

User's Manual

Phase-out/Discontinued

V852[™]

32/16-bit Single-Chip Microcontrollers

Hardware

μ**PD703002** μ**PD70P3002**

Document No. U10038EJ3V1UM00 (3rd edition) Date Published December 1997 N CP(K)

© NEC Corporation 1995 Printed in Japan [MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

V851, V852, and V850 Family are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries, licenced exclusively through X/Open Company, Limited.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	N He Te Fa
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	Se Se Te Fa
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860	NI UI Te Fa
NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388	N Ta Te Fa

EC Electronics Hong Kong Ltd. ong Kong el: 2886-9318 ax: 2886-9022/9044

EC Electronics Hong Kong Ltd. eoul Branch eoul, Korea el: 02-528-0303 ax: 02-528-4411

EC Electronics Singapore Pte. Ltd. nited Square, Singapore 1130 el: 253-8311 ax: 250-3583

EC Electronics Taiwan Ltd. aipei, Taiwan el: 02-719-2377

ax: 02-719-5951

EC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

Major Revisions in This Edition (1/2)

Pages	Description
p.3	1.5 Differences between µPD70P3002 and µPD703002 were added.
p.6	Connection of pins 39 to 41 was changed in 1.6.2 PROM programming mode.
p.7	VDD, Vss, CVDD, and CVss pins were added to 1.7.1 Internal block diagram.
p.14	Function in normal operation mode of V _{DD} was modified in 2.1.2 PROM programming mode (μ PD70P3002 only).
p.17	Description was added to 2.3.1 (4) (b) (vii) TXD.
p.19	Description was added to 2.3.1 (8) (b) (ii) UBEN.
p.24	Description was added to 2.4 Each Pin's I/O Circuit Type and Connection when Unused.
p.52	4.3.2 Bus width was added.
p.57	Description was added to 4.7.1 Outline of function.
p.64	Illustration was modified in 4.8 (7) Bus hold timing.
p.65	Description was added to 4.10.2 Data space.
p.73	5.2.4 Noise elimination from NMI pin was added.
p.85	Description of ID bit function was added to 5.3.8 Maskable interrupt status flag.
p.93	Figure 5-13. Pipeline Operation upon Reception of Interrupt Request (Outline) was modified.
p.128	Description was modified in 7.4.3 Overflow.
p.138	Value in expression was modified in Figure 7-14. Pulse Width Measurement Timing (timer 1).
p.140	Description was modified in 7.6 (3) (a) Using timer 1.
p.140	Value in expression in Remark was modified in Figure 7-17. PWM Output Timing (TM1) .
p.142	Contents were modified in Figure 7-19. Interrupt Request Processing Routine, Modifying Compare Value (timer 1).
p.143	Value in expression was modified in Figure 7-20. Cycle Measurement Timing (TM1).
p.164	Description of CRXEn bit function was added to 8.3.3 (1) Clocked serial interface mode register n (CSIMn).
p.166	Chart was modified in 8.3.4 (1) Transfer format.
p.168	Chart was modified in Figure 8-6. Timing of 3-Wire Serial I/O Mode (transmission).
p.169	Chart was modified in Figure 8-7. Timing of 3-Wire Serial I/O Mode (reception).
p.170	Description was modified in 8.3.7 (1) Starting transmission/reception.
p.171	Chart was modified in Figure 8-8. Timing of 3-Wire Serial I/O Mode (transmission/ reception).
p.187	Description of P20 bit functionwas added in 9.3.3 Port 2.

Major Revisions in This Edition (2/2)

Pages	Description
p.211	Port Output latch was modified to Port Input/output latch in Table 10-2 . Initial Values of Each Register at Reset .
p.214	Description was added to 11.2 (2) Output disable mode.
p.215	11.3 Page programming mode flowchart was modified partially.
p.216	Description of VPP and VDD was modified in 11.3 Page programming mode timing .
p.217	Part of 11.3 Byte programming mode flowchart was modified.
p.219	Description was modified in 11.4 PROM Read Procedure (1).
p.221	CSIC1 and CSIC2 were added to APPENDIX A REGISTER INDEX.
p.225	APPENDIX B Legend (2) Symbols used for code was added.
p.230	Code of SATSUBI was modified in APPENDIX B INSTRUCTION SET LIST.

