

FEATURES:

- Single 3.0-Volt Read and Write Operations
- Separate Memory Banks by Address Space

Bank1: 16Mbit(1024K x 16) FlashBank2: 16Mbit(1024K x 16) Flash

- Simultaneous Read and Write Capability

- Superior Reliability
 - Endurance: 10,000Cycles

100,000Cycies(Erase Verify Mode)

Data Retention: 10years
 Low Power Consumption

Active Current, Read: 10mA(typical)
Active Current, Read & Write: 30mA(typical)
Standby Current: 5uA(typical)
Auto Low Power Mode Current: 5uA(typical)

● Fast Write Operation

Bank Erase + Program: 15sec(typical)
Block Erase + Program: 500ms(typical)
Sector Erase + Program: 45ms(typical)

- Read Access Time
 - 80nsec
- Latched Address and Data
- End of Write Detection
 - Toggle Bit / Data# Polling
- Flash Bank: Two Small Erase Element Sizes
 - 2K Words per Sector or 32K Words per Block
 - Erase either element before Word Program
- CMOS I/O Compatibility
- Packages Available
 - 48-Pin TSOP (10mm x 14mm)
- Continuous Hardware and Software Data Protection (SDP)

Product Description

The LE28DW3215AT-80 consists of two memory banks, 2each contains of 1024Kx16bits sector mode flash EEPROM manufactured With SANYO's proprietary, high performance Flash Technology. The LE28DW3215AT-80 writes with a 3.0-volt-only power supply.

The LE28DW3215AT-80 is divided into two separate memory banks. Each Flash Bank is typically used for program storage and contains 512sectors of 2K words or 32blocks of 32K words.

Any bank may be used for executing code while writing data to a different bank. Each memory bank is controlled by separate Bank selection address (A20) lines.

LE28DW3215AT-80 inherently uses less energy during Erase, and Program than alternative flash technologies. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the Flash technology uses less current to program and has a shorter Erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. The Auto Low Power mode automatically reduces the active read current to approximately the same as standby; thus, providing an average read current of approximately 1mA/MHz of Read cycle time.

Device Operation

The LE28DW3215AT-80 operates as two independent 16Megabit Word Program, Sector Erase flash EEPROMs. Two memory Banks are spareted by the address space.

The Bank1 is assigned as 000000h to 0FFFFh, Bank2 is assigned as 100000h to 1FFFFh.

All memory banks share common I/O lines, WE#, and OE#. Memory bank selection is by bank select address (A20). WE# is used with SDP to control the Erase and Program operation in each memory bank.

The LE28DW3215AT-80 provides the added functionality of being able to simultaneously read from one memory bank while erasing, or programming to one other memory bank. Once the internally controlled Erase or Program cycle in a memory bank has commenced, a different memory bank can be accessed for read. Also, once WE# and CE# are high during the SDP load sequence, a different bank may be accessed to read. LE28DW3215AT-80 which selectes banks (A20) by a address. It can be used as a normal conventinal flash memory when operats erase or program operation to only a bank at non-concurrent operation.

The device ID cannot be accessed while any bank is writing, erasing, or programming.

The Auto Low Power Mode automatically puts the LE28DW3215AT-80 in a near standby mode after data has been accessed with a valid Read operation. This reduces the I_{DD} active read current from typically 10mA to typically 5uA. The Auto Low Power mode reduces the typical I_{DD} active read current to the range of 1mA/MHz of Read cycle time. If a concurrent Read while Write is being performed, the I_{DD} is reduced to typically 40mA. The device exits the Auto Low Power mode with any address transition or control signal transition used to initiate another Read cycle, with no access time penalty.

Read

The Read operation of the LE28DW3215AT-80 Flash banks is controlled by CE# and OE#, a chip enable and output enable both have to be low for the system to obtain data from the outputs. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when OE# is high. Refer to the timing waveforms for further details (Figure3).

When the read operation is executed without address change after power switch on, CE# should be changed the level high to low. If the read operation is executed after programming, CE# should be changed the level high to low.

Write

All Write operations are initiated by first issuing the Software Data Protect (SDP) entry sequence for Bank, Block, or Sector Erase. Word Program in the selected Flash Bank. Word Program and all Erase commands have a fixed duration, that will not vary over the life of the device, i.e., are independent of the number of Erase/Program cycles endured.

Either Flash bank may be read to another Flash Bank during the internally controlled write cycle.

The device is always in the Software Data Protected mode for all write operations Write operations are controlled by toggling WE# or CE#. The falling edge of WE# or CE#, whichever occurs last, latches the address. The rising edge of WE# or CE#, whichever occurs first, latches the data and initiates the Erase or Program cycle.

For the purposes of simplification, the following descriptions will assume WE# is toggled to initiate an Erase or Program. toggling the applicable CE# will accomplish the same function. (Note, there are separate timing diagrams to illustrate both WE# and CE# controlled Program or Write commands.)

