

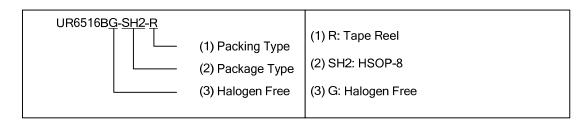
UR6516B Preliminary CMOS IC

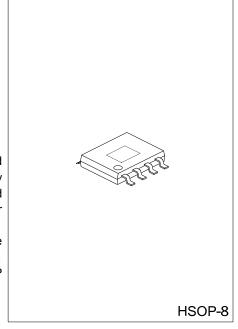
2A SINK & SOURCE ADJUSTABLE LINEAR BUS TERMINATOR

■ DESCRIPTION

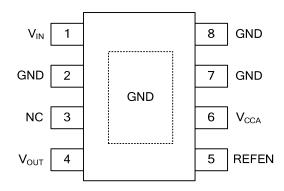
The UTC **UR6516B** is a low cost linear regulator providing a desired output voltage or termination voltage for various applications by converting voltage supplies ranging from $1V \sim 6.0V$. The desired output voltage could be programmable by two external voltage divider resistors.

The UTC **UR6516B** can source or sink up to 2A of current while regulating an output voltage to within 2% (DDR-I), 3% (DDR-II) or less.

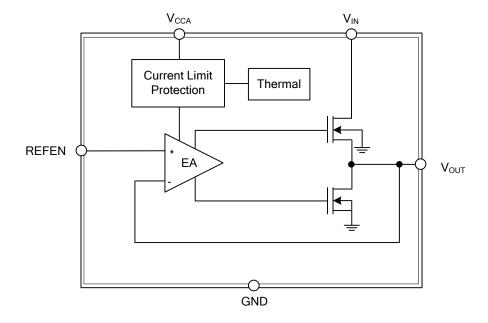

The UTC **UR6516B** can be used in applications, such as PCI/AGP graphics, game/play station, set top box, mother board.


■ FEATURES

- * Ideal for DDR-I ,DDR-II
- * Output Voltage could Drop Down to 0.6V
- * Source and Sink up to 2A, Without an External Heat Sink
- * Integrated Power MOSFETs
- * Output Voltage Varies though Adjusting External Resistors
- * I_{CCQ} is Lower than 500uA at V_{CCA}
- * Thermal Shutdown Protection, Current Limit Protection, and Short Circuit Protection Circuits Included
- * Shutdown for Standby or Suspend Mode Operation
- * Requiring Minimum External Components


ORDERING INFORMATION

Ordering Number	Package	Packing
UR6516BG-SH2-R	HSOP-8	Tape Reel


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
1	V_{IN}	Input Power
2,7,8	GND	Ground
3	NC	No Connection
4	V_{OUT}	Output Voltage
5	REFEN	Reference Voltage Input and Chip Enable
6	V_{CCA}	Voltage Supply for Internal Circuits

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} , V _{CCA}	V_{IN}, V_{CCA}	7	٧
Output RMS Current, Source or Sink		2	Α
Storage Temperature	T _{STG}	-65~125	°C

Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERRATING RATING

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Power	V_{IN}		1	2.5/1.8/1.5	6	٧
Output Voltage	V_{OUT}				V _{CCA} -1.9	٧
Reference Voltage Input and Chip Enable	REFEN				V _{CCA} -1.9	V
Voltage Supply for Internal Circuits	V_{CCA}				6	V

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ_{JC}	14	°C/W

■ ELECTRICAL CHARACTERISTICS

(T_A=25°C; V_{IN}=+2.5V and V_{CCA}=+3.3V, V_{REFEN}=1.25V, unless otherwise specified) (Note 1)

(17 20 0) 1111 2101 4114 1007	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		() () ()	.,			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output Offset Voltage (Note 2)	Vos	I _{OUT} =0A	-20		20	mV	
Operating Current at V _{IN}	I _{OP}	No load, Cout=200uF			1	mA	
Load Regulation (DDR I/II)	$\mid \Delta V_{\text{LOAD}} \mid$	I _L : 0A -> 2A		0.8/1.2	2/3	%	
		I _L : 0A -> -2A		0.8/1.2	2/3	%	
Dropout Voltage	$V_{DROPOUT}$	V _{CCA} >V _{OUT} +1.9V, I _{OUT} =2A		0.3	0.4	V	
	V DROPOUT	V _{CCA} >V _{OUT} +1.9V, I _{OUT} =1.5A		0.2	0.25	V	
Quiescent Current at V _{CCA}	I _{CCQ}	At Room Temp.		190	230	μΑ	
Current in Shutdown Mode	I _{SHDN}	V _{REFEN} <0.2V, R _L = 10 Ohm		90	110	μΑ	
Input Voltage Range (Note 3)	V_{IN}	No Load	1	2.5/1.8	6	V	
Input Voltage Range (Note 3)	V_{CCA}	R _L = 10 Ohm	3.15	3.3	6	V	
Short Circuit Protection							
Current Limit	I _{LIMIT}			5		Α	
Short Current	I_{SC}, V_{IN}	Sinking	2			Α	
Short Current	I_{SC},G_{ND}	Sourcing	2			Α	
Over Thermal Protection							
Thermal Shutdown Temperature	THSD	3.15V<=VCCA<=6V	125	150	155	°C	
Thermal Shutdown Hysteresis			25	30	35	°C	
REFEN Function							
REFEN Threshold		V _{REFEN} < V _{IN} V _{REFEN} < VCCA - 1.9V	0.4	0.5	0.6	٧	

Notes: 1. Maximum ratings are stress ratings only and functional device operation is not implied.

Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions

- 2. $V_{OS} = V_{REFEN} V_{OUT}$
- 3. Keep $V_{CCA} >= V_{IN}$ and $V_{CCA} >= V_{REFEN} + 1.9V$ on operation power on and power off sequences
- 4. Guaranteed by design, not 100% test

■ FUNCTIONAL DESCRIPTION

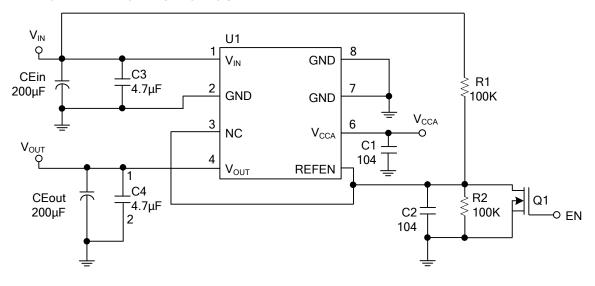
The UTC **UR6516B** is a low cost linear regulator, which can sink and source 2A of current without an external heat sink.

The UTC **UR6516B** incorporates power MOSFETs that are capable of sourcing and sinking 2A of current while keeping perfect voltage regulation. By using the external feedback, the output voltage can be regulated within 3% or less. Separate voltage supply inputs have been added to fit applications with various power supplies for the databus and power buses.

OUTPUTS

The VOUT pins (output voltage pins) are connected to the databus, address, or clock lines via an external inductor. The output voltage varies depending on the input voltage.

INPUTS


The output voltage is determined by the input voltage. The desired output voltage could be programmable by two external voltage divider resistors.

The VIN pin is suggested to connect to VDDQ of memory module for better tracking with memory VDDQ.

OTHER SUPPLY VOLTAGES

VCCA provide the voltage supply to the logic section and internal error amplifiers of UTC UR6516B.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.