The mark \star shows major revised points.

[MEMO]

INTRODUCTION

Readers	This manual is intended for users who wish to understand the functions of the V852 (μ PD703002, 70P3002) and design application systems using the V852.			
Purpose	This manual presents information on the hardware functions of the V852.			
Organization	Two volumes of the V852 Us architecture (V850 Family TM of each manual is as follows	ser's Manual are available: hardware (this manual) and User's Manual - Architecture) manuals. The organization s:		
	Hardware	Architecture		
	Pin function	Data type		
	CPU function	Register set		
	 Internal peripheral functio 	 Instruction format and instruction set 		
	PROM mode	Interrupt and exceptionPipeline operation		
How to Read This Manual	It is assumed that the readers of this manual have general knowledge on electric engineering, logic circuits, and microcontrollers.			
	 To find the details of a reg. Refer to APPENDIX A To confirm the details of t Refer to APPENDIX C To understand the details Refer to the V850 Fam To understand the overall Read this manual according 	gister where the name is known REGISTER INDEX . the function where the name is known INDEX . of an instruction function ily User's Manual - Architecture . functions of the V852 ording to the Table of Contents.		
Legend	Data representation weight Active low representation Memory map address Note Caution Remark Numeric representations Prefix indicating power of 2	 High digits on the left and low digits on the right xxx (top bar over pin or signal name) Top: highest, bottom: lowest Description of "Note" in the text Information requiring particular attention Additionally explanatory material Binary xxxx or xxxxB Decimal xxxx Hexadecimal xxxxH K (kilo): 2¹⁰ = 1024 M (merce) 2⁰⁰ - 40042 		
	(address space, memoryM (mega): $2^{20} = 1024^2$ capacity)G (giga): $2^{30} = 1024^3$			

Related documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

 \bigcirc Documents related to device

Document Name	Document Number		
	Japanese	English	
V850 Family User's Manual-Architecture	U10243J	U10243E	
V850 Family Instruction List	U10229J	U10229E	
μPD703002 Data Sheet	U11826J	U11826E	
μPD70P3002 Data Sheet	U11827J	U11827E	
V852 User's Manual-Hardware	U10038J	This manual	
V852 Register Instruction List	U10513J	—	

 \bigcirc Documents related to development tools

Document Name		Document Number		
		Japanese	English	
IE-703002-MC (In-circuit Emulato	IE-703002-MC (In-circuit Emulator)		—	
CA850 (C Compiler Package)	Operation UNIX [™] based	U11013J	U11013E	
	Operation Windows [™] based	U11068J	U11068E	
	C Language	U11010J	U11010E	
	Assembly Language	U10543J	U10543E	
	Project Manager Windows based	U11991J	U11991E	
RX850 (Real-time OS)	Basic	U11037J	U11037E	
	Technical	U11117J	U11117E	
	Nucleus Installation	U11038J	U11038E	
	Debugger Windows based	U11158J	U11158E	
AZ850 (System Performance Analyzer)		U11181J	U11181E	
ID850 (C source debugger)	Instruction UNIX based	U12209J	_	
	Installation UNIX based	U12210J	U12210E	
	Instruction Windows based	U11196J	U11196E	

