

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Update History

Rev	Date	Author	History Description
1.0	2010-083-11	Hanlingcai	The primary datasheet

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Features

- I Single-chip Tuner with NTSC/PAL/SECAM decoder
- I Worldwide FM radio reception
- I 100mA power consumption with digital output buffer
- I Minimal external passive components
- I Simple LNA matching components
- I 50M-870 MHz RF reception
- I 100dB dynamic range
- I <6 dB noise figure
- I Fully integrated digital AGC loop
- I Fully integrated channel selectivity
- I Fully integrated PLL (including loop filter)

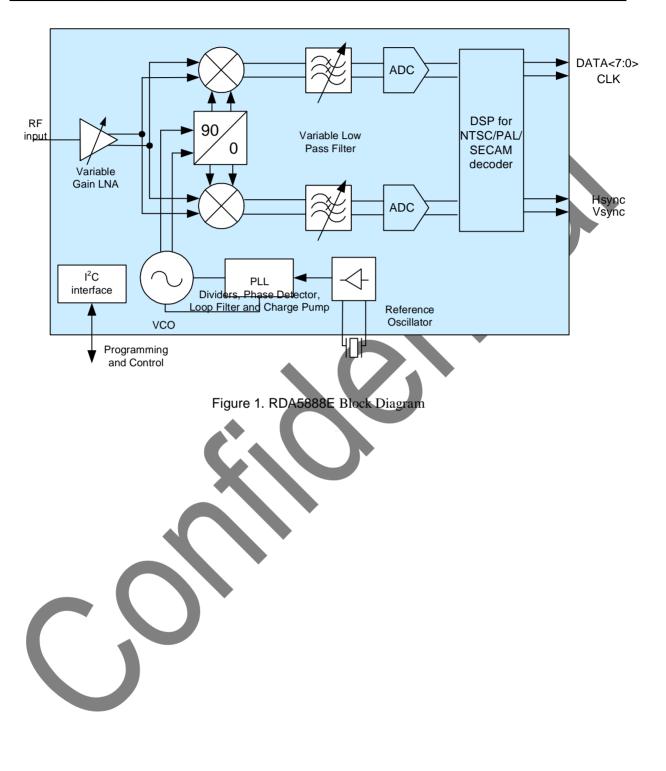
Applications

- I Portable applications such as laptops, portable DVD players
- I Handheld applications such as cellular phones and PDAs

General Description

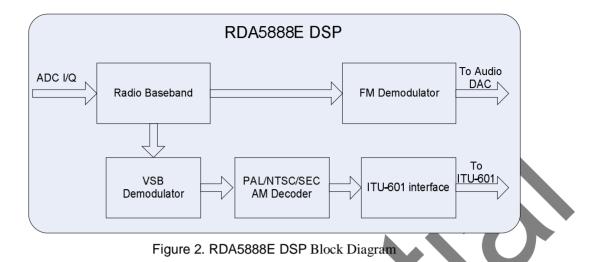
- I > 35 dBc first-adjacent rejection
- I Internal blank-level clamping
- I Dynamic ghosting/fading compensation
- I Support 26/27 MHz crystal
- I All-digital video timing generation
- I ITU-601 compliant
- I Analog and I2S digital audio output
- I I2C control port
- I On chip regulator voltage input 3V to 4.5V.
- I 40-pin 6x6 QFN package

The RDA5888E is a fully integrated direct conversion SOC for NTSC/PAL/SECAM analog TV standards. The receiving frequency range is from 50MHz to 870MHz. The RDA5888E is a true single-chip design, requiring no external SAW or ceramic filters, even high Q off-chip inductors to achieve full channel selectivity with an average current consumption of 100mA.


The RDA5888E utilizes a direct-conversion, zero-IF architecture that allows for extremely good image and adjacent channel signal rejection. The RDA5888E consists of a variable gain LNA, quadrature downconverter, variable low-pass filters, reference oscillator, VCOs, synthesizer, high performance ADC, DSP for decoder. The DSP provides final adjacent-channel rejection and audio/video carrier demodulation. The audio stream is FM-demodulated and passed to the audio output port, whereas the CVBS video stream is separated into component dideo and output onto the video data bus.

