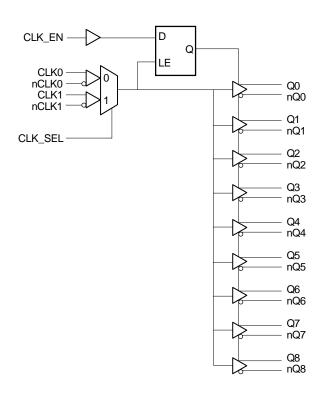
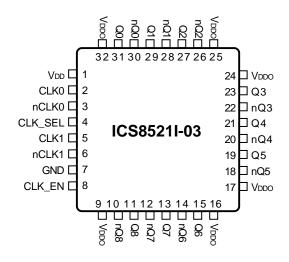
Low Skew, 1-to-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

GENERAL DESCRIPTION

The ICS8521I-03 is a low skew, 1-to-9 Differential-to-LVHSTL Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS8521I-03 has two selectable clock inputs. Redundant clock


pairs, CLK0, nCLK0 and CLK1, nCLK1 can accept most standard differential input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output skew and part-to-part skew characteristics make the ICS8521I-03 ideal for today's most advanced applications, such as IA64 and static RAMs.


FEATURES

- 9 LVHSTL outputs
- Redundant differential CLK0, nCLK0 and CLK1, nCLK1 inputs
- CLKx, nCLKx pairs can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- Maximum output frequency: 500MHz
- · Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 1.6ns (maximum)
- V_{OH} = 1V (maximum)
- 3.3V core, 1.8V output operating supply voltages
- -40°C to 85°C ambient operating temperature

BLOCK DIAGRAM

PIN ASSIGNMENT

32-Lead LQFP 7mm x 7mm x 1.4mm Package Body **Y Package** Top View

ICS8521I-03

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	/pe	Description
1	$V_{_{\mathrm{DD}}}$	Power		Core supply pin.
2	CLK0	Input	Pulldown	Non-inverting differential clock input.
3	nCLK0	Input	Pullup	Inverting differential clock input.
4	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0, nCLK0. LVTTL / LVCMOS interface levels.
5	CLK1	Input	Pulldown	Non-inverting differential clock input.
6	nCLK1	Input	Pullup	Inverting differential clock input.
7	GND	Power		Power supply ground.
8	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS /LVTTL interface levels.
9, 16, 17, 24, 25, 32	$V_{\tiny DDO}$	Power		Output supply pins.
10, 11	nQ8, Q8	Output		Differential output pair. LVHSTL interface level.
12, 13	nQ7, Q7	Output		Differential output pair. LVHSTL interface level.
14, 15	nQ6, Q6	Output		Differential output pair. LVHSTL interface level.
18, 19	nQ5, Q5	Output		Differential output pair. LVHSTL interface level.
20, 21	nQ4, Q4	Output		Differential output pair. LVHSTL interface level.
22, 23	nQ3, Q3	Output		Differential output pair. LVHSTL interface level.
26, 27	nQ2, Q2	Output		Differential output pair. LVHSTL interface level.
28, 29	nQ1, Q1	Output		Differential output pair. LVHSTL interface level.
30, 31	nQ0, Q0	Output		Differential output pair. LVHSTL interface level.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

TABLE 3A. CONTROL INPUT FUNCTION TABLE

	Inputs	Out	puts	
CLK_EN	CLK_SEL	Selected Sourced	Q0:Q8	nQ0:nQ8
0	0	CLK0, nCLK0	Disabled; LOW	Disabled; HIGH
0	1	CLK1, nCLK1	Disabled; LOW	Disabled; HIGH
1	0	CLK0, nCLK0	Enabled	Enabled
1	1	CLK1, nCLK1	Enabled	Enabled

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in *Figure 1*.

In the active mode, the state of the outputs are a function of the CLKx, nCLKx inputs as described in *Table 3B*.

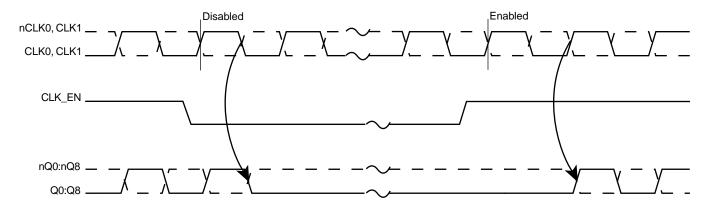


FIGURE 1. CLK_EN TIMING DIAGRAM

TABLE 3B. CLOCK INPUT FUNCTION TABLE

In	puts	Out	puts	Innut to Outnut Made	Dolority
CLK0 or CLK1	nCLK0 or nCLK1	Q0:Q8	nQ0:nQ8	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non Inverting
1	0	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased; NOTE 1	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	HIGH	LOW	Single Ended to Differential	Non Inverting
Biased; NOTE 1	0	HIGH	LOW	Single Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information "Wiring the Differential Input to Accept Single Ended Levels".

DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_1 -0.5 V to V_{DD} + 0.5 V

Outputs, V_0 -0.5V to V_{DDO} + 0.5V

Package Thermal Impedance, θ_{IA} 47.9°C/W (0 Ifpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	٧
I _{DD}	Power Supply Current				95	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		$V_{DD} + 0.3$	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
	Input High Current	CLK_EN	$V_{IN} = V_{DD} = 3.465V$			5	μA
' ін	Input High Current	CLK_SEL	$V_{IN} = V_{DD} = 3.465V$			150	μA
	Input Low Current	CLK_EN	$V_{IN} = 0V, V_{DD} = 3.465V$	-150			μA
I _{IL}	Imput Low Current	CLK_SEL	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μΑ

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	CLKx		$V_{IN} = V_{DD} = 3.465V$			150	μΑ
'ін	Input High Current	nCLKx	$V_{IN} = V_{DD} = 3.465V$			5	μΑ
	Input Low Current	CLKx	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μΑ
I _{IL}	Input Low Current	nCLKx	$V_{IN} = 0V, V_{DD} = 3.465V$	-150			μA
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Inpu NOTE 1, 2	ut Voltage;		0.5		V _{DD} - 0.85	V

NOTE 1: For single ended applications, the maximum input voltage for CLKx and nCLKx is $V_{\rm DD}$ + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{\rm IH}$.

Low Skew, 1-TO-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

Table 4D. LVHSTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		0.7		1.0	V
V _{OL}	Output Low Voltage; NOTE 1		0		0.4	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

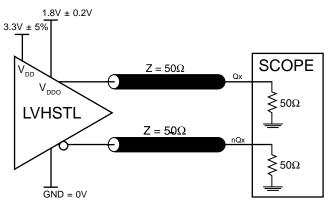
NOTE 1: Outputs terminated with 50Ω to ground.

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

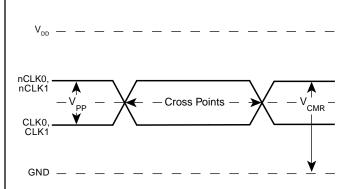
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				500	MHz
t _{PD}	Propagation Delay; NOTE 1		1.0		1.6	ns
tsk(o)	Output Skew; NOTE 2, 4				50	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				250	ps
t _R / t _F	Output Rise/Fall Time		200		700	ps
ada	Output Duty Ovolo	<i>f</i> ≤ 266MHz	48		52	%
odc	Output Duty Cycle	266MHz < <i>f</i> ≤ 500MHz	45		55	%

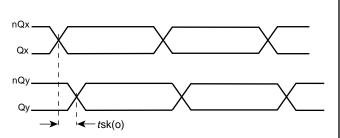
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

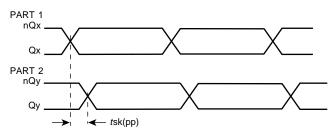
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

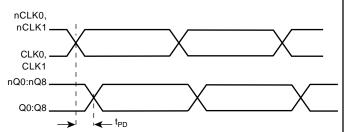

Measured at the output differential cross points.

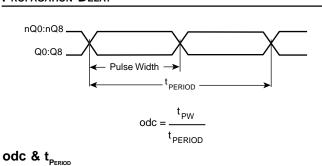
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

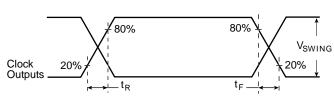

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION


3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT

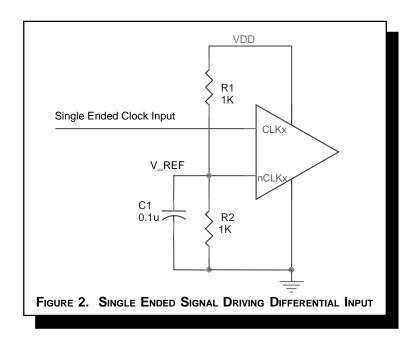

DIFFERENTIAL INPUT LEVEL


OUTPUT SKEW



PART-TO-PART SKEW

OUTPUT RISE/FALL TIME



APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD}\!=\!3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

SCHEMATIC EXAMPLE

This application note provides general design guide using ICS8521I-03 LVHSTL buffer. Figure 3A shows a schematic example of the ICS8521I-03 LVHSTL Clock buffer. In this example,

the input is driven by an LVHSTL driver. CLK_EN is set at logic low to select CLK0/nCLK0 input.

