

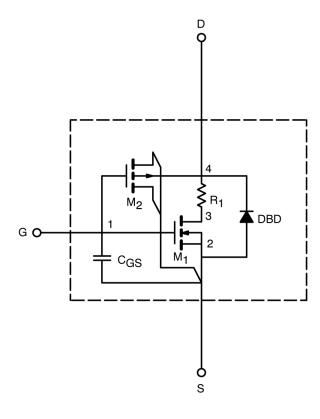
SPICE Device Model Si7448DP

Vishay Siliconix

N-Channel 20-V (D-S) Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

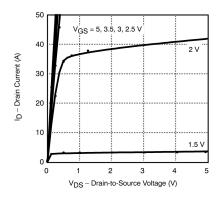
Document Number: 71675 www.vishay.com 10-Jul-01

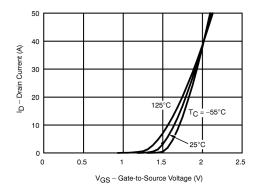
SPICE Device Model Si7448DP

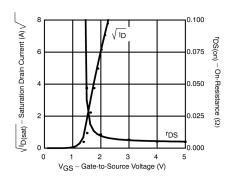
Vishay Siliconix

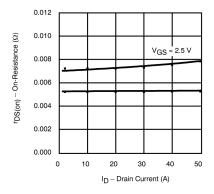
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.80		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V$, $V_{GS} = 4.5V$	479		Α
Drain-Source On-State Resistance ^a	_	V _{GS} = 4.5V, I _D = 22A	0.0053	0.0054	Ω
	r _{DS(on)}	V_{GS} = 2.5V, I_{D} = 19A	0.0073	0.0075	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15V, I_D = 22A$	94	90	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 3A, V_{GS} = 0V$	0.74	0.80	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 10V, V_{GS} = 4.5V, I_{D} = 21A	38	38	nC
Gate-Source Charge	Q_{gs}		8	8	
Gate-Drain Charge	Q_{gd}		8.5	8.5	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD}=10V,R_L=10\Omega$ $I_D\cong 1A,V_{GEN}=10V,R_G=6\Omega$ $I_F=~3A,di/dt=100~A/\mu s$	18	22	Ns
Rise Time	t _r		23	22	
Turn-Off Delay Time	t _{d(off)}		56	125	
Fall Time	t _f		106	60	
Source-Drain Reverse Recovery Time	t _{rr}		59	60	

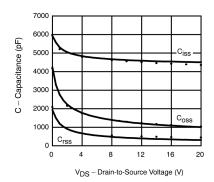
Document Number: 71675 10-Jul-01

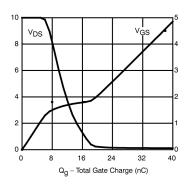

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71675 www.vishay.com 10-Jul-01