CONTENTS

 \star

1.1	General	
1.2	Features	
1.3	Application Fields	
1.4	Ordering Information	•••••
1.5	Differences between μ PD70P3002 and μ PD703002	
1.6	Pin Configuration (Top View)	••••
	1.6.1 Normal operation mode	
	1.6.2 PROM programming mode	
1.7	Function Block Configuration	••••
	1.7.1 Internal block diagram	••••
	1.7.2 Internal units	••••
1.8	Differences between V851 and V852	••••
HAPT	ER 2 PIN FUNCTIONS	
2.1	Pin Function List	
	2.1.1 Normal operation mode	
	2.1.2 PROM programming mode (µPD70P3002 only)	
2.2	Pin Status	
2.3	Pin Function	
	2.3.1 Normal operation mode	
	 2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) 	
2.4	 2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins 	•••••
2.4 2.5	 2.3.1 Normal operation mode	
2.4 2.5 HAPT	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1 3.2	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set	
2.4 2.5 IAPT 3.1 3.2	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set	
2.4 2.5 IAPT 3.1 3.2	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set	
2.4 2.5 HAPT 3.1 3.2 3.3	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1 3.2 3.3	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1 3.2 3.3	 2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set Operation Modes 3.3.1 Operation modes 3.3.2 Specifying operation mode	
2.4 2.5 HAPTI 3.1 3.2 3.3	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1 3.2 3.3 3.3	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set 3.2.3 Operation modes 3.3.1 Operation modes 3.3.2 Specifying operation mode Address Space 3.4.1 CPU address space	
2.4 2.5 HAPT 3.1 3.2 3.3 3.3	 2.3.1 Normal operation mode 2.3.2 PROM programming mode (µPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set 3.2.2 System register set Operation Modes 3.3.1 Operation mode Address Space 3.4.1 CPU address space 3.4.2 Image (Virtual Address Space)	
2.4 2.5 HAPTI 3.1 3.2 3.3	 2.3.1 Normal operation mode	
2.4 2.5 HAPT 3.1 3.2 3.3 3.4	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set 3.2.3 Operation Modes 3.3.1 Operation mode Address Space 3.4.1 CPU address space 3.4.3 Wrap-around of CPU address space 3.4.4 Memory map 3.4.4	
2.4 2.5 HAPTI 3.1 3.2 3.3 3.4	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set 0peration Modes 3.3.1 Operation mode Address Space 3.4.1 CPU address space 3.4.2 Image (Virtual Address Space) 3.4.3 Wrap-around of CPU address space 3.4.4 Memory map 3.4.5 Area	
2.4 2.5 HAPTI 3.1 3.2 3.3 3.4	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set 3.2.3 Operation Modes 3.3.1 Operation modes 3.3.2 Specifying operation mode Address Space 3.4.1 CPU address space 3.4.3 Wrap-around of CPU address space 3.4.4 Memory map 3.4.5 Area 3.4.6 External expansion mode	
2.4 2.5 HAPT 3.1 3.2 3.3 3.4	2.3.1 Normal operation mode 2.3.2 PROM programming mode (μPD70P3002 only) I/O Circuit Type and Connection of Unused Pins Pin I/O Circuits ER 3 CPU FUNCTIONS Features CPU Register Set 3.2.1 Program register set 3.2.2 System register set Operation Modes 3.3.1 Operation modes 3.3.2 Specifying operation mode Address Space	

	4.2	Bus C	ontrol Pins	51
	4.3	Bus A	ccess	52
		4.3.1	Number of access clocks	52
*		4.3.2	Bus width	52
	4.4	Memo	ry Block Function	53
	4.5	Wait F	unction	54
		4.5.1	Programmable wait function	54
		4.5.2	External wait function	55
		4.5.3	Relationships between programmable wait and external wait	55
	4.6	Idle St	ate Insertion Function	56
	4.7	Bus H	old Function	57
		4.7.1	Outline of function	57
		4.7.2	Bus hold procedure	57
		4.7.3	Operation in power save mode	57
	4.8	Bus Ti	iming	58
	4.9	Bus P	riority	65
	4.10	Memo	ry Boundary Operation Condition	65
		4.10.1	Program space	65
		4.10.2	Data space	65
	4.11	Interna	al Peripheral I/O Interface	66
СН		R 5 IN	TERRUPT/EXCEPTION PROCESSING FUNCTION	67
	5.1	Featur	es	67
	5.2	Non-M	askable Interrupt	69
		5.2.1	Accepting operation	70
		5.2.2	Restore operation	72
		5.2.3	NP flag	73
*		5.2.4	Noise elimination for NMI pin	73
		5.2.5	External interrupt mode register 0 (INTM0)	73
	5.3	Maska	ble Interrupts	74
		5.3.1	Block diagram	75
		5.3.2	Operation	75
		5.3.3	Restore	77
		5.3.4	Priorities of maskable interrupts	78
		5.3.5	Interrupt control register (xxICn)	82
		5.3.6	External interrupt mode registers 1 and 2 (INTM1 and INTM2)	84
		5.3.7	In-service priority register (ISPR)	85
		5.3.8	Maskable interrupt status flag	85
	5.4	Softwa	are Exception	86
		5.4.1	Operation	86
		5.4.2	Restore	87
		5.4.3	EP flag	88
	5.5	Excep	tion Trap	88
		5.5.1	Illegal op code definition	88
		5.5.2	Operation	89
		5.5.3	Restore	90
	5.6	Priorit	v Control	91
		5.6.1	Priorities of interrupts and exceptions	91
		5.6.2	Multiple interrupt processing	91
		0.0.2		0.

