ELECTRICAL SPECIFICATIONS

Nominal Frequency	16.384 MHz
Frequency Tolerance/Stability	$\pm 50 \mathrm{ppm}$ Maximum (Inclusive of all conditions: Calibration Tolerance at $25^{\circ} \mathrm{C}$, Frequency Stability over the Operating Temperature Range,Supply Voltage Change, Output Load Change, First Year Aging at $25^{\circ} \mathrm{C}$, Shock, and Vibration)
Aging at $25^{\circ} \mathrm{C}$	$\pm 5 \mathrm{ppm} / \mathrm{year}$ Maximum
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	$5.0 \mathrm{Vdc} \pm 10 \%$
Input Current	45mA Maximum (Unloaded)
Output Voltage Logic High (Voh)	Vdd-0.4Vdc Minimum ($\mathrm{IOH}=-16 \mathrm{~mA}$)
Output Voltage Logic Low (Vol)	0.4 Vdc Maximum ($\mathrm{IOL}=+16 \mathrm{~mA}$)
Rise/Fall Time	4 nSec Maximum (Measured at 20\% to 80\% of waveform)
Duty Cycle	$50 \pm 10(\%)$ (Measured at 1.4 Vdc with TTL Load; Measured at 50% of waveform with HCMOS Load)
Load Drive Capability	50pF HCMOS Load Maximum
Output Logic Type	CMOS
Pin 1 Connection	Tri-State (Disabled Output: High Impedance)
Tri-State Input Voltage (Vih and Vil)	+2.0Vdc Minimum to enable output, +0.8 Vdc Max, to disable output, No Connect to enable output.
Standby Current	$50 \mu \mathrm{~A}$ Maximum (Pin 1 = Ground)
Disable Current	30mA Maximum (Pin 1 = Ground)
Absolute Clock Jitter	± 250 pSec Maximum, $\pm 100 \mathrm{pSec}$ Typical
One Sigma Clock Period Jitter	$\pm 50 \mathrm{pSec}$ Maximum
Start Up Time	10 mSec Maximum
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ENVIRONMENTAL \& MECHANICAL SPECIFICATIONS

Fine Leak Test	MIL-STD-883, Method 1014, Condition A
Gross Leak Test	MIL-STD-883, Method 1014, Condition C
Mechanical Shock	MIL-STD-202, Method 213, Condition C
Resistance to Soldering Heat	MIL-STD-202, Method 210
Resistance to Solvents	MIL-STD-202, Method 215
Solderability	MIL-STD-883, Method 2003
Temperature Cycling	MIL-STD-883, Method 1010
Vibration	MIL-STD-883, Method 2007, Condition A

MECHANICAL DIMENSIONS (all dimensions in millimeters)

| LINE | |
| :--- | :--- | MARKING

Suggested Solder Pad Layout

All Dimensions in Millimeters

All Tolerances are ± 0.1

OUTPUT WAVEFORM \& TIMING DIAGRAM

Test Circuit for TTL Output

Output Load Drive Capability	$\mathbf{R}_{\mathbf{L}}$ Value (Ohms)	$\mathbf{C}_{\mathbf{L}}$ Value $(\mathbf{p F})$
10 TTL	390	15
5 TTL	780	15
2 TTL	1100	6
10 LSTTL	2000	15
1 TTL	2200	3

Table 1: R_{L} Resistance Value and C_{L} Capacitance Value Vs. Output Load Drive Capability

Note 1: An external $0.1 \mu \mathrm{~F}$ low frequency tantalum bypass capacitor in parallel with a $0.01 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close to the package ground and V_{DD} pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance ($>10 \mathrm{Mohms}$), and high bandwidth ($>300 \mathrm{MHz}$) passive probe is recommended.
Note 3: Capacitance value C_{L} includes sum of all probe and fixture capacitance.
Note 4: Resistance value R_{L} is shown in Table 1. See applicable specification sheet for 'Load Drive Capability'.
Note 5: All diodes are MMBD7000, MMBD914, or equivalent.

Test Circuit for CMOS Output

Note 1: An external $0.1 \mu \mathrm{~F}$ low frequency tantalum bypass capacitor in parallel with a $0.01 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close to the package ground and $V_{D D}$ pin is required.
Note 2: A low capacitance ($<12 \mathrm{pF}$), 10X attenuation factor, high impedance ($>10 \mathrm{Mohms}$), and high bandwidth ($>300 \mathrm{MHz}$) passive probe is recommended.
Note 3: Capacitance value C_{L} includes sum of all probe and fixture capacitance.

EP1445SJTSC-16.384M

Recommended Solder Reflow Methods

Low Temperature Infrared/Convection $240^{\circ} \mathrm{C}$

T_{S} MAX to T_{L} (Ramp-up Rate)	$5^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\mathrm{s}} \mathrm{MIN}$)	N/A
- Temperature Typical (Ts TYP)	$150^{\circ} \mathrm{C}$
- Temperature Maximum (Ts MAX)	N/A
- Time (ts MIN)	60-120 Seconds
Ramp-up Rate (L_{L} to T_{P})	$5^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$150^{\circ} \mathrm{C}$
- Time (t_{L})	200 Seconds Maximum
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}$ Maximum
Target Peak Temperature (T_{P} Target)	$240^{\circ} \mathrm{C}$ Maximum 1 Time / $230^{\circ} \mathrm{C}$ Maximum 2 Times
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
Ramp-down Rate	$5^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	N/A
Moisture Sensitivity Level	Level 1

Low Temperature Manual Soldering

$185^{\circ} \mathrm{C}$ Maximum for 10 seconds Maximum, 2 times Maximum.
High Temperature Manual Soldering
$260^{\circ} \mathrm{C}$ Maximum for 5 seconds Maximum, 2 times Maximum.

