HYBRID VOLTAGE REGULATORS CJCA002 CJCA007 CJCA008 CJCA001 ## VARIABLE OUTPUT HYBRID VOLTAGE REGULATORS ± 8V TO ± 56V ## **5 AMPERES** #### **FEATURES** POSITIVE, NEGATIVE SUPPLY OPERATION **5A CURRENT RATING 60V LINE VOLTAGE CAPABILITY** LINE AND LOAD REGULATION OUTPUT VOLTAGE ADJUSTED FROM 8 TO 56 VOLTS BY A RESISTOR DIVIDED NETWORK. ALL DEVICES ARE PLANAR OXIDE PASSIVATED. BERILLIA CERAMIC ISOLATION PADS. #### **APPLICATIONS** - INDUSTRIAL CONTROLS - INSTRUMENTATION - COMPUTERS, DATA TERMINALS - MILITARY EQUIPMENT, SPACE AND TELECOMMUNICATIONS - DISTRIBUTED POWER SYSTEMS #### **MAXIMUM RATINGS** MEDICAL ELECTRONICS DC MOTOR SUPPLIES | • . | | CJCA001 CJCA002
CJCA007 CJCA008 | |-------------------|--------------------------------------|------------------------------------| | ± V _{in} | INPUT VOLTAGE (FIGS. 2, 3 PINS 1-7) | 60 V | | lopk | PEAK LOAD CURRENT (FIGS. 2, 3 PIN 2) | 5 A | | TA | OPERATING TEMPERATURE | 55°C to +150°C | | T _{stg} | STORAGE TEMPERATURE | 55°C to +150°C | | R _Ø JC | THERMAL RESISTANCE, JUNCTION TO CASE | 3°C/W | | PD | POWER DISSIPATION (100°C) | 50 W | | REGULATORS | CJCA | 001 | 002 | 007 | 008 | UNITS | |----------------------------------|------|-----------|-----------|-----------|-----------|-----------------| | Output Voltage Range | | +8 to +56 | -8 to -56 | - | - | V _{dc} | | with FET Internal Current Source | | | - | +8 to +56 | -8 to -56 | V _{dc} | CJCA 007 and 008 incorporate a FET constant current source, which provides current mode regulation automatically. A minimum inputoutput voltage differential of 4 volts is recommended to bias the FET into its constant current region. At lower voltages the FET becomes www.DataSheet4U.com resistive, and regulation reverts back to basic mode. # HYBRID VOLTAGE REGULATORS CJCA001 CJCA002 CJCA007 CJCA008 **ELECTRICAL CHARACTERISTICS** $(T_C = 25^{\circ}C. |\pm V_{IM}| = 28V. |\pm V_{Q}| = 20V. |\pm I_{Q}| = 14$ Unless otherwise moted) | CHARACTERISTICS | | | SYMBOL | MIN. | MAX. | UNITS | |---|---------|---------|---------------------------|------|--------|----------| | INPUT VOLTAGE | | | ±V _{in} | | | <u> </u> | | | CJCA001 | CJCA002 | | 10 | 60 | v | | | CJCA007 | CJCA008 | | 12 | 60 | v | | OUTPUT VOLTAGE RANGE | | | ± V ₀ | 8 | 56 | ٧ | | INPUT-OUTPUT DIFFERENTIAL | | | A V | | | | | | CJCA001 | CJCA002 | | 2 | 50 | v | | | CJCA007 | CJCA008 | | 4 | 50 | v | | LOAD REGULATION | | | Δ V _o | | | | | $(I_0 = OA-5.0A)$ | | | V _o | | 0.5 | % | | LINE REGULATION | | | ΔV _o | | | | | $(V_{in} \pm 20\%, I_0 = 1.0A)$ | CJCA001 | CJCA002 | V _o | | 2.0 | % | | | CJCA007 | CJCA008 | | | 0.5 | % | | RIPPLE ATTENUATION | | | | | | | | (fig. 11, fig. 12) | CJCA001 | CJCA002 | | 32 | | db | | | CJCA007 | CJCA008 | | 62 | | db | | TEMPERATURE COEFFICIENT | | | ΔV _o | | | | | $(-55^{\circ}C \le T_{A} \le + 125^{\circ}C)$ | | | V _o Δ T | | ± 0.02 | %/°C | FIGURE 1 FIGURE 3 www.DataSheet4U.com # HYBRID VOLTAGE REGULATORS CJCA001 CJCA002 CJCA007 CJCA008 #### REGULATORS WITH FET INTERNAL CURRENT SOURCE AND LIMIT Hook up per Fig. 2 and 3, but V_1 and V_0 are negative voltage ### LOAD REGULATION #### TYPICAL CURVES ## LINE REGULATION FIGURE 10 #### HYBRID VOLTAGE REGULATORS CJCA002 CJCA007 CJCA008 CJCA001 ## RIPPLE ATTENUATION BASIC MODE FIGURE 11 HOOK UP FOR CJCA 007 and CJCA 008 See note 2 for above application #### NOTES: 1. Reference diode is 6.2 \pm .3 volts, and the VBE of the feedback transistor is 0.6 \pm .1 volt, giving $V_{6-7} = 6.4$ to 7.2 volts, temperature compensated. External divider R_1 and R_2 in Figs. 2, 3 and 13 determines the output voltage Vo. $$V_0 = V_{6.7} \left(\frac{R_1 + R_2}{R_1} \right) \approx 7v \left(\frac{R_1 + R_2}{R_1} \right)$$ www.DataSheet4LL.com # HYBRID VOLTAGE REGULATORS CJCA001 CJCA002 CJCA007 CJCA008 - 1. (cont'd.) Recommended maximum value for R₁ is $7K\Omega(I_{min.