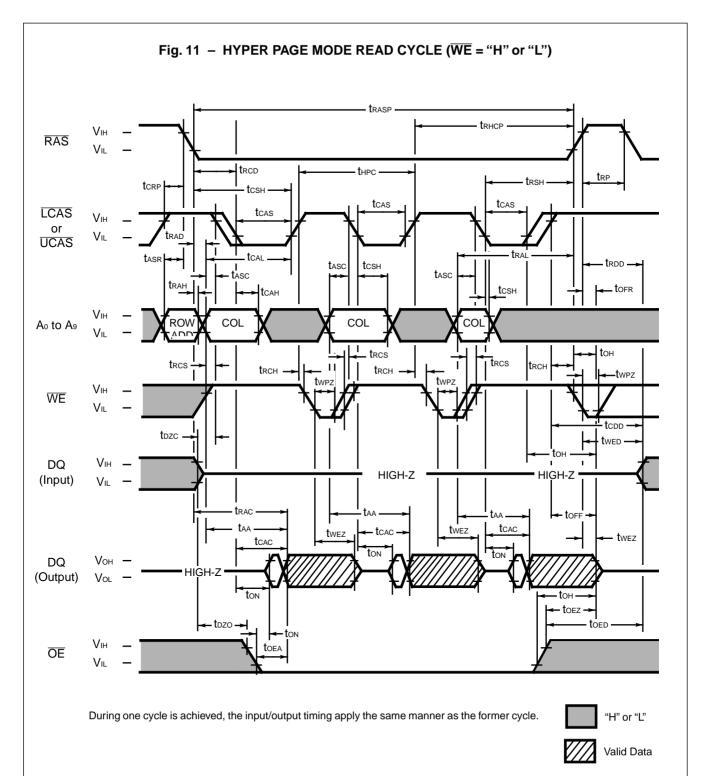

If trcd > trcd (max.), access time = tcac.


If trad > trad (max.), access time = taa

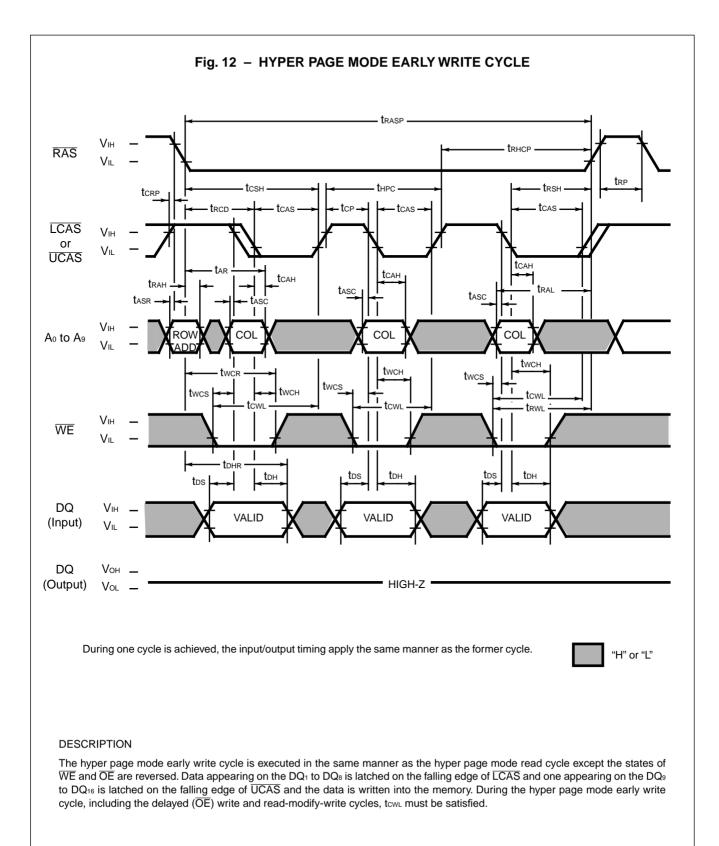

If OE is brought Low after trac, tcac, or taa (whichever occurs later), access time = toEA.

