

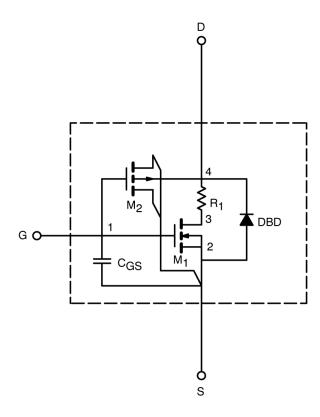
SPICE Device Model Si7840DP

Vishay Siliconix

N-Channel 30-V (D-S) Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 70671
 www.vishay.com

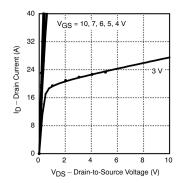
 30-Aug-01
 1

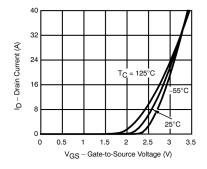
SPICE Device Model Si7840DP

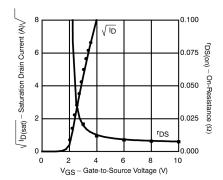
Vishay Siliconix

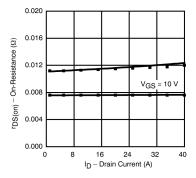
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1.2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V$, $V_{GS} = 10V$	529		А
Drain-Source On-State Resistance ^a	_	V _{GS} = 10V, I _D = 18A	0.0076	0.0077	Ω
	r _{DS(on)}	$V_{GS} = 4.5V, I_D = 15A$	0.0115	0.0115	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 15V, I_{D} = 18A$	43	40	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 4.1A, V_{GS} = 0V$	0.75	0.75	٧
Dynamic ^b					
Total Gate Charge	Qg	$V_{DS} = 15V, V_{GS} = 5V, I_{D} = 18A$	15.4	15.5	nC
Gate-Source Charge	Q_{gs}		3.8	3.8	
Gate-Drain Charge	Q_{gd}		6	6	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 15V, \ R_L = 15\Omega$ $I_D \cong 1A, \ V_{GEN} = 10V, \ R_G = 6\Omega$ $I_F = 4.1A, \ di/dt = 100 \ A/\mu s$	14	17	Ns
Rise Time	t _r		19	14	
Turn-Off Delay Time	t _{d(off)}		36	39	
Fall Time	t _f		62	19	
Source-Drain Reverse Recovery Time	t _{rr}		45	50	

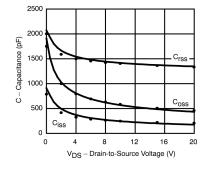
www.vishay.com Document Number: 70671

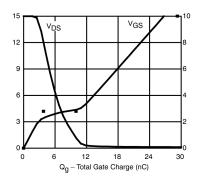

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data

Document Number: 70671 www.vishay.com 30-Aug-01 30-Aug-0