

NPN Silicon AF Transistor

- For general AF applications
- High collector current
- High current gain
- Low collector-emitter saturation voltage
- Complementary type: BCP69 (PNP)

Туре	Marking	Pin Configuration				Package
BCP68	BCP 68	1 = B	2 = C	3 = E	4 = C	SOT223
BCP68-25	BCP 68-25	1 = B	2 = C	3 = E	4 = C	SOT223

Maximum Ratings

Junction - soldering point¹⁾

Parameter	Symbol	Values	Unit	
Collector-emitter voltage	V _{CEO}	20	V	
Collector-emitter voltage	V _{CES}	25		
Collector-base voltage	V_{CBO}	25		
Emitter-base voltage	V _{EBO}	5		
DC collector current	I _C	1	Α	
Peak collector current	I _{CM}	2		
Base current	I _B	100	mA	
Peak base current	I _{BM}	200		
Total power dissipation, T_S = 124 °C	P _{tot}	1.5	W	
Junction temperature	T_{i}	150	°C	
Storage temperature	$T_{\rm stg}$	-65 150		

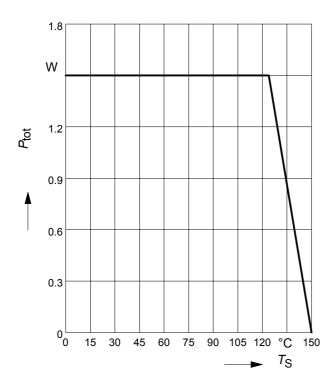
 R_{thJS}

1

≤17

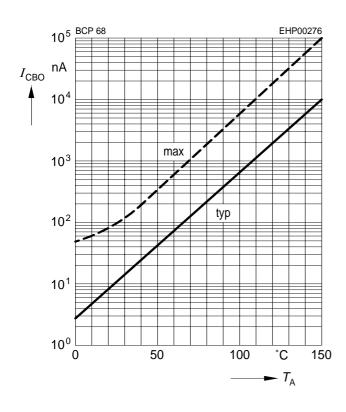
K/W

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

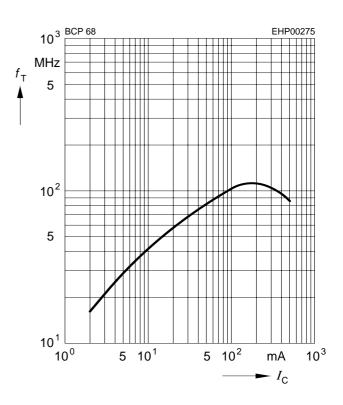

Electrical Characteristics at T_A = 25°C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics	,				
Collector-emitter breakdown voltage	V _{(BR)CEO}	20	-	-	V
$I_{\rm C}$ = 30 mA, $I_{\rm B}$ = 0					
Collector-emitter breakdown voltage	V _{(BR)CES}	25	_	_	
$I_{\rm C}$ = 10 μ A, $V_{\rm BE}$ = 0					
Collector-base breakdown voltage	V _{(BR)CBO}	25	-	-	
$I_{\rm C} = 10 \ \mu \text{A}, \ I_{\rm E} = 0$					
Emitter-base breakdown voltage	V _{(BR)EBO}	5	-	-	
$I_{\rm E}$ = 10 μ A, $I_{\rm C}$ = 0					
Collector cutoff current	I _{CBO}	-	-	100	nA
$V_{\rm CB} = 25 \text{V}, I_{\rm E} = 0$					
Collector cutoff current	I _{CBO}	-	-	100	μA
V_{CB} = 25 V, I_{E} = 0 , T_{A} = 150 °C					
DC current gain 1)	h _{FE}	50	-	_	-
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 10 V					
DC current gain 1)	h _{FE}				
$I_{\rm C}$ = 500 mA, $V_{\rm CE}$ = 1 V BCP68		85	-	375	
BCP68-25		160	250	375	
DC current gain 1)	h _{FE}	60	-	-	
$I_{\rm C}$ = 1 A, $V_{\rm CE}$ = 1 V					
Collector-emitter saturation voltage1)	V _{CEsat}	-	-	0.5	V
$I_{\rm C}$ = 1 A, $I_{\rm B}$ = 100 mA					
Base-emitter voltage 1)	V _{BE(ON)}				
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 10 V		-	0.6	-	
$I_{\rm C}$ = 1 A, $V_{\rm CE}$ = 1		-	-	1	
AC Characteristics					
Transition frequency	f_{T}	-	100	_	MHz
$I_{\rm C}$ = 100 mA, $V_{\rm CE}$ = 5 V, f = 100 MHz					