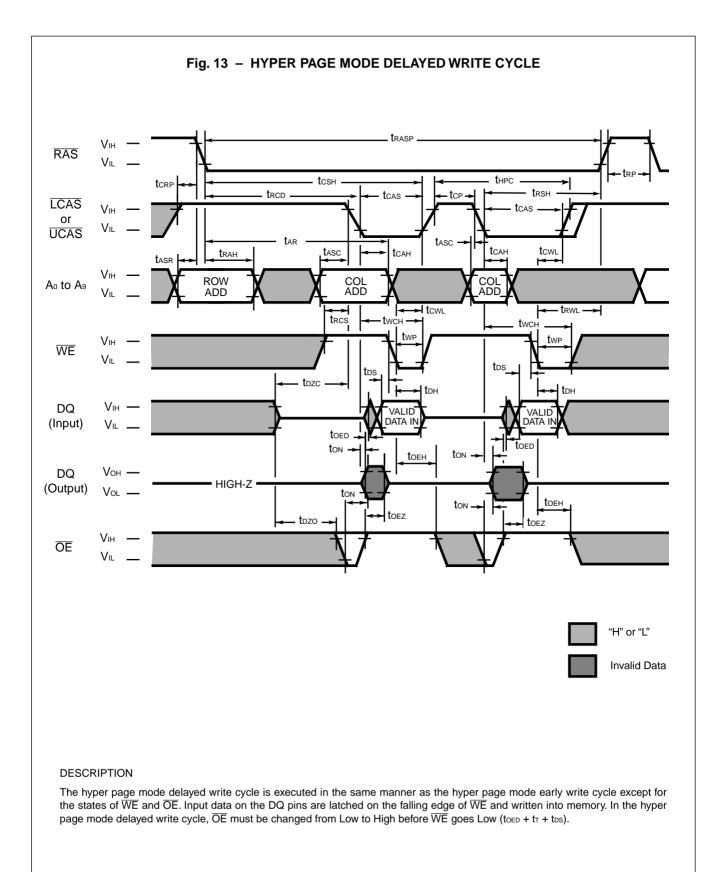
However, if either LCAS/UCAS or OE goes High, the output returns to a high-impedance state after toH is satisfied.