Based on RDA's some innovative technique, the RDA5888E offers excellent phase noise and very low implementation loss, required for NTSC/PAL/SECAM decoder. This tuner RF IC does not require a balun and its fully integrated design saves valuable board space and simplifies RF layout.

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.


RDA Microelectronics, Inc. RDA5888E-Fully Integrated SOC for ATV

Block Diagram

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

DSP Functional Description

Radio Baseband

The radio basebasnd receive I/Q signal from ADC, it includes sinc downsample, AGC (auto RF gain and digital gain control), RSSI (receive signal strength indicator) and channel filtering.

FM Demodulator

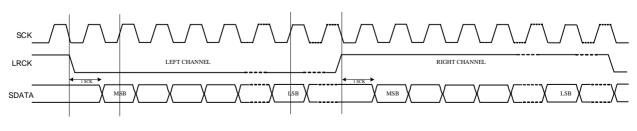
The FM demodulator includes channel selection, FM demodulation, adaptive noise cancellation, programmable de-emphasis($50/75 \ \mu$ s), bass boost, volume control. Digital audio stream is converted into analog througn DAC.

VSB Demodulator

The VSB demodulator is an AM Vestigial Sideband demodulator for CVBS signal recovery.

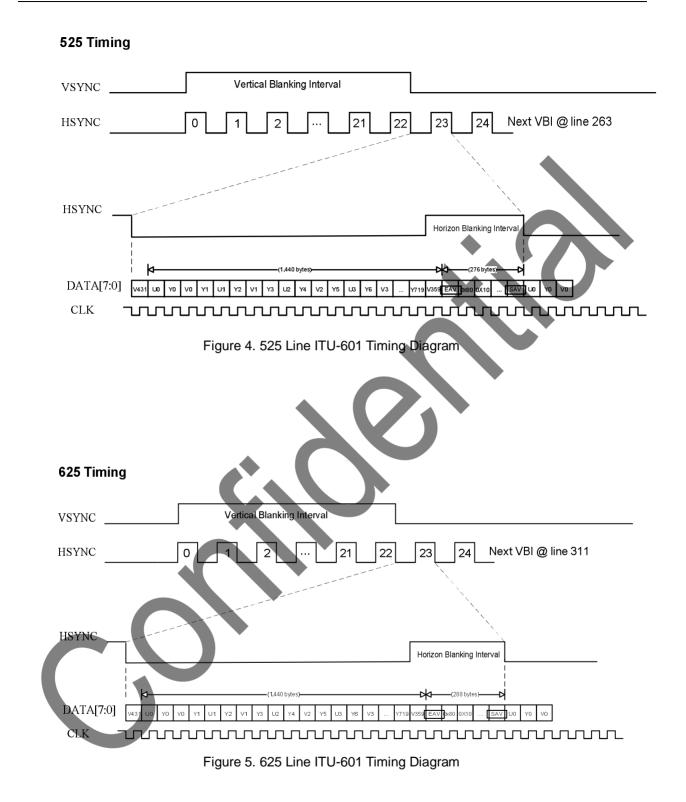
PAL/NTSC/SECAM Decoder

The PAL/NTSC/SECAM decoder can handle NTSC,PAL,SECAM, M,D,B,I,G,H,L,K in CVBS


format according to register-selected. It can be divided into a luminance path and a chrominance path. The luminance path first clamp the video signal, then calibration to target level and through a luma filter. The chrominance path has a color subcarrier recovery unit to regenerate the color subcarrier for any modulated chroma scheme and then performs an AM demodulation for PAL and NTSC and an FM demodulation for SECAM according to register-selected. YcbCr to ITU-601 interface is converted from YUV/YIQ/YRB...

12S interface

RDA5888E support standard I2S interface to output stereo audio signal.