Word Program

The Word Program operation consists of issuing the SDP Word Program command, initiated by forcing CE# and WE# low, and OE# high. The words to be programmed must be in the erased state, prior to programming. The Word Program command programs the desired addresses word by word. During the Word Program cycle, the addresses are latched by the falling edge of WE#. The data is latched by the rising edge of WE#. (See Figure4-1 for WE# or 4-2 for CE# controlled Word Program cycle timing waveforms, Table3 for the command sequence, and Figure15 for a flowchart.)

During the Erase or Program operation, the only valid reads from that bank are Data# Polling and Toggle Bit. The other bank may be read.

The specified Bank, Block, or Sector Erase time is the only time required to erase. There are no preprogramming or other commands or cycles required either internally or externally to erase the Bank, block, or sector.

Erase Operations

The Bank Erase is initiated by a specific six-word load sequence (See Tables3). A Bank Erase will typically be less than 70ms. An alternative to the Bank Erase in the Flash bank is the Block or Sector Erase. The Block Erase will erase an entire Block (32K words) in typically 15ms. The Sector Erase will erase an entire sector (2048 Words) in typically 15ms. The Sector Erase provides a means to alter a single sector using the Sector Erase and Word Program modes. The Sector Erase is initiated by a specific six-word load sequence (see Table3).

During any Sector, Block, or Bank Erase within a bank, any other bank may be read.

Bank Erase

The LE28DW3215AT-80 provides a Bank Erase mode, which allows the user to clear the Flash bank to the "1" state. This is useful when the entire Flash must be quickly erased.

The software Flash Bank Erase mode is initiated by issuing the specific six-word loading sequence, as in the Software Data Protection operation. After the loading cycle, the device enters into an internally timed cycle. (See Table3 for specific codes, Figure5-1 for a timing waveform, Figure12 for a flowchart.)

Block Erase

The LE28DW3215AT-80 provides a Block Erase mode, which allows the user to clear any block in the Flash bank to the "1" state.

The software Block Erase mode is initiated by issuing the specific six-word loading sequence, as in the Software Data Protect operation. After the loading cycle, the device enters into an internally timed Erase cycle. (See Table3 for specific codes, Figure5-2 for a timing waveform, and Figure13 for a flowchart.) During the Erase operation, the only valid reads are Data# Polling and Toggle Bit from the selected bank, other banks may perform normal read.

Sector Erase

The LE28DW3215AT-80 provides a Sector Erase mode, which allows the user to clear any sector in the Flash bank to the "1" state.

The software Sector Erase mode is initiated by issuing the specific six-word loading sequence, as in the Software Data Protect operation. After the loading cycle, the device enters into an internally timed Erase cycle. (See Table3 for specific codes, Figure5-3 for the timing waveform, and Figure14 for a flowchart.) During the Erase operation, the only valid reads are Data# Polling and Toggle Bit from the selected bank, other banks may perform normal read.

Write Operation Status Detection

The LE28DW3215AT-80 provides two software means to detect the completion of a Flash bank Program cycle, in order to optimize the system Write cycle time. The software detection includes two status bits: Data# Polling (DQ7) and Toggle Bit (DQ6). The end of Write Detection mode is enabled after the rising edge of WE#, which initiates the Internal Erase or Program cycle.

The actual completion of the nonvolatile write is a synchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the Write cycle. If this occurs, the system will possibly get an erroneous result, i.e. valid data may appear to conflict with either DQ7 or DQ6. In order to prevent spurious device rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.

There is no provision to abort an Erase or Program operation, once initiated. For the SANYO Flash technology, the associated Erase and Program times are so fast, relative to system reset times, there is no value in aborting the operation. Note, reads can always occur from any bank not performing an Erase or Program operation.

Should the system reset, while a Block or Sector Erase or Word Program is in progress in the bank where the boot code is stored, the system must wait for the completion of the operation before reading the bank. Since the maximum time the system would have to wait is 25ms(for a Block Erase), the system ability to read the boot code would not be affected.

Data# Polling (DQ7)

When the LE28DW3215AT-80 is in the internal Flash bank Program cycle, any attempt to read DQ7 of the last word loaded during the Flash bank Word Load cycle will receive the complement of the true data. Once the Write cycle is completed, DQ7 will show true data. The device is then ready for the next operation. (See Figure 6 for the Flash bank Data Polling timing waveforms and Figure 16 for a flowchart.)

Toggle Bit (DQ6)

During the Flash bank internal Write cycle, any consecutive attempts to read DQ6 will produce alternating 0's and 1's, i. e. toggling between 0 and 1. When the Write cycle is completed, the toggling will stop. The device is then ready for the next operation. (See Figure 7 for the Flash bank Toggle Bit timing waveforms and Figure16 for a flowchart.)