5.7	Interrupt Latency Time	93
5.8	Periods Where Interrupt Is Not Acknowledged	93
CHAPT	ER 6 CLOCK GENERATION FUNCTION	95
6.1	Features	95
6.2	Configuration	95
6.3	Selecting Input Clock	96
	6.3.1 Direct mode	96
	6.3.2 PLL mode	96
6.4	PLL Stabilization	98
6.5	Power Save Control	99
	6.5.1 General	99
	6.5.2 Control registers	101
	6.5.3 HALT mode	104
	6.5.4 IDLE mode	106
	6.5.5 Software STOP mode	108
6.6	Specifying Oscillation Stabilization Time	110
6.7	Clock Output Control	113
	·	
СНАРТ	ER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)	115
7.1	Features	115
7.2	Basic Configuration	116
	7.2.1 Timer 1	118
	7.2.2 Timer 4	120
7.3	Control Registers	121
7.4	Timer 1 Operation	127
	7.4.1 Count operation	127
	7.4.2 Selecting count clock frequency	127
	7.4.3 Overflow	128
	7.4.4 Clearing/starting timer by TCLR1 input	129
	7.4.5 Capture operation	130
	7.4.6 Compare operation	132
7.5	Timer 4 Operation	134
	7.5.1 Count operation	134
	7.5.2 Selecting the count clock frequency	134
	7.5.3 Overflow	134
	7.5.4 Compare operation	135
7.6	Application Examples	137
7.7	Note	145
СНАРТ	ER 8 SERIAL INTERFACE FUNCTION	147
8.1	Features	147
8.2	Asynchronous Serial Interface (UART)	148
	8.2.1 Features	148
	8.2.2 Configuration of asynchronous serial interface	149
	8.2.3 Mode registers and control registers	151
	8.2.4 Interrupt request	157
	8.2.5 Operation	158

8.3	Clocked Serial Interface 0 to 2 (CSI0 to CSI2)	162
	8.3.1 Features	162
	8.3.2 Configuration	163
	8.3.3 Mode registers and control registers	164
	8.3.4 Basic operation	166
	8.3.5 Transmission in 3-wire serial I/O mode	168
	8.3.6 Reception in 3-wire serial I/O mode	169
	8.3.7 Transmission/reception in 3-wire serial I/O mode	170
	8.3.8 System Configuration Example	172
8.4	Baud Rate Generator 0, 1 (BRG0, BRG1)	173
	8.4.1 Configuration and function	173
	8.4.2 Baud rate generator register 0, 1 (BRG0, BRG1)	176
	8.4.3 Baud rate generator prescaler mode register 0, 1 (BPRM0, BPRM1)	176
CHAPTE	R 9 PORT FUNCTION	177
9.1	Features	177
9.2	Basic Configuration of Port	178
9.3	Port Pin Function	182
	9.3.1 Port 0	182
	9.3.2 Port 1	186
	9.3.3 Port 2	187
	9.3.4 Port 3	192
	9.3.5 Port 4	197
	9.3.6 Port 5	199
	9.3.7 Port 6	201
	9.3.8 Port 9	202
	9.3.9 Port 10	205
9.4	Noise Elimination Circuit	208
CHAPTE	R 10 RESET FUNCTION	209
10.1	Features	209
10.2	Pin Function	209
10.3	Initialize	210
СНАРТЕ	R 11 PROM MODE	213
11.1	PROM Mode	213
11.2	Operation Mode	213
11.3	PROM Write Procedure	215
11.4	PROM Read Procedure	219
11.5	Screening of OTPROM Version	220
11.6	Caution on STOP Mode Release when Using External Clock	220
APPEND	IX A REGISTER INDEX	221
APPEND	IX B INSTRUCTION SET LIST	225
		~~ ~
APPEND		233