ITU-601 Interface

The ITU-601 Interface is an ITU-601 compliant 8bit 4:2:2(YcbCr) parallel interface which include dclk,hsync,vsync,data[7:0].dclk,hsync,vsync all have polarity option. Below is the timing for the bus:

RDA Microelectronics, Inc. RDA5888E-Fully Integrated SOC for ATV

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Electrical Specifications

Table 1 Recommended Operating Conditions

Parameter	Symbol	MIN	TYP	MAX	UNIT
Analog Supply Voltage	VBAT	3	3.3	+4.5	V
Ambient Temperature	T _A	-25	27	+85	°C

Table 2 DC Electrical Specification

Parameter	Symbol	MIN	TYP	MAX	UNIT
CMOS Low Level Input Voltage	V _{IL}	0		0.3*VDD	V
CMOS High Level Input Voltage	V _{IH}	0.7*VDD		VDD	V
CMOS Threshold Voltage	V_{TH}		0.5*VDD		V

Table 3 Power consumption specification

(Vbat = 3 to 4.5 V, T_A = -25 to 85 °C, unless otherwise specified)

Symbol	Description	Condition	TYP	UNIT
ICC	Receiver on		100	mA
ICC(sleep)	Sleep mode (PDN = 0)		40	μA

Table 4 System Characteristics

(Vbat = 3 to 4.5 V, T_A = -25 to 85 °C, unless otherwise specified)

Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
RF input frequency	fin		50		870	MHz
Maximum RF input	RFIH			-10		dBm
Noise Figure	NF	Max Gain		5	8	dB
Input refered third-order	IIP3	Max Gain	-14	-12		dBm
intercept						
Input refered econd-order	IIP2	Max Gain		35		dBm
intercept						
IQ amplitude balance	IQAB				0.1	dB
IQ phase balance	IQPB				0.2	Deg
Matched input resistance	R _{IN}			50		Ω
Power up setting time	PUST			200		ms

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Table 5 Frequency Synthesizer Characteristics

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
t _{SW}	RX Switch on time			200		us
f _{RFLO}	synthesizer frequency		50		870	MHz
PN1	Phase noise	∆f=1kHz	-120	-100	-85	dBc/Hz
PN2		∆f=10kHz	-125	-105	-95	dBc/Hz
PN3		Δf=100kHz	-130	-110	-100	dBc/Hz
PN4		Δf=1MHz	-150	-130	-120	dBc/Hz

(Vbat = 3 to 4.5 V, T_A = -25 to 85 °C, unless otherwise specified)

Control Interface

RDA5888E enable software programming through I2C interface. Software controls chip working states, and allows user read status registers to get operation result through I2C interface.

The I2C interface of RDA5888E is compliant to I2C-Bus Specification 2.1(Fast-mode, bit rate up to 400Kbit/s). It includes two pins: SCLK and SDA. SCLK is an input pin; SDA is a bi-direction pin.

The I2C interface transfer begins with START condition, a command byte and data bytes, each byte has a followed ACK (or NACK) bit, and ends with STOP condition. The command byte includes a 7-bit device address {chip_id[6:0](default is 7'b1100_010)} and a r/w bit. The ACK (or NACK) is always sent out by the receiver. When in write transfer process, data bytes are written out from MCU, and when in read transfer process, data bytes are read out from RDA5888E. The RDA5888E contains status/control registers. These read/write registers are addressed as sub-address on the I2C bus. RDA5888E I2C interface supports both single and sequential register access. Software could follow the following ways to perform register read/write access:

Random access single write

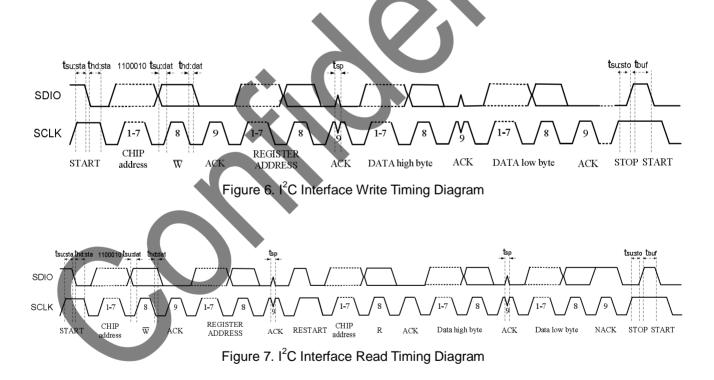
Start	Device	W	Α	Register address	Α	Register data[15:8] A Register data[7:0] A	ł	Stop
	address							