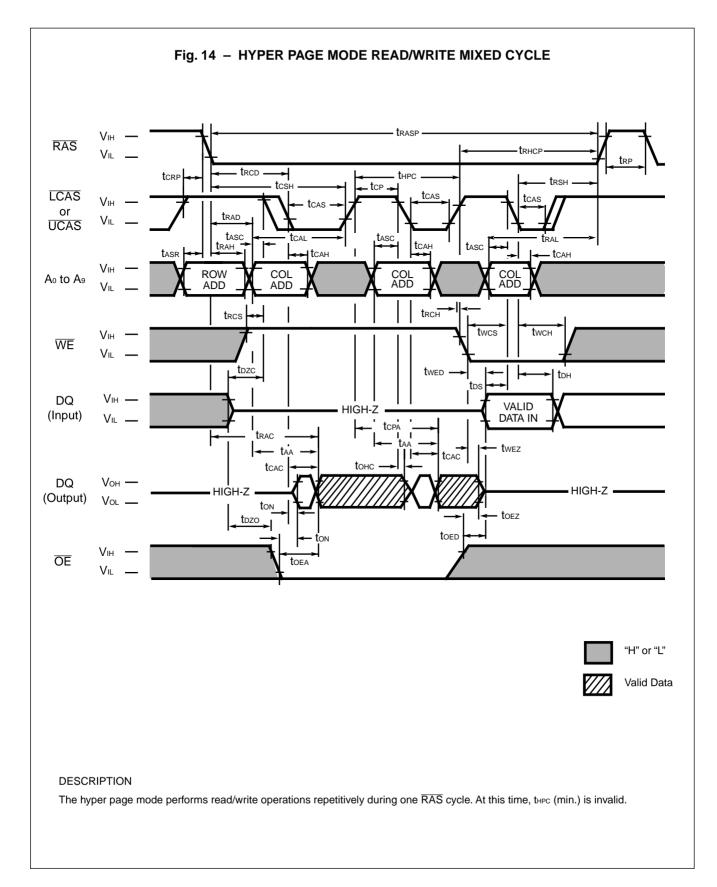


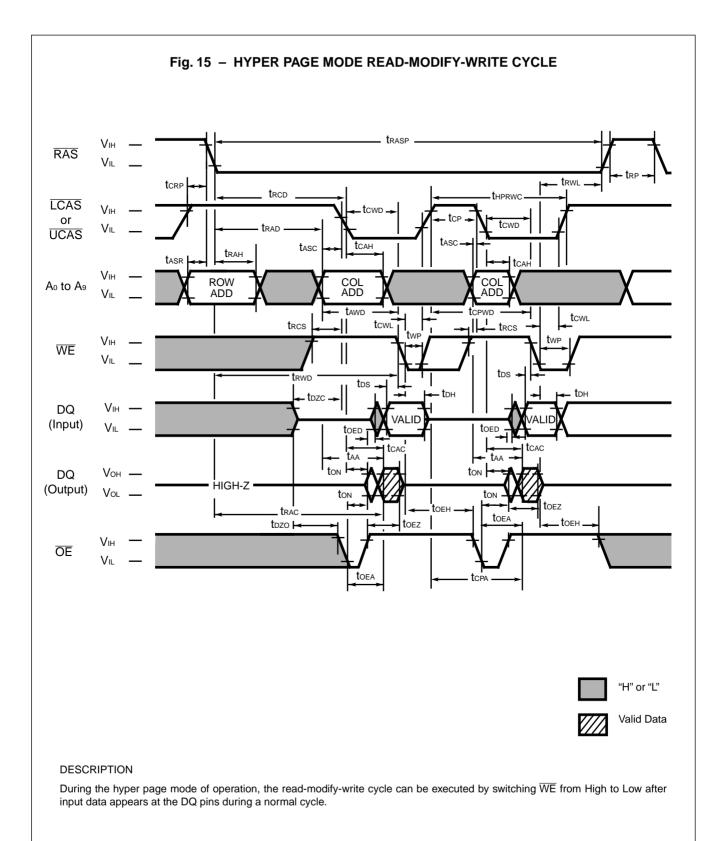


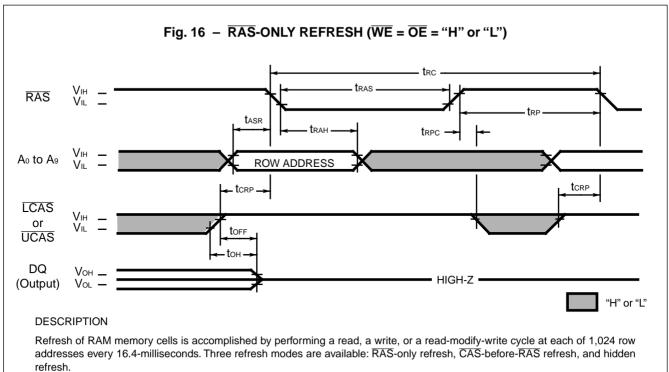
address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The address time is determined by t_{CAC}, t_{AA}, t_{CPA}, or t_{DEA}, whichever one is the latest in occurring.