LIST OF FIGURES (1/2)

Figure No.	Title	Page
3-1.	Program Counter (PC)	29
3-2.	Interrupt Source Register (ECR)	30
3-3.	Program Status Word (PSW)	31
3-4.	CPU Address Space	34
3-5.	Image on Address Space	35
3-6.	Interrupt/Exception Table	39
3-7.	External Memory Area (when expanded to 64 KB, 256 KB, or 1 MB)	42
3-8.	External Memory Area (when expanded to 4 MB)	43
3-9.	External Memory Area (when fully expanded)	44
3-10.	Recommended Memory Map	48
4-1.	Example of Inserting Wait States	55
5-1.	Non-Maskable Interrupt Processing	70
5-2.	Accepting Non-Maskable Interrupt Request	71
5-3.	RETI Instruction Processing	72
5-4.	Maskable Interrupt Block Diagram	75
5-5.	Maskable Interrupt Processing	76
5-6.	RETI Instruction Processing	77
5-7.	Example of Interrupt Nesting Process	79
5-8.	Example of Processing Interrupt Requests Simultaneously Generated	81
5-9.	Software Exception Processing	86
5-10.	RETI Instruction Processing	87
5-11.	Exception Trap Processing	89
5-12.	RETI Instruction Processing	90
5-13.	Pipeline Operation upon Reception of Interrupt Request (Outline)	93
6-1.	Block Configuration	112
7-1.	Basic Operation of Timer 1	127
7-2.	Operation after Occurrence of Overflow (when ECLR1 = 0, OST = 1)	128
7-3.	Clearing/Starting Timer by TCLR1 Input (when ECLR1 = 1, OST = 0)	129
7-4.	Relationships between Clear/Start by TCLR1 Input and Overflow (when ECLR1 = 1, $OST = 1$)	129
7-5	Example of TM1 Capture Operation (when both edges are specified)	130
7-6	Example of TM1 Capture Operation	131
7-7	Example of Compare Operation	132
7-8.	Example of TM1 Compare Operation (set/reset output mode)	133
7-9	Basic Operation of Timer 4	134
7-10	Operation with CM4 at 1 to FFFH	135
7-11	When CM4 Is Set to 0	136
7-12	Example of Timing of Interval Timer Operation (timer 4)	137
7-13.	Setting Procedure of Interval Timer Operation (timer 4)	137
	G	

LIST OF FIGURES (2/2)

_

Figure No.	Title	Page
7-14.	Pulse Width Measurement Timing (timer 1)	138
7-15.	Setting Procedure for Pulse Width Measurement (timer 1)	139
7-16.	Interrupt Request Processing Routine Calculating Pulse Width (timer 1)	139
7-17.	PWM Output Timing (TM1)	140
7-18.	Programming Procedure of PWM Output (timer 1)	141
7-19.	Interrupt Request Processing Routine, Modifying Compare Value (timer 1)	142
7-20.	Cycle Measurement Timing (TM1)	143
7-21.	Set-up Procedure for Cycle Measurement (timer 1)	144
7-22.	Interrupt Request Processing Routine Calculating Cycle (timer 1)	144
8-1.	Block Diagram of Asynchronous Serial Interface	150
8-2.	Format of Transmit/Receive Data of Asynchronous Serial Interface	158
8-3.	Asynchronous Serial Interface Transmission Completion Interrupt Timing	159
8-4.	Asynchronous Serial Interface Reception Completion Interrupt Timing	161
8-5.	Receive Error Timing	161
8-6.	Timing of 3-Wire Serial I/O Mode (transmission)	168
8-7.	Timing of 3-Wire Serial I/O Mode (reception)	169
8-8.	Timing of 3-Wire Serial I/O Mode (transmission/reception)	171
8-9.	Example of CSI System Configuration	171
8-10.	Block Diagram of Baud Rate Generator	172
9-1.	Block Diagram of P00, P01 