Random access single read

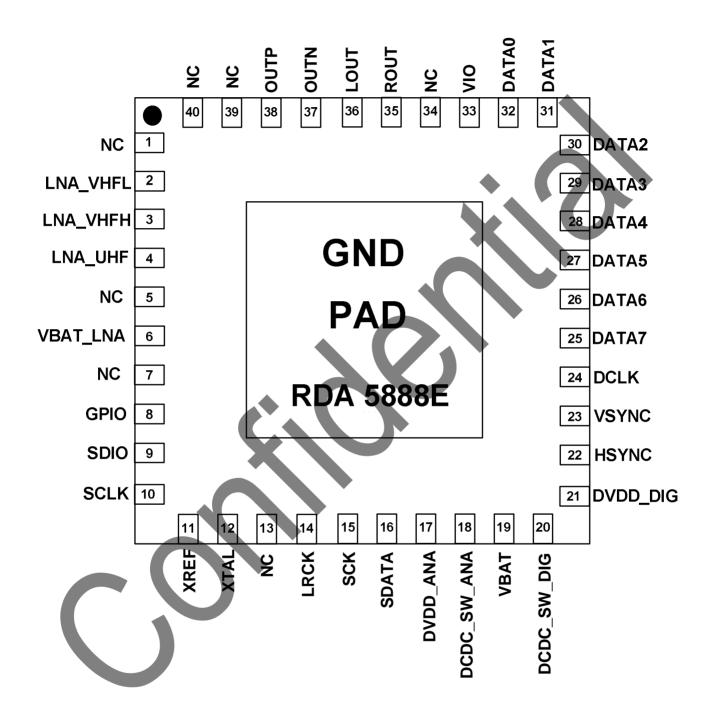
Start	Dev	ice	W	А	Register	А	start	Device	R	А
	addı	ess			address			address		
Regist	e	А	Re	giste	N	stop				
Data[1	5:8]		Da	.ta[7:0]						
W: W	W: Write Bit (0: write; 1: read)									

A: Acknowledge Bit (ACK)

N: Not Acknowledge Bit (NO ACK


For random access single write transfer, MCU sends out the START signal, RDA5880's device address and 1 bit write signal in sequence to the I2C bus. After receiving RDA5888E's ACK signal, MCU sends out the target register's address (8 bits) to RDA5888E and then programs this register with proper data (8 bits). A STOP signal is sent out by MCU to end this transfer when programming is finished.

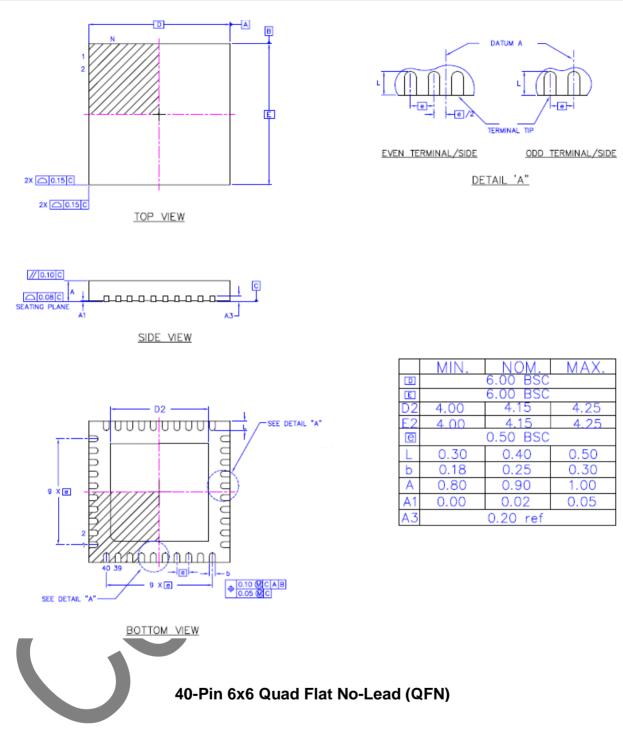
For random access single read transfer, MCU first sends out the START signal, the RDA5888E's device address and 1 bit write signal to the I2C bus. After receiving RDA5888E's ACK signal, MCU sends the target register's address to the interface. Then MCU should send another command byte, including a RESTART signal, the RDA5888E's device address and 1 bit read signal. RDA5888E will send the register's data to MCU through I2C bus. After the byte has been received, MCU should send a NO ACK response signal and a STOP signal to finish this read transfer.