}=1ma)$, typical usage being $1K\Omega$ to $5K\Omega$. R₂ must be determined experimentally for each regulator for a particular value of V₀, due to the variations in V₆₋₇. - 2. Current limiting capability is provided on the CJCA 007 and CJCA 008. Rsc may be selected to limit I_0 and I_{SC} as shown in Fig. 13. The user must be sure that the dissipation rating is not exceeded in worst-case operation (see Fig. 10). Also, for $V_1 V_0$ (= V_1 for a shorted load) greater than 20 volts, a further limitaton is second breakdown of the pass transistor (see Fig. 14). #### Example: Resistors R_1 and R_2 are found from note 1. - Current limiting for CJCA 001 and CJCA 002 can be provided by adding a NPN(PNP) transistor and resistors hooked-up as shown in Figs. 5, 6 and 13. Resistor values are found in notes 1 and 2. - 4. Oscillaton suppression may be best obtained if needed by connecting a capacitor from pin 5 to pin 7; 0.01uf is usually sufficent. A capacitor at the input (pin 1 to 7) or output (pin 2 to 7) may also be helpful. When using a capacitor on the ouput, and not current limiting, care must be taken that the capacitance is not so large that an excessive turn-on surge current develops, damaging the pass transistor. - Inductive surges on the output may be suppressed by adding a reverse-biased diode on the output returned to ground. www.DataSheet4U.com # HYBRID VOLTAGE REGULATORS CJCA001 CJCA002 CJCA007 CJCA008 6. Output current and power capability may be increased by driving an external power pass transistor. Figure 16 below illustrates for the regulator CJCA 007. For the negative regulators, reverse the polarities and use external pnp pass transistor. Be sure to maintain safe operating area conditions for both the regulator and the external transistors. All resistor values are found in notes 1 and 2 and Figs. 5, 6 and 13. Output current and power may be increased, and input-output voltage differential reduced, by the use of one or more external pnp pass transistors for the positive regulators. Figure 17 below illustrates for CJCA 001. Thus, Vo is not restricted by the input-output differential of the regulator, which sales to the sales of the regulator. www DataSheet4U com # HYBRID VOLTAGE REGULATORS CJCA001 CJCA002 CJCA007 CJCA008 #### 8. Regulator Failures - a. Regulator failures are caused by overdissipating the series pass transitor. Excessive heating in the pass transistor causes it to short out. A good heat sink must be used. Highest power dissipation occurs when the regulator output is shorted. Foldback current limiting should be used giving less power dissipation than at full load. - b. Use conservatively voltage rated capacitors on the input to the regulator in order to minimize ripple. If the input capacitor is operated with excessive ripple and near the maximim dc voltage rating, the capacitor will sputter (short momentarily) causing the output capacitor of the regulator to discharge back through the reverse-biased pass transistor or the control circuitry with destructive effects. - c. Avoid severe voltage transients on the unregulated input. Subsequent transients can destroy the regulator because of load failures due to previous transients\(\frac{\text{www.DataSheet4U.com}}{\text{com}} \)