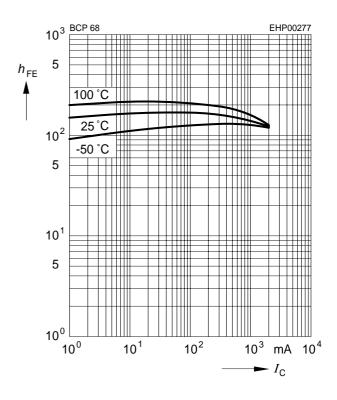
¹⁾ Pulse test: $t \le 300\mu s$, D = 2%



Total power dissipation $P_{tot} = f(T_S)$

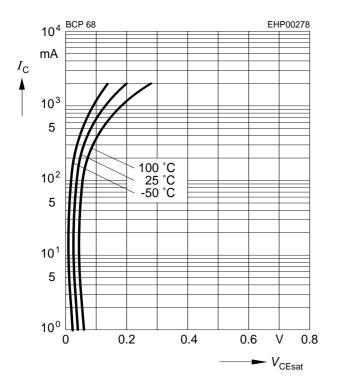

Collector cutoff current $I_{CBO} = f(T_A)$

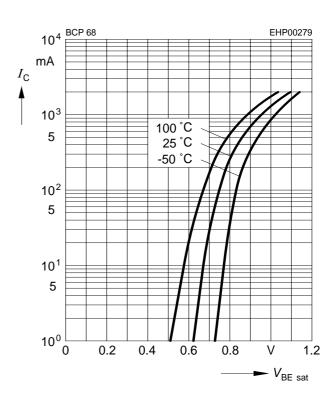
$$V_{\rm CB}$$
 = 25V


Transition frequency $f_T = f(I_C)$

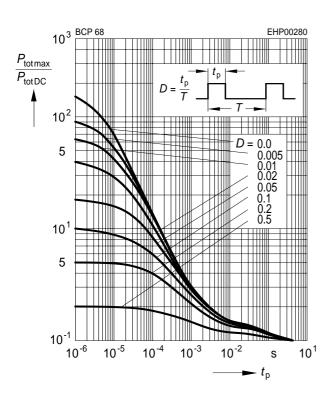
$$V_{CE} = 5V$$

DC current gain $h_{FE} = f(I_C)$


$$V_{CE} = 1V$$


Collector-emitter saturation voltage

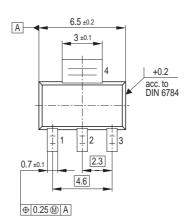
$$I_{\rm C} = f(V_{\rm CEsat}), h_{\rm FE} = 10$$

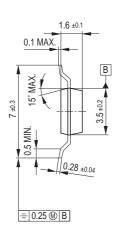

Base-emitter saturation voltage

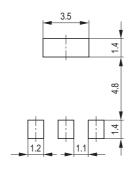
$$I_{\text{C}} = f(V_{\text{BEsat}}), h_{\text{FE}} = 10$$

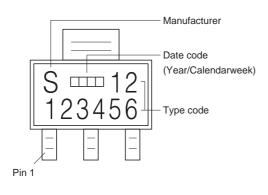
Permissible pulse load

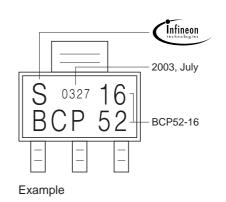
$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$



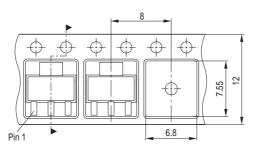

4


Package Outline





Foot Print


Marking Layout

Packing

Code E6327: Reel ø180 mm = 1.000 Pieces/Reel Code E6433: Reel ø330 mm = 4.000 Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

6

2005-07-14