Table 6I²C bus characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCLK Frequency	f _{scl}		0	-	200	KHz
SCLK High Time	t _{high}		0.6	-	-	μs
SCLK Low Time	t _{low}		1.3	-	-	μs
Setup Time for START Condition	t _{su:sta}		0.6	-	-	μs
Hold Time for START Condition	t _{hd:sta}		0.6	-		μs
Setup Time for STOP Condition	t _{su:sto}		0.6	-	-	μs
SDIO Input to SCLK† Setup	t _{su:dat}		100	-		ns
SDIO Input to SCLK↓ Hold	t _{hd:dat}		0	-	900	ns
STOP to START Time	t _{buf}		1.3	-	-	μs
SDIO Output Fall Time	t _{f:out}		20+0.1Cb		250	ns
SDIO Input, SCLK Rise/Fall Time	$t_{r:in}/t_{f:in}$		20+0.1C₀	-	300	ns
Input Spike Suppression	t _{sp}			-	50	ns
SCLK, SDIO Capacitive Loading	Cb			-	50	pF
Digital Input Pin Capacitance					5	pF

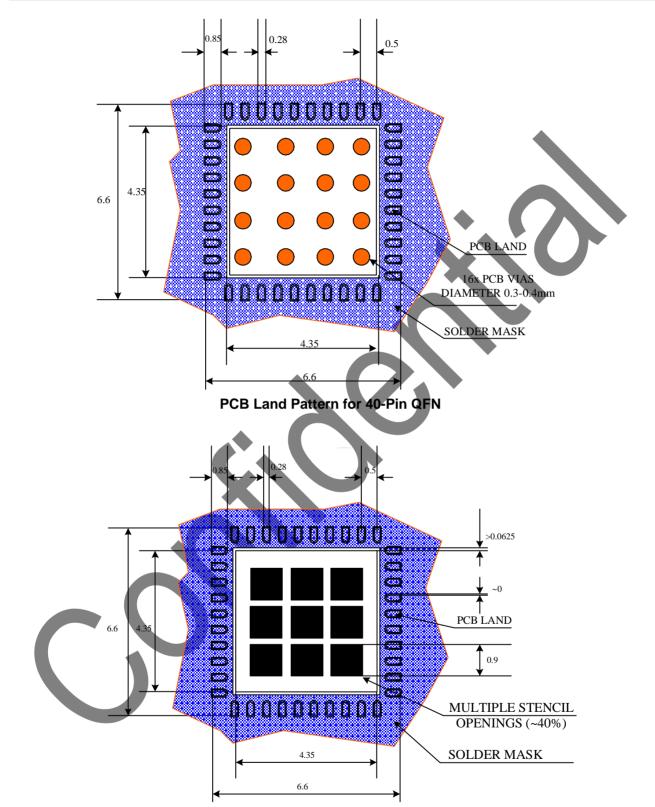
(VDD = 2.7 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Pin Description



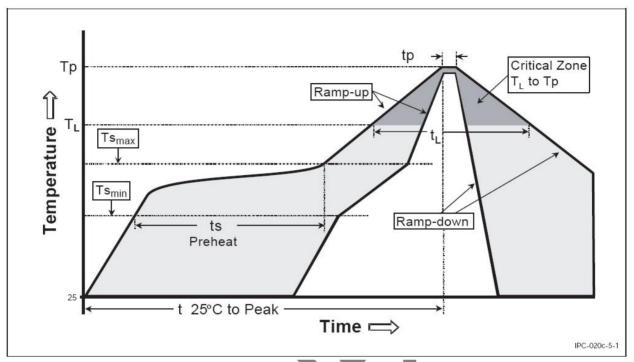
Pin number	Name	I/O	DESCRIPTION	
1	NC		No Connect	
2	LNA_VHFL	I	VHFL RF input	
3	LNA_VHFH	I	VHFH RF input	

