BYW97 series

FEATURES

- · Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed avalanche energy absorption capability
- · Available in ammo-pack
- Also available with preformed leads for easy insertion.

DESCRIPTION

Rugged glass package, using a high temperature alloyed construction. This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage BYW97F BYW97G		-	1200 1400	v
V _R	continuous reverse voltage BYW97F BYW97G		-	1200 1400	v v
I _{F(AV)}	average forward current	T _{tp} = 50 °C; lead length = 10 mm see Fig.2; averaged over any 20 ms period; see also Fig.6		3.3	A
I _{F(AV)}	average forward current	T _{amb} = 55 °C; PCB mounting (see Fig.11); see Fig.3; averaged over any 20 ms period; see also Fig.6	_	1.3	A
I _{FRM}	repetitive peak forward current	T _{tp} = 50 °C; see Fig.4		33	Α
		T _{amb} = 55 °C; see Fig.5	_	13	Α
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; T _j = T _{j max} prior to surge; V _R = V _{RRMmax}	_	60	A
E _{RSM}	non-repetitive peak reverse avalanche energy	L = 120 mH; $T_j = T_{j \text{ max}}$ prior to surge; inductive load switched off	-	10	mJ
T _{stg}	storage temperature		65	+175	°C
T _i	junction temperature	see Fig.7	-65	+175	∘C

BYW97 series

ELECTRICAL CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 5 \text{ A}$; $T_j = T_{j \text{ max}}$; see Fig.8	_	_	1.25	V
		I _F = 5 A; see Fig.8	-	_	1.45	٧
V _{(BR)R}	reverse avalanche breakdown voltage	I _R = 0.1 mA				
	BYW97F		1 300	_	-	V
	BYW97G		1500	_	_	v
I _A	reverse current	V _R = V _{RRMmax} ; see Fig.9	-	<u>.</u> "	1	μА
		V _R = V _{RRMmax} ; T _j = 165 °C; see Fig.9	-	-	150	μА
t _{rr}	reverse recovery time	when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A; see Fig.12	_	-	500	ns
C _d	diode capacitance	f = 1 MHz; V _R = 0 V; see Fig.10	_	65	_	pF
dl _B dt	maximum slope of reverse recovery current	when switched from $I_F = 1$ A to $V_R \ge 30$ V and $dI_F/dt = -1$ A/ μ s; see Fig.13		-	5	A/μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT	
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	25	K/W	
R _{th j-a}	thermal resistance from junction to ambient	note 1	75	K/W	

Note

Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.11.
For more information please refer to the 'General Part of Handbook SC01'.

BYW97 series

GRAPHICAL DATA

a = 1.57; $V_R = V_{RRMmax}$; $\delta = 0.5$.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

a = 1.57; $V_R = V_{RRMmax}$; $\delta = 0.5$. Device mounted as shown in Fig.11.

Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

 $T_{tp} = 50$ °C; $R_{th j-tp} = 25$ K/W.

 V_{RRMmax} during 1 – δ ; curves include derating for $T_{j max}$ at V_{RRM} = 1400 V.

Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYW97 series

Fig.5 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

BYW97 series

Dotted line: $T_j = 175$ °C. Solid line: $T_j = 25$ °C.

Fig.8 Forward current as a function of forward voltage; maximum values.

Fig.10 Diode capacitance as a function of reverse voltage; typical values.

BYW97 series