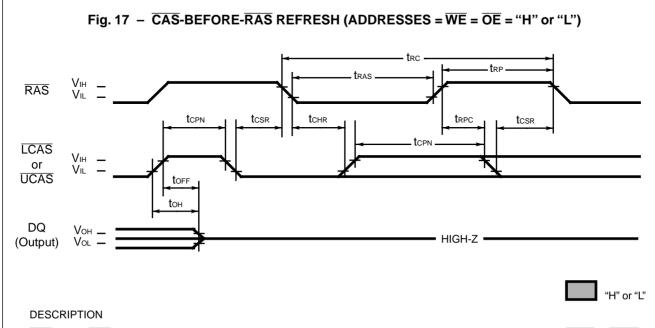


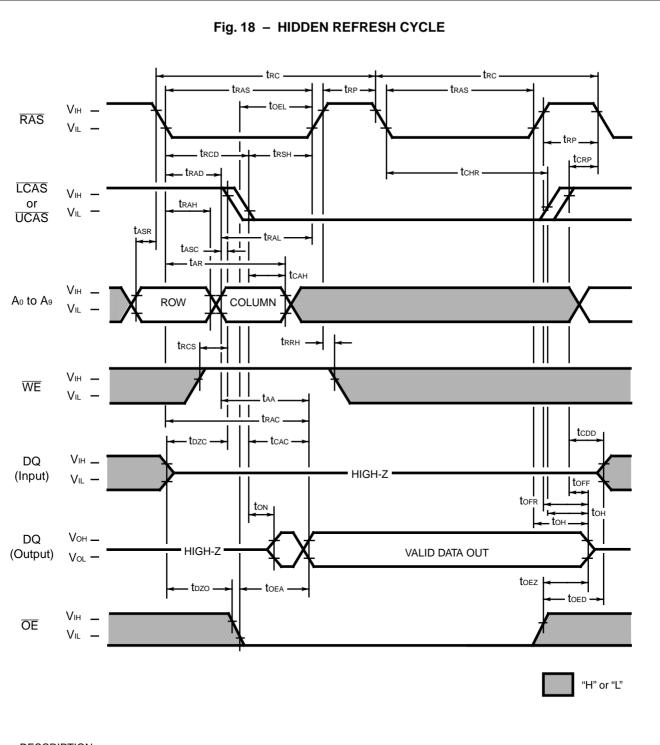

address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The address time is determined by tcac, taa, tcpa, or toEA, whichever one is the latest in occurring.



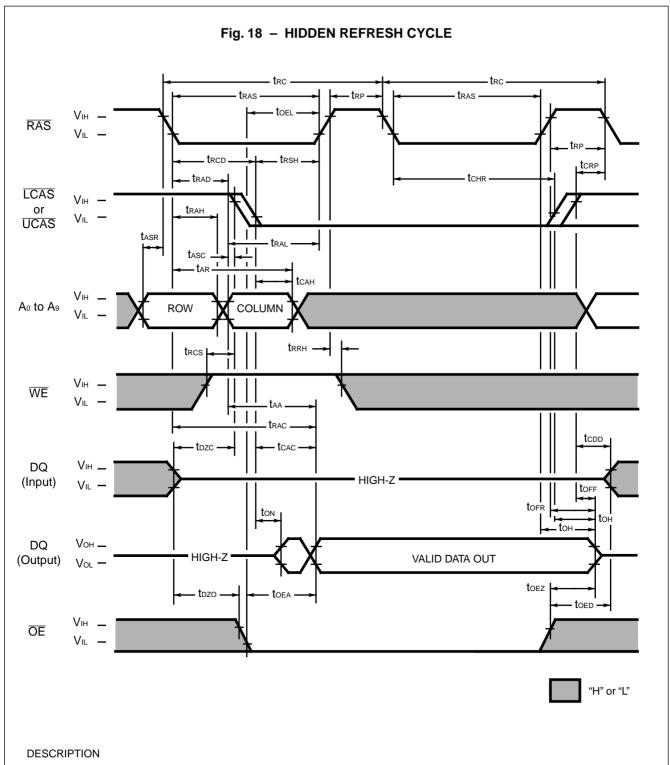

DESCRIPTION


The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The address time is determined by t_{CAC}, t_{AA}, t_{CPA}, or t_{OEA}, whichever one is the latest in occurring.

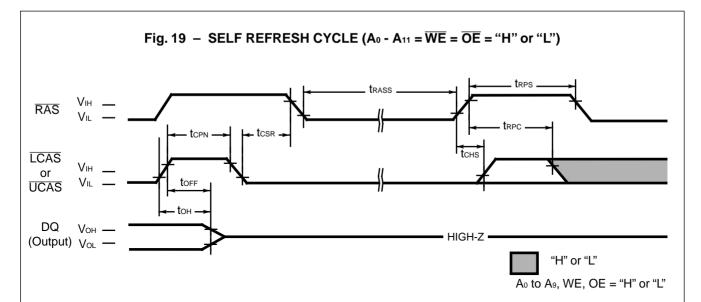




RAS-only refresh is performed by keeping RAS Low and LCAS and UCAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, DQ pins are kept in a high-impedance state.



CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If LCAS or UCAS is held Low for the specified setup time (t_{CSR}) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.



DESCRIPTION

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of LCAS or UCAS and cycling RAS. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have CAS-before-RAS refresh capability.

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of LCAS or UCAS and cycling RAS. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have CAS-before-RAS refresh capability.

(At recommended operating conditions unless otherwise noted.)

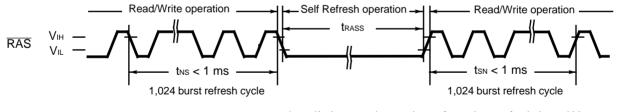
No.	Parameter	Symbol	MB8118165A-60		MB8118165A-70		Unit
			Min.	Max.	Min.	Max.	
74	RAS Pulse Width	trass	100	_	100	_	μs
75	RAS Precharge Time	trps	104	_	124	—	ns
76	CAS Hold Time	tснs	-50	—	-50	—	ns

Note: Assumes self refresh cycle only.