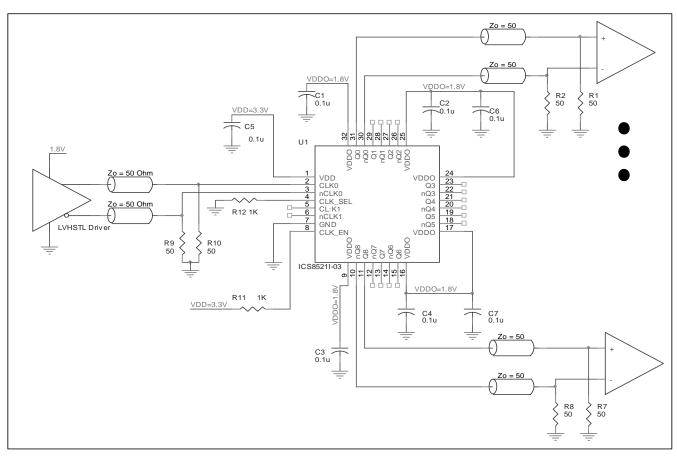


FIGURE 3A. ICS8521I-03 SCHEMATIC EXAMPLE

POWER, GROUND AND BYPASS CAPACITOR

This section provides a layout guide related to power, ground and placement of bypass capacitors for a high-speed digital IC. This layout guide is a general recommendation. The actual board design will depend on the component types being used, the board density and cost constraints. This description assumes that the board has clean power and ground planes. The goal is to minimize the ESR between the clean power/ground plane and the IC power/ground pin. A low ESR bypass capacitor should be used on each power pin. The value of bypass capacitors ranges from 0.01uF to 0.1uF. The bypass capacitors should be located

as close to the power pin as possible. It is preferable to locate the bypass capacitor on the same side as the IC. *Figure 3B* shows suggested capacitor placement. Placing the bypass capacitor on the same side as the IC allows the capacitor to have direct contact with the IC power pin. This can avoid any vias between the bypass capacitor and the IC power pins. The vias should be placed at the Power/Ground pads. There should be a minimum of one via per pin. Increasing the number of vias from the Power/Ground pads to Power/Ground planes can improve the conductivity

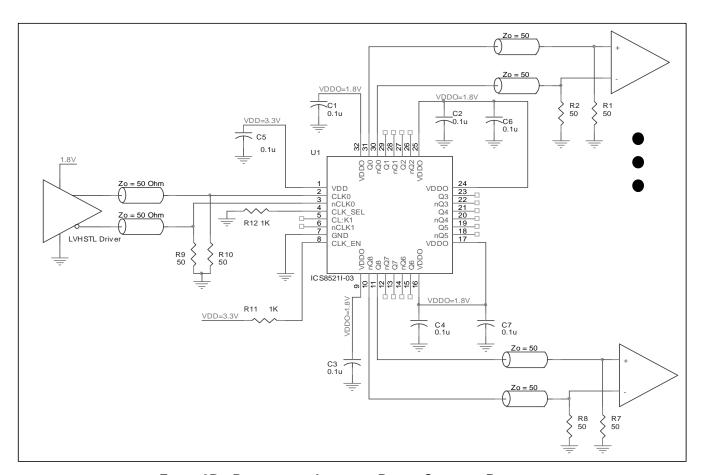


FIGURE 3B. RECOMMENDED LAYOUT OF BYPASS CAPACITOR PLACEMENT

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 4A to 4E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested

here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 4A*, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

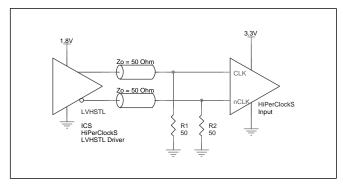


FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY ICS HIPERCLOCKS LVHSTL DRIVER