RDA Microelectronics, Inc. RDA5888E-Fully Integrated SOC for ATV


	1			
4	LNA_UHF	Ι	UHF RF input	
5	NC		No Connect	
6	VBAT_LNA	I	Battery AVDD for LNA	
7	NC		No Connect	
8	GPIO	I/O	GPIO	
9	SDIO	I/O	I2c Serial data input	
10	SCLK	I/O	I2c Serial clock input	
11	XREF	I/O	Connect to Crystal (if using external crystal oscillator, this pin connect to the	
			oscillator's output)	
12	XTAL	0	Connect to Crystal	
13	NC		No Connect	
14	LRCK	I/O	Left/right audio sample indicator	
15	SCK	I/O	Audio slave clock	
16	SDATA	0	I2S data	
17	DVDD_ANA	Ι	DVDD Analog	
18	DCDC_SW_ANA	0	DCDC_ Analog output	
19	VBAT	Ι	Battery AVDD	
20	DCDC_SW_DIG	0	DCDC_Digital output	
21	DVDD_DIG	Ι	DVDD Digital	
22	HSYNC	0	Hsync line	
23	VSYNC	0	Vsync line	
24	DCLK	0	data clk output	
25	DATA7	0	data output	
26	DATA6	0	data output	
27	DATA5	0	data output	
28	DATA4	0	data output	
29	DATA3	0	data output	
30	DATA2	0	data output	
31	DATA1	0	data output	
32	DATA0	0	data output	
33	VIO	0	VIO	
34	NC		No Connect	
35	ROUT	0	Audio analog dac output	
36	LOUT	0	Audio analog dac output	
37	OUTN	0	Negative Baseband Out	
38	OUTP	0	Positive Baseband Out	
39	NC		No Connect	
40	NC		No Connect	

Package Outline

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.


PCB Land Pattern

PCB Solder Paste Stencil Openings

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Solder Mounting Condition

Classification Reflow Profile

Table-I Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (T _{Smax} to T _p)	3 °C/second max.	3 °C/second max.
Preheat		
-Temperature Min (T _{smin})	100 °C	150 °C
-Temperature Max (T _{smax})	100 °C	200 °C
-Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:		
-Temperature (T _L)	183 °C	217°C
-Time (t _L)	60-150seconds	60-150 seconds
Peak /Classification Temperature(T _p)	See Table-II	See Table-III
Time within 5 °C of actual Peak Temperature (t _p)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/seconds max.

Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.
-----------------------------------	----------------	----------------

Table – II SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ ≥350
<2.5mm	240 + 0/-5 ° C	225 + 0/-5 ° C
≥2.5mm	225 + 0/-5 ° C	225 + 0/-5 ° C

Table – III Pb-free Process – Package Classification Reflow Temperatures

		U	
Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6mm	260 + 0 ° C *	260 + 0 ° C *	260 + 0 ° C *
1.6mm – 2.5mm	260 + 0 ° C *	250 + 0 °C *	245 + 0 ° C *
≥ 2.5mm	250 + 0 ° C *	245 + 0 ° C *	245 + 0 ° C *

*Tolerance : The device manufacturer/supplier **shall** assure process compatibility up to and including the stated classification temperature(this mean Peak reflow temperature + 0 ° C. For example 260+ 0 ° C) at the rated MSL Level.

Note 1: All temperature refer topside of the package. Measured on the package body surface.

Note 2: The profiling tolerance is + 0 °C, - X °C (based on machine variation capability)whatever

is required to control the profile process but at no time will it exceed - 5 ° C. The producer assures process compatibility at the peak reflow profile temperatures defined in Table –III.

- Note 3: Package volume excludes external terminals(balls, bumps, lands, leads) and/or non integral heat sinks.
- Note 4: The maximum component temperature reached during reflow depends on package the thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD package may sill exist.
- Note 5: Components intended for use in a "lead-free" assembly process **shall** be evaluated using the "lead free" classification temperatures and profiles defined in Table-I II III whether or not lead free.

RoHS Compliant

The product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE), and are therefore considered RoHS compliant.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

Disclaimer

The information provided here is believed to be reliable; RDA Microelectronics assumes no reliability for inaccuracies and omissions. RDA Microelectronics assumes no reliability for the use of this information and all such information should entirely be at the user's own risk. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party. RDA Microelectronics does not authorize or warrant any RDA products for use in the life support devices or systems. Copyright@2005 RDA Microelectronics Inc. All rights reserved

For technical questions and additional information about RDA Microelectronics Inc.:

Website: www.rdamicro.com Mailbox: info@rdamicro.com RDA Microelectronics (Shanghai), Inc. Tel: +86-21-50271108 Fax: +86-21-50271099

RDA Microelectronics (Beijing), Inc. Tel: +86-10-63635360 Fax: +86-10-82612663