Hardware Data Protection

Noise/Glitch Protection: A WE# pulse of less than 5ns will not initiate a Write cycle.

VDD Power Up/Down Detection: The Write operation is inhibited when VDD is less than 1.5voits

Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

The LE28DW3215AT-80 provides a protect area by hardware protection. The assigned address is the all area of Bank1, which is set up by WP# when low.

When this operation is executed, the functions which are Sector erase, Block erase or Word program can not be accepted.

When the Bank erase operation is executed, all area will be erased except protected area.

Software Data Protection (SDP)

The LE28DW3215AT-80 provides the JEDEC approved software data protection scheme as a requirement for initiating a Write, Erase, or Program operation. With this scheme, any Write operation requires the inclusion of a series of three word-load operations to precede the Word Program operation. The three-word load sequence is used to initiate the Program cycle, providing optimal protection from inadvertent Write operations, e. g., during the system powerup or power-down. The six-word sequence is required to initiate any Bank, Block, or Sector Erase operation.

The requirements for JEDEC compliant SDP are in byte format. The LE28DW8163T is organized by word; therefore, the contents of DQ8 to DQ15 are " Don't Care " during any SDP (3-word or 6-word) command sequence.

During the SDP load command sequence, the SDP load cycle is suspended when WE# is high. This means a read may occur to any other bank during the SDP load sequence.

The bank reserve in SDP load sequence is reserved by the bus cycle of command materialization. If the command sequence is aborted, e. g., an incorrect address is loaded, or incorrect data is loaded, the device will return to the Read mode within T_{RC} of execution of the load error.

Concurrent Read and Write Operations

The LE28DW3215AT-80 provides the unique benefit of being able to read any bank, while simultaneously erasing, or programming one other bank, This allows data alteration code to be executed from one bank, while altering the data in another bank. The next table lists all valid states.

Concurrent Read/Write State Table

Bank1	Bank2		
Read	No Operation		
Read	Write		
Write	Read		
No Operation	Write		
Write	No Operation		
No Operation	Read		

Note: For the purposes of this table, write means to Block, Sector, or Bank Erase, or Word Program as applicable to the appropriate bank.

The device will ignore all SDP commands and toggling of WE# when an Erase or Program operation is in progress. Note, Product Identification entry commands use SDP; therefore, this command will also be ignored while an Erase or Program, operation is in progress.

Product Identification

The product identification mode identifies the device manufacturer as SANYO and provides a code to identify each bank. The manufacturer ID is the same for each bank; however, each bank has a separate device ID. Each bank is individually accessed using the applicable Bank Address and a software command. Users may wish to use the device ID operation to identify the write algorithm requirements for each bank. (For details, see Table 3 for software operation and Figure 8 for timing waveforms.)

Product Identification Table

	Data
Maker ID	0062H
Device Code(Bank1)	25B9H
Device Code(Bank2)	25BAH

Device ID codes are unique to each bank. Should a chip ID be required, any of the bank IDs may be used as the chip ID. While in the read software ID mode, no other operation is allowed until after exiting these modes.

Product Identification Mode Exit

In order to return to the standard Read mode, the Product Identification mode must be exited. Exit is accomplished by issuing the Software ID exit command, which returns the device to normal operation. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e. g., not read correctly. For details, (see Table3 for software operation and Figures9 for timing waveforms.)

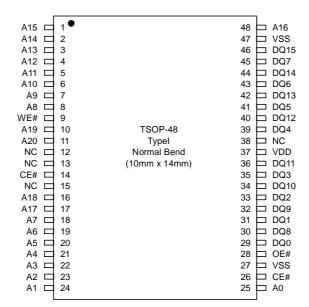


Figure1: Pin Description: TSOP48 (10mm x 14mm)

Symbol	Pin Name	Function
A20	Bank Select address	To activate the Bank1 when low, to activate the Bank2 when high.
A19-A0	Flash Bank address	To provide Flash Bank address.
A19-A15	Flash Bank Block address	To select a Flash Bank Block for erase
A19-A10	Flash Bank Sector address	To select a Flash Bank Sector for erase
DQ15-DQ0	Data Input/ Output	To output data during read cycle and receive input data during write cycle.
24.0240	Data II.pas Gatpat	The output are in tristate when OE# is high or CE# is high.
CE#	Chip Enable	To activate the Flash Bank when CE# is low.
OE#	Output Enable	To gate the data output buffers.
WE#	Write Enable	To control the write, erase or program operations.
VDD	Power Supply	To provide 3.0volts supply.(2.7volts to 3.6volts)
VSS	Ground	
NC	No Connection	Unconnected Pins

Table1: Pin Description

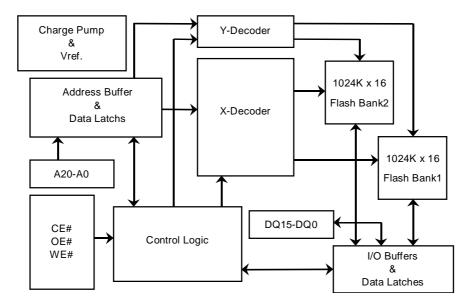


Figure 2-1: Functionally Block Diagram

	Bank1	Bank2		
Total 32 Block	Total 512 Sector	Total 32 Block Total 512 Sector		
0F8000h-0FFFFFh	0FF800h-0FFFFh	1F8000h-1FFFFFh 1FF800h-1FFFFFh		
0F0000h-0F7FFh	0FF000h-0FF7FFh 0FE800h-0FEFFFh	1F0000h-1F7FFh 1FE800h-1FEFFFh		
0E8000h-0EFFFFh	0FE000h-0FE7Fh	1E8000h-1EFFFFh \ 1FE000h-1FE7FFh		
0E0000h-0E7FFh	0FD800h-0FDFFFh	1E0000h-1E7FFFh 1FD800h-1FDFFFh		
0D8000h-0DFFFFh	0FD000h-0FD7Fh	1FD000h-1FD7FFh		
	0FC800h-0FCFFFh 0FC000h-0FC7FFh	1FC000h 1FC7FFh		
0D0000h-0D7FFh	0FB800h-0FBFFFh	1FB800h-1FBFFFh		
0C8000h-0CFFFFh	0FB000h-0FB7FFh	1C8000h-1CFFFFh 1FB000h-1FB7FFh		
0C0000h-0C7FFFh	0FA800h-0FAFFFh 0FA000h-0FA7FFh	1C0000h-1C7FFFh 1FA800h-1FAFFFh 1FA000h-1FA7FFh		
0B8000h-0BFFFFh	0F9800h-0F9FFh	1B8000h-1BFFFFh 1F9800h-1F9FFFh		
0B0000h-0B7FFFh	0F9000h-0F97FFh	1B0000h-1B7FFFh 1F9000h-1F97FFh		
0A8000h-0AFFFFh	0F8800h-0F8FFFh 0F8000h-0F87FFh	1A8000h-1AFFFFh 1F8000h-1F87FFh 1F8000h-1F87FFh		
0A0000h-0A7FFFh	01 000011-01 071 1 11	1A0000h-1A7FFFh		
098000h-09FFFFh		198000h-19FFFFh		
090000h-097FFFh		190000h-197FFFh		
088000h-08FFFFh		188000h-18FFFFh		
080000h-087FFFh		180000h-187FFFh		
078000h-07FFFFh		178000h-17FFFFh		
070000h-077FFFh		170000h-177FFFh		
068000h-06FFFFh		168000h-16FFFFh		
060000h-067FFFh		160000h-167FFFh		
058000h-05FFFFh	007800h-007FFFh	158000h-15FFFFh 107800h-107FFFh		
050000h-057FFFh	007000h-0077FFh	150000h-157FFFh 107000h-1077FFh		
048000h-04FFFFh	006800h-006FFFh 006000h-0067FFh	148000h-14FFFFh 106800h-106FFFh 106000h-1067FFh		
040000h-047FFFh	005800h-005FFFh	140000h-147FFFh 105800h-105FFFh		
038000h-03FFFFh	005000h-0057FFh 004800h-004FFFh	138000h-13FFFFh		
030000h-037FFFh	004000h-0047FFh	130000h-137FFFh		
028000h-02FFFFh	003800h-003FFFh	128000h-12FFFFh 103800h-103FFFh		
020000h-027FFFh	003000h-0037FFh 002800h-002FFFh	120000h-127FFFh		
018000h-01FFFFh	002000h-0027FFh	118000h-11FFFFh 102000h-1027FFh		
010000h-017FFFh	001800h-001FFFh	110000h-117FFFh 101800h-101FFFh		
008000h-00FFFh	001000h-0017FFh 000800h-000FFFh	108000h-10FFFh 100800h-100FFFh		
000000h-007FFFh	000000H-0007FFh	100000h-107FFh 100000h-1007FFh		

Figure2-2: Flash Sector Structure

7

Table: 2 Operating Modes Selection

Array Operating Mode	CE#	OE#	WE#	DQ	A20	A19-A0
Read						
Bank1	VIL	VIL	ViH	Dout	VIL	Ain
Bank2	VIL	VIL	Vih	Dout	ViH	Ain
Block Erase						
Bank1	VIL	ViH	VIL	DIN	VIL	See Table3
Bank2	VIL	ViH	VIL	DIN	ViH	See Table3
Sector Erase						
Bank1	VIL	ViH	VIL	DIN	VIL	See Table3
Bank2	VIL	ViH	VIL	DIN	ViH	See Table3
Program						
Bank1	VIL	ViH	VIL	DIN	VIL	See Table3
Bank2	VIL	ViH	VIL	DIN	ViH	See Table3
Stand-by	ViH	Х	Χ	High Z	Х	X
Write Inhibit	ViH	VIL	VIL	X	Х	X
Bank Erase						
Bank1	VIL	ViH	VIL	DIN	VIL	See Table3
Bank2	VIL	ViH	VIL	DIN	ViH	See Table3
Status Operating Mode	CE#	OE#	WE#	DQ	A20	A19-A0
Product Identification						
Bank1	VIL	VIL	Vih	Dout	VIL	A19-A1=VIL Note3)
Bank2	VIL	VIL	ViH	Dout	VIH	A0=VIL or VIH

Note1: Entering an illegal state during an Erase, Program, or Write operation will not affect the operation, i. e., the erase program, or write will continue to normal completion

Table: 3 Software Command Codes

	1st Bu	s Cycle	2nd Bu	s Cycle	3rd Bus	S Cycle	4th Bus	S Cycle	5th Bus	s Cycle	6th Bus	S Cycle
Command Code	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5
Software ID Entry	5555	AA	2AAA	55	5555 +Bax	90	Note2					
Software ID Exit	5555	AA	2AAA	55	5555 +Bax	F0	Note3					
Word Program	5555	AA	2AAA	55	5555	A0	Word Address	Data In				
Sector Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	SAX +BAX	30
Block Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	Lax +Bax	50
Bank Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555 +Bax	10

Notes for Software Command Code:

1.Command Code Address format: A14 - A0 are in HEX code.

When Byte Mode, the format is only used by A14-A0.

2.With A19-A0=0;

Sanyo Manufacturer Code = 0062H is read with A0=0.

Sanyo LE28DW3215AT-80 Device code 25B9h, 25BAh is read with A0=1.

- 3. The device does not remain in software product ID Mode if powered down.
- 4. Address A20 to A15 are "Don't Care" for Command sequences.

A20 is bank selection address have been reserved in last bus cycle of command sequence.

- 5.Data format DQ0 to DQ7 are in HEX and DQ8 to DQ15 are "Don't care".
- 6.Bax = Bank address: A20, Lax= Block address: A19 to A15, Sax = Sector address: A19 to A11.

[Absolute Maximum Stress Ratings]

Applied conditions greater then those listed under "absolute maximum Stress Ratings "may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.

Storage Temperature : -65° C to $+150^{\circ}$ C D.C.Voltage on Any Pin to Ground Potential : -0.5V to V_{DD}+0.5V

Transient Voltage (<20ns) on Any Pin to Ground Potential : -1.0V to VDD+1.0V

RESET# pin Voltage to Ground Potential : -0.5V to +13.0V

Package Power Dissipation Capability (Ta=25°C) : 1.0W

[Operating Range]

Ambient Temperature : 0°C to +70°C VDD : 2.7V to 3.6V

[AC condition of Test]

Input Rise/Fall Time : 5ns
Output Load (See Figures 10 and 11) : CL=30pF

[DC Operating Characteristics]

Symbol	Parameter	Min	Max	Unit	Test Condition
	Power Supply current		20	mA	CE#=V _{IL} ,WE#=V _{IH} , I/O's open,
	Read				Address Input=V _{IL} / V _{IH} ,at f=10MHz,
					$V_{DD}=V_{DD}(Max)$
I_{DD}	Erase / Program		40	mA	$CE\#=WE\#=V_{IL}$, $OE\#=V_{IH}$, $V_{DD}=V_{DD}(Max)$
	Read+Erase / Program		60	mA	CE#=V _{IL} ,OE#=WE#=V _{IH} ,
					Address Input=V _{IL} / V _{IH} ,at f=10MHz,
					$WE\#=V_{IH}$, $V_{DD}=V_{DD}(Max)$
I _{SB}	Standby current		40	uA	CE#=V _{IHC} , V _{DD} =V _{DD} (Max)
128	(CMOS input)		40	uΛ	OL#-VIHC; VDD-VDD(IVIAX)
ILI	Input Leak current		10	uA	$V_{IN}=V_{SS}$ to V_{DD} , $V_{DD}=V_{DD}(Max)$
I_{OL}	Output Leak current		10	uA	$V_{OUT} = V_{SS}$ to V_{DD} , $V_{DD} = V_{DD}(Max)$
V_{IL}	Input Low Voltage		V _{DD} *0.2	V	
V_{ILC}	Input Low Voltage(CMOS)		0.2	V	
V_{IH}	Input High Voltage	$V_{DD}^*0.8$		V	
V_{IHC}	Input High Voltage(CMOS)	V _{DD} -0.2		V	
V_{OL}	Output Low Voltage		0.2	V	$I_{OL}=100uA$, $V_{DD}=V_{DD}(Min)$
V_{OH}	Output High Voltage	V _{DD} -0.2		V	I_{OH} =-100uA , V_{DD} = V_{DD} (Min)

[Recommand System Power-up Timings]

Symbol	Parameter	Max	Units
T _{PU} -READ ⁽¹⁾	Power-up to Read Operation	200	us
T _{PU} -WRITE ⁽¹⁾	Power-up to Write Operation	200	us

Note (1): This Parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

[Capacitance (Ta=25°C, f=1MHz,other pins open)]

Symbol	Parameter	Test Condition	Max
$C_{DQ}^{(1)}$	I/O Pin Capacitance	$V_{DQ}=0V$	12pF
$C_{IN}^{(1)}$	Input Capacitance	$V_{IN}=0V$	6pF

Note (1): This Parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

[Reliability Characteristic]

Symbol	Parameter	Min Spec	Units
N _{END} ⁽¹⁾	Endurance	10,000 100,000 ⁽²⁾	Cycle / Sector
$T_{DR}^{(1)}$	Data Retention	10	Years

Note (1): This Parameter is measured only for initial qualification and after a design or process change that could affect this parameter. Note (2): In case of Erase Verify Mode.

[AC Characteristic]

Read Cycle Timing Parameters

Symbol	Parameter	Min	Max	Units
T _{RC}	Read Cycle Time	80		ns
T _{CE}	CE# Access Time		80	ns
T _{AA}	Address Access Time		80	ns
T _{OE}	OE# Access Time		40	ns
T _{CLZ} ⁽¹⁾	CE# Low to Active Output	0		ns
T _{OLZ} ⁽¹⁾	OE# Low to Active Output	0		ns
T _{CHZ} ⁽¹⁾	CE#High to High-Z Output		30	ns
T _{OHZ} ⁽¹⁾	OE#High to High-Z Output		30	ns
T _{OH} ⁽¹⁾	Output Hold from Address Change	0		ns

Write, Erase, Program Cycle, Timing Parameters

Symbol	Parameter	Min	Max	Units
T _{BP}	Word Program Time		20	us
T _{SE}	Sector Erase Time		25	ms
T _{LE}	Block Erase Time		25	ms
T _{BE}	Bank Erase Time		100	ms
T _{AS}	Address Setup Time	0		ns
T _{AH}	Address Hold Time	50		ns
T _{CES}	CE# Setup Time	0		ns
Тсен	CE# Hold Time	0		ns
T _{WES}	WE# Setup Time	0		ns
T _{WEH}	WE# Hold Time	0		ns
T _{OES}	OE# High Setup Time	0		ns
T _{OEH}	OE# High Hold Time	0		ns
T _{WP}	WE# Puls Low Width	50		ns
T _{WPH}	WE# Puls High Time	30		ns
T _{DS}	Data Setup Time	50		ns
T _{DH}	Data Hold Time	0		ns
T _{VDDR} ⁽¹⁾	VDD Rise Time	0.1	50	ms
T _{IDA}	ID READ / Exit Cycle Time	150		ns

Note (1): This Parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

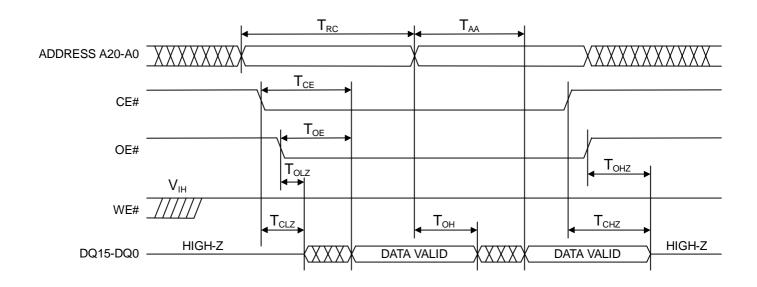


Figure3: Read Cycle Timing Diagram

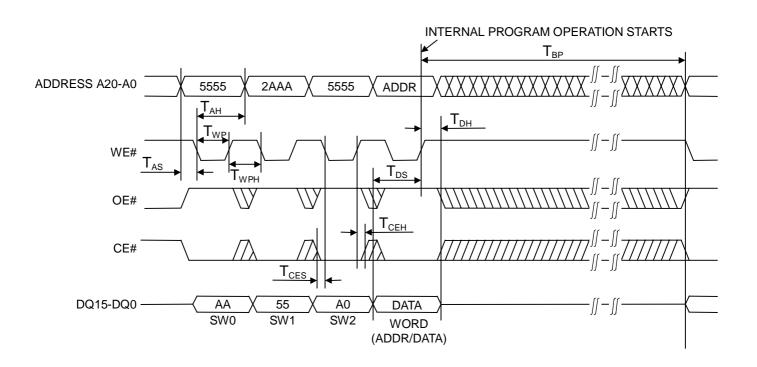


Figure4-1: WE# Controlled Word Program Cycle Timing Diagram

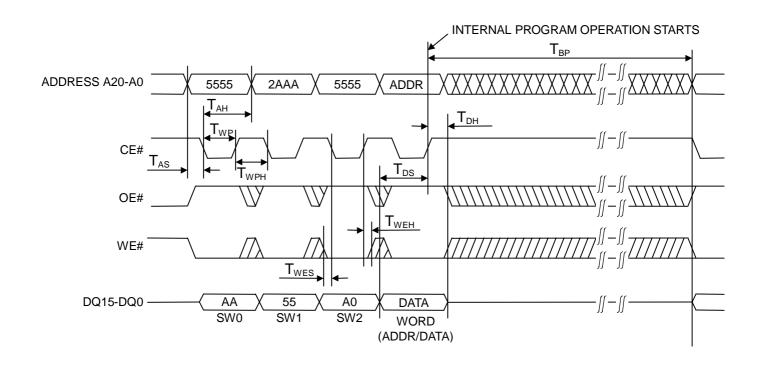


Figure4-2: CE# Controlled Word Program Cycle Timing Diagram

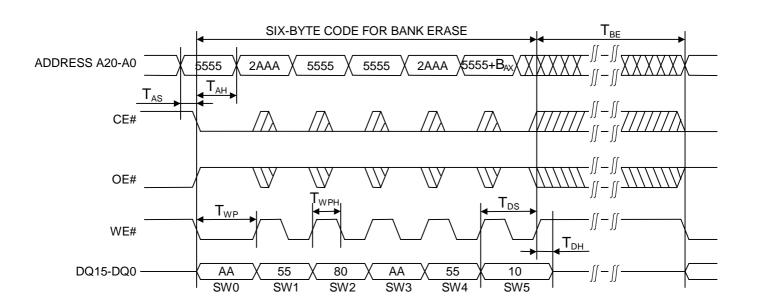


Figure 5-1: Bank Erase Cycle Timing Diagram

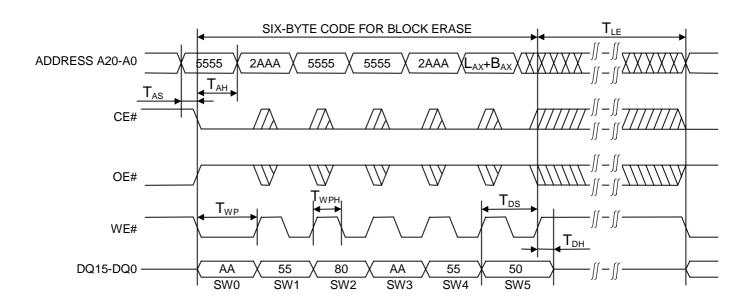


Figure 5-2: Block Erase Cycle Timing Diagram

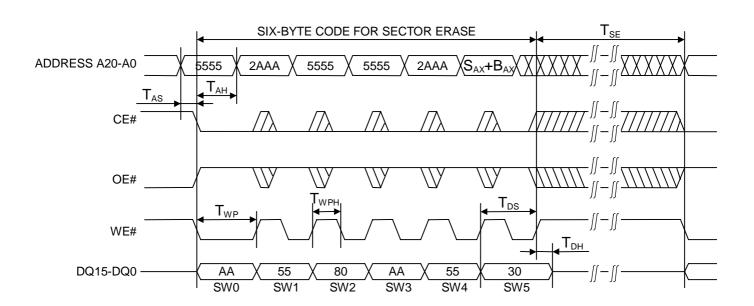


Figure 5-3: Sector Erase Cycle Timing Diagram

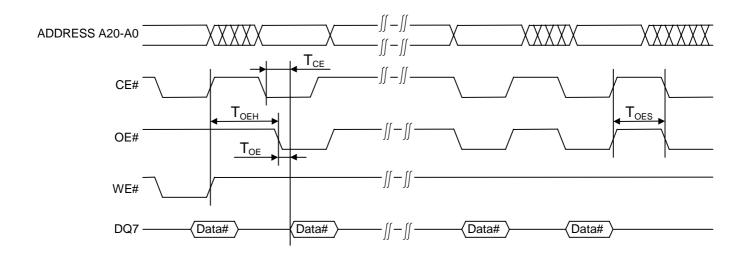


Figure6: Data# Polling Timing Diagram

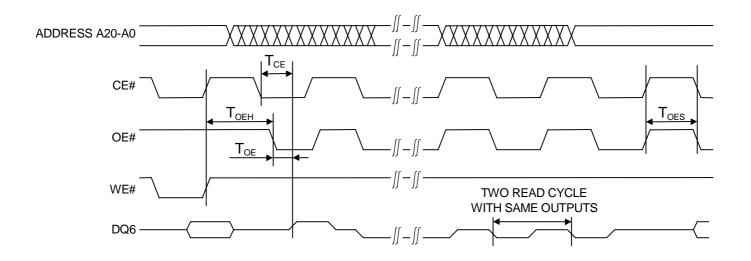


Figure7: Toggle Bit Timing Diagram

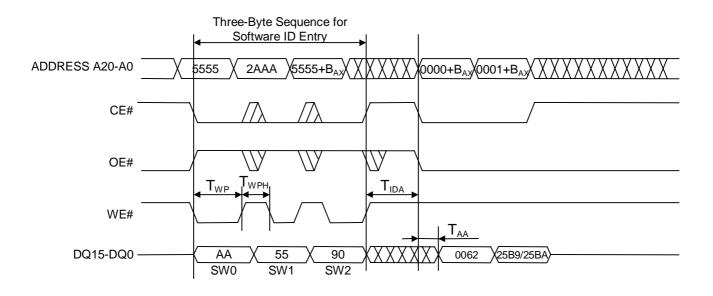


Figure8: Software ID Entry and Read

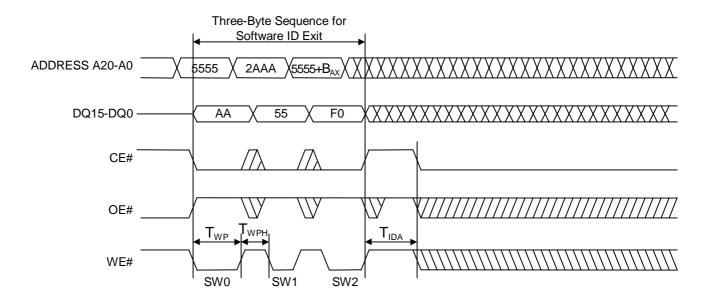
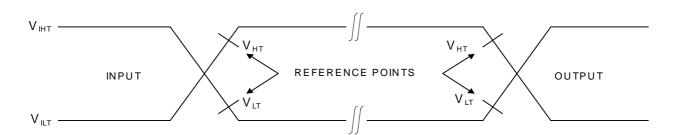



Figure9: Software ID Exit

AC test inputs are driven at VIHT (VDD*0.9) for a logic "1" and VILT (VDD*0.1) for a logic "0" Measurement reference points for inputs and outputs are at VHT (VDD*0.7) and VLT (VDD*0.3) input rise and fall times (10% to 90%) are<10ns.

Figure 10: AC I/O Reference Waveforms

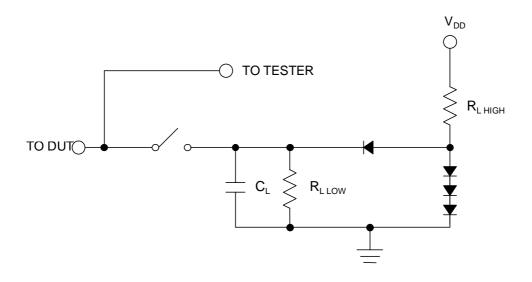


Figure11: A Test Load Example

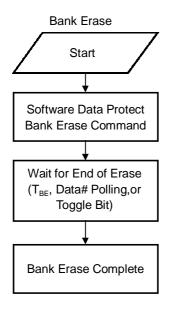


Figure12: Bank Erase Flowchart

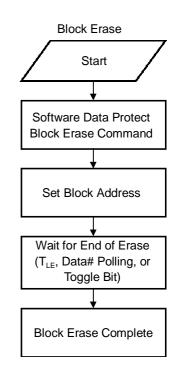


Figure 13: Block Erase Flowchart

Figure14: Sector Erase Flowchart

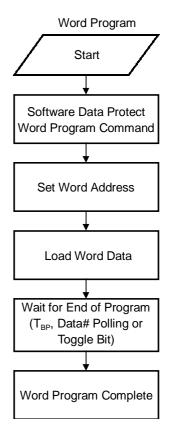


Figure15: Word Program Flowchart

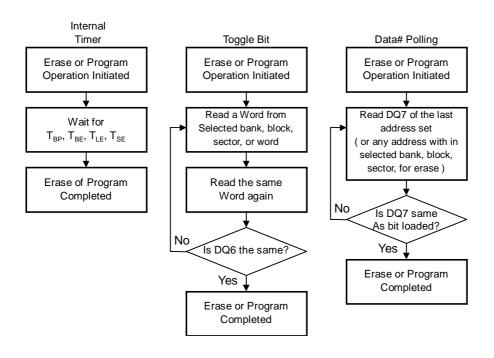


Figure16: End of Erase or Program Wait Options Flowchart