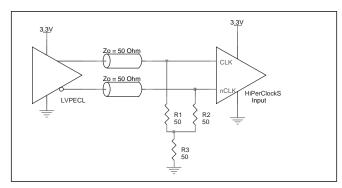


FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

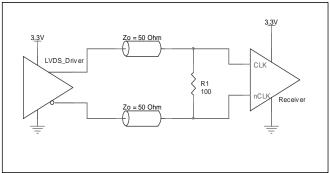


FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

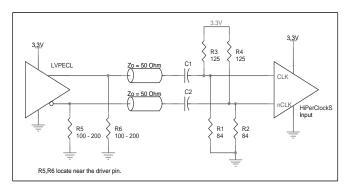


FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8521I-03. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8521I-03 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.465V * 95mA = 329.2mW
- Power (outputs)_{MAX} = 32.8mW/Loaded Output pair
 If all outputs are loaded, the total power is 9 * 32.8mW = 295.2mW

Total Power MAX (3.465V, with all outputs switching) = 329.2mW + 295.2mW = 624.4mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS TM devices is 125°C.

The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_total + T_A$

Tj = Junction Temperature

 θ_{JA} = junction-to-ambient thermal resistance

Pd_total = Total device power dissipation (example calculation is in section 1 above)

 T_{Δ} = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\rm JA}$ must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

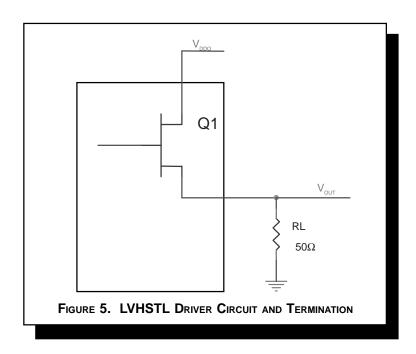
 $85^{\circ}\text{C} + 0.624\text{W} * 42.1^{\circ}\text{C/W} = 111.3^{\circ}\text{C}$. This is well below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 32-Pin LQFP, Forced Convection

The standard Test Boards and Single-Layer PCB, JEDEC Standard Test Boards and Standard Test Boar

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.


θ , by Velocity (Linear Feet per Minute)

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVHSTL output driver circuit and termination are shown in Figure 5.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$\begin{split} & Pd_H = (V_{OH_MAX}/R_L) * (V_{DDO_MAX} - V_{OH_MAX}) \\ & Pd_L = (V_{OL_MAX}/R_L) * (V_{DDO_MAX} - V_{OL_MAX}) \end{split}$$

$$Pd_H = (1.0V/50\Omega) * (2V - 1.0V) = 20mW$$

 $Pd_L = (0.4V/50\Omega) * (2V - 0.4V) = 12.8mW$

Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW

RELIABILITY INFORMATION

Table 7. $\theta_{\text{JA}} \text{vs. A} \text{ir Flow Table}$

$\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS8521I-03 is: 944

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

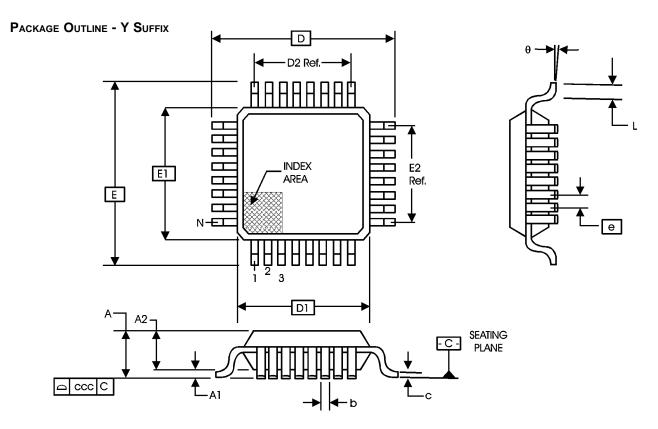


TABLE 8. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS									
OVALDOL	BBA								
SYMBOL	MINIMUM	NOMINAL	MAXIMUM						
N		32							
Α			1.60						
A1	0.05		0.15						
A2	1.35	1.40	1.45						
b	0.30	0.37	0.45						
С	0.09		0.20						
D		9.00 BASIC							
D1		7.00 BASIC							
D2		5.60 Ref.							
E		9.00 BASIC							
E1		7.00 BASIC							
E2		5.60 Ref.							
е		0.80 BASIC							
L	0.45	0.60	0.75						
θ	0°		7°						
ccc			0.10						

Reference Document: JEDEC Publication 95, MS-026

ICS8521I-03

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS8521AYI-03	ICS8521AYI-03	32 Lead LQFP	250 per tray	-40°C to 85°C
ICS8521AYI-03T	ICS8521AYI-03	32 Lead LQFP on Tape and Reel	1000	-40°C to 85°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.