## DATA S凡RE®

BFS17A
NPN 3 GHz wideband transistor
Product specification
File under Discrete Semiconductors, SC14

## DESCRIPTION

NPN transistor in a plastic SOT23 package.

## APPLICATIONS

- It is intended for RF applications such as oscillators in TV tuners.


## PINNING

| PIN | DESCRIPTION |
| :---: | :--- | :--- |
| 1 | base |
| 2 | emitter |
| 3 | collector |

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CBO }}$ | collector-base voltage | open emitter | - | 25 | V |
| $\mathrm{V}_{\text {CEO }}$ | collector-emitter voltage | open base | - | 15 | V |
| $\mathrm{I}_{\mathrm{C}}$ | DC collector current |  | - | 25 | mA |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation | up to $\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$; note 1 | - | 300 | mW |
| $\mathrm{f}_{\mathrm{T}}$ | transition frequency | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$ | 2.8 | - | GHz |
| $\mathrm{G}_{\text {UM }}$ | maximum unilateral power gain | $\mathrm{I}_{\mathrm{C}}=14 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=800 \mathrm{MHz}$ | 13.5 | - | dB |
| F | noise figure | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=800 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$ | 2.5 | - | dB |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage | $\begin{aligned} & \hline \mathrm{d}_{\mathrm{im}}=-60 \mathrm{~dB} ; \mathrm{I}_{\mathrm{C}}=14 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \\ & \mathrm{f}_{(\mathrm{p}+\mathrm{q}-\mathrm{r})}=793.25 \mathrm{MHz} \\ & \hline \end{aligned}$ | 150 | - | mV |

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\text {CBO }}$ | collector-base voltage | open emitter | - | 25 | V |
| $\mathrm{~V}_{\text {CEO }}$ | collector-emitter voltage | open base | - | 15 | V |
| $\mathrm{~V}_{\text {EBO }}$ | emitter-base voltage | open collector | - | 2.5 | V |
| $\mathrm{I}_{\mathrm{C}}$ | DC collector current |  | - | 25 | mA |
| $\mathrm{I}_{\text {CM }}$ | peak collector current |  | - | 50 | mA |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation | up to $\mathrm{T}_{\mathrm{s}}=70^{\circ} \mathrm{C}$; note 1 | - | 300 | mW |
| $\mathrm{~T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature |  | - | 150 | ${ }^{\circ} \mathrm{C}$ |

## Note to the Quick reference data and the Limiting values

1. $\mathrm{T}_{\mathrm{s}}$ is the temperature at the soldering point of the collector pin.

## THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | CONDITIONS | VALUE | UNIT |
| :--- | :--- | :--- | :---: | :---: |
| $R_{\text {th } j-s}$ | thermal resistance from junction to soldering point | up to $T_{s}=70^{\circ} \mathrm{C}$; note 1 | 260 | K/W |

## Note

1. $\mathrm{T}_{\mathrm{s}}$ is the temperature at the soldering point of the collector pin.

## CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {cbo }}$ | collector cut-off current | $\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$ | - | - | 50 | nA |
| $\mathrm{h}_{\text {FE }}$ | DC current gain | $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ | 25 | 90 | - |  |
|  |  | $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=1 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ | 25 | 90 | - |  |
| $\mathrm{f}_{\mathrm{T}}$ | transition frequency | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$ | - | 2.8 | - | GHz |
| $\mathrm{C}_{\mathrm{c}}$ | collector capacitance | $\begin{aligned} & \mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$ | - | 0.7 | - | pF |
| $\mathrm{C}_{\text {e }}$ | emitter capacitance | $\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\text {EB }}=0.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ | - | 1.25 | - | pF |
| $\mathrm{C}_{\text {re }}$ | feedback capacitance | $\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ | - | 0.6 | - | pF |
| Gum | maximum unilateral power gain note 1 | $\mathrm{I}_{\mathrm{C}}=14 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=10 \mathrm{~V} ; \mathrm{f}=800 \mathrm{MHz}$ | - | 13.5 | - | dB |
| F | noise figure | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{Z}_{\mathrm{S}}=60 \Omega ; \\ & \mathrm{f}=800 \mathrm{MHz} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{aligned}$ | - | 2.5 | - | dB |
| $\mathrm{V}_{0}$ | output voltage | note 2 | - | 150 | - | mV |

## Notes

1. Gum is the maximum unilateral power gain, assuming $S_{12}$ is zero and $G_{U M}=10 \log \frac{\left|S_{21}\right|^{2}}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)} d B$.
2. $\mathrm{d}_{\mathrm{im}}=-60 \mathrm{~dB}$ (DIN 45004B); $\mathrm{I}_{\mathrm{C}}=14 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{o}} ; \mathrm{f}_{\mathrm{p}}=795.25 \mathrm{MHz}$;
$\mathrm{V}_{\mathrm{q}}=\mathrm{V}_{\mathrm{O}}-6 \mathrm{~dB} ; \mathrm{f}_{\mathrm{q}}=803.25 \mathrm{MHz}$;
$\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{O}}-6 \mathrm{~dB} ; \mathrm{f}_{\mathrm{r}}=805.25 \mathrm{MHz}$;
measured at $\mathrm{f}_{(\mathrm{p}+\mathrm{q}-\mathrm{r})}=793.25 \mathrm{MHz}$.


Fig. 2 Intermodulation distortion and second order intermodulation distortion test circuit.


NPN 3 GHz wideband transistor


Fig. 5 Transition frequency as a function of collector current.

$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{Z}_{\mathrm{s}}=60 \Omega ; \mathrm{f}=800 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. 6 Minimum noise figure as a function of collector current.

## PACKAGE OUTLINE



Dimensions in mm.
Fig. 7 SOT23.

## DEFINITIONS

## Data sheet status

| Objective specification | This data sheet contains target or goal specifications for product development. |  |
| :--- | :--- | :---: |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |  |
| Product specification | This data sheet contains final product specifications. |  |
| Limiting values |  |  |

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

## Application information

Where application information is given, it is advisory and does not form part of the specification.

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

