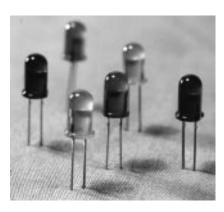


T-1³/4 (5 mm) High Intensity LED Lamps

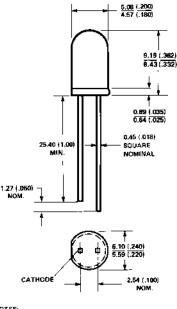
Technical Data

Features


- High Intensity
- Choice of 3 Bright Colors High Efficiency Red Yellow High Performance Green
- Popular T-1³/4 Diameter Package
- Selected Minimum Intensities
- Narrow Viewing Angle
- General Purpose Leads

Selection Guide

- Reliable and Rugged
- Available on Tape and Reel


Description

This family of $T-1^{3}/4$ nondiffused LED lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect. HLMP-331x Series HLMP-341x Series HLMP-351x Series

Package Dimensions

Part Number HLMP-	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
3315	Illuminator/ Point Source	13.8	High Efficiency Red (GaAsP on GaP)
3316	Illuminator/ High Brightness	22	(GaASE OIL GAE)
3415	Illuminator/ Point Source	9.2	Yellow (GaAsP on GaP)
3416	Illuminator/ High Brightness	14.7	
3517	Illuminator/ Point Source	6.7	Green (GaP)
3519	Illuminator/ High Brightness	10.6	

NOTES: 7. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT Imm (.040") DOWN THE LEADS.

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I _V	Luminous Intensity	$3315 \\ 3316$	13.8 22	$\begin{array}{c} 40.0\\ 60.0\end{array}$		mcd	$I_F = 10 \text{ mA} \text{ (Figure 3)}$
		$\begin{array}{r} 3415\\ 3416\end{array}$	$9.2 \\ 14.7$	40.0 50.0		mcd	$I_F = 10 \text{ mA} \text{ (Figure 8)}$
		$3517 \\ 3519$	6.7 10.6	50.0 70.0		mcd	$I_{\rm F} = 10 \text{ mA} \text{ (Figure 13)}$
	Including Angle Between Half Luminous Intensity Points	$3315 \\ 3316$		35 35		Deg.	$I_F = 10 \text{ mA}$ See Note 1 (Figure 6)
		$\begin{array}{c} 3415\\ 3416\end{array}$		35 35		Deg.	$I_F = 10 \text{ mA}$ See Note 1 (Figure 11)
		$3517 \\ 3519$		24 24		Deg.	$I_F = 10 \text{ mA}$ See Note 1 (Figure 16)
λ_{PEAK}	Peak Wavelength	331X 341X 351X		635 583 565		nm	Measurement at Peak (Figure 1)
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	331X 341X 351X		40 36 28		nm	
λ_{d}	Dominant Wavelength	331X 341X 351X		$626 \\ 585 \\ 569$		nm	See Note 2 (Figure 1)
τ _s	Speed of Response	331X 341X 351X		90 90 500		ns	
С	Capacitance	331X 341X 351X		11 15 18		pF	$V_F = 0; f = 1 \text{ MHz}$
$R\theta_{J-PIN}$	Thermal Resistance	331X 341X 351X		260		°C/W	Junction to Cathode Lead
V _F	Forward Voltage	331X 341X 351X		1.9 2.0 2.1	2.4 2.4 2.7	V	$I_F = 10 \text{ mA (Figure 2)}$ $I_F = 10 \text{ mA (Figure 7)}$ $I_F = 10 \text{ mA (Figure 12)}$
V _R	Reverse Breakdown Volt.	All	5.0			V	$I_R = 100 \ \mu A$
η _v	Luminous Efficacy	331X 341X 351X		145 500 595		lumens Watt	See Note 3

Electrical Characteristics at $T_A = 25 \,^{\circ}C$

Notes:

1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

3. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Parameter	331X Series	341X Series	351X Series	Units		
Peak Forward Current	90	60	90	mA		
Average Forward Current ^[1]	25	20	25	mA		
DC Current ^[2]	30	20	30	mA		
Power Dissipation ^[3]	135	85	135	mW		
Reverse Voltage ($I_R = 100 \ \mu A$)	5	5 5		V		
Transient Forward Current ^[4] (10 μsec Pulse)	500	500	500	mA		
LED Junction Temperature	110	110	110	°C		
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	°C		
Storage Temperature Range	_		-55 to +100			
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260°C for 5 seconds					

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Notes:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.