DESCRIPTION

The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter and timing generator.

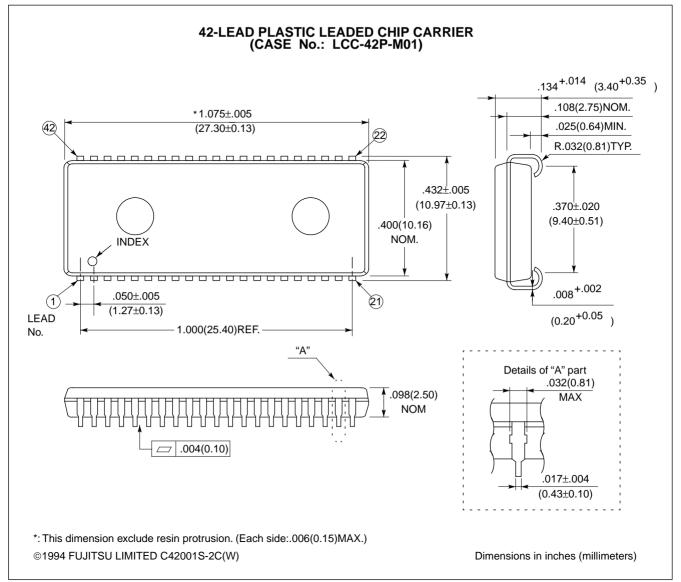
If \overline{CAS} goes to "L" before \overline{RAS} goes to "L" (CBR) and the condition of \overline{CAS} "L" and \overline{RAS} "L" is kept for term of tRASS (more than 100 μ s), the device can enter the self refresh cycle. Following that, refresh operation is automatically executed at fixed intervals using internal refresh address counter during " \overline{RAS} = L" and " \overline{CAS} =L".


Exit from self refresh cycle is performed by toggling /RAS and /CAS to "H" with specified tCHS min.. In this time, RAS must be kept "H" with specified tRPS min..

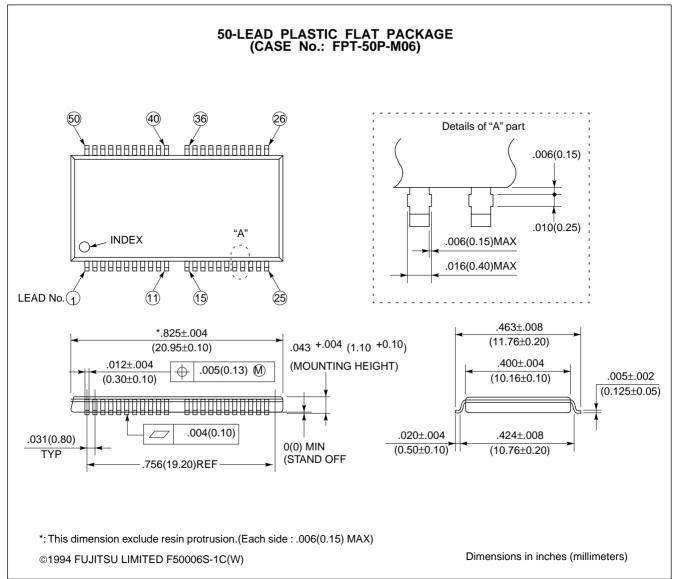
Using self refresh mode, data can be retained without external CAS signal during system is in standby.

Restriction for Self Refresh operation;

For self refresh operation, the notice below must be considered.


- 1) In the case that distributed CBR refresh are operated between read/write cycles
- Self refresh cycles can be executed without special rule if 4,096 cycles of distributed CBR refresh are executed within tREF max..
- 2) In the case that burst CBR refresh or distributed/burst /RAS only refresh are operated between read/write cycles 1,024 times of burst CBR refresh or 1,024 times of burst /RAS only refresh must be executed before and after Self refresh cycles.

* read/write operation can be performed non refresh time within t_{NS} or t_{SN}


■ PACKAGE DIMENSIONS

(Suffix: -PJ)

■ PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTN)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281 0770 Fax: (65) 281 0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.