2. For Red and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.

3. For Red and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.

4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

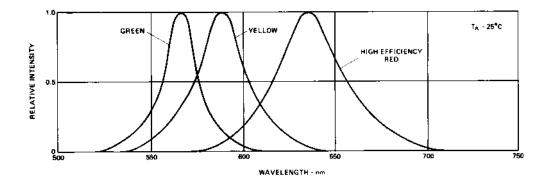
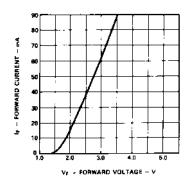



Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red HLMP-331X Series

Figure 2. Forward Current vs. Forward Voltage Characteristics.

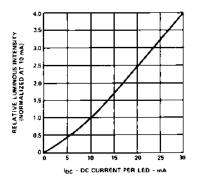


Figure 3. Relative Luminous Intensity vs. DC Forward Current.

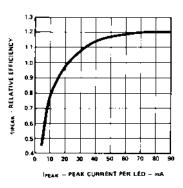


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

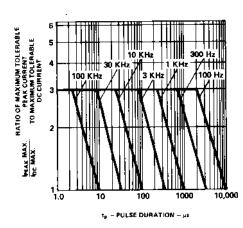


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

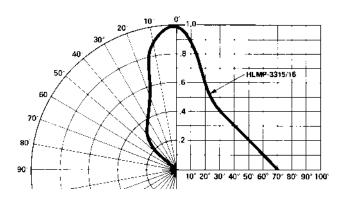


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

4

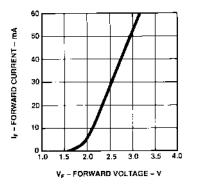


Figure 7. Forward Current vs. Forward Voltage Characteristics.

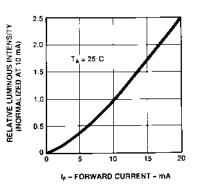


Figure 8. Relative Luminous Intensity vs. DC Forward Current.

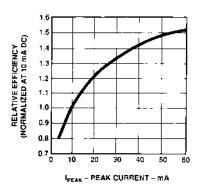


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

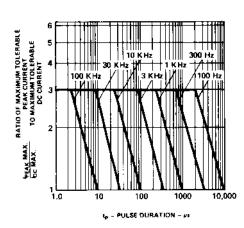


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

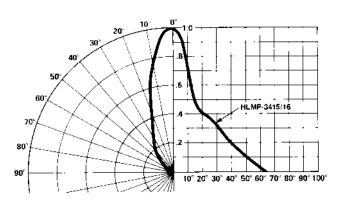


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-351X Series

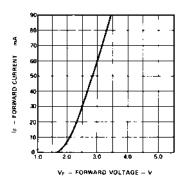


Figure 12. Forward Current vs. Forward Voltage Characteristics.

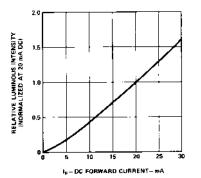


Figure 13. Relative Luminous Intensity vs. DC Forward Current.

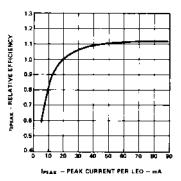


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

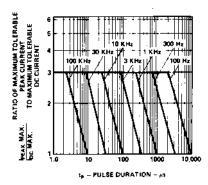


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

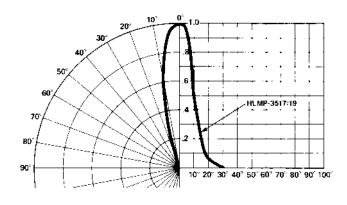


Figure 16. Relative Luminous Intensity vs. Angular Displacement. T-1 $^{3}\!/\!4$ Lamp.

Agilent Technologies

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies, Inc. Obsoletes 5963-3853E 5964-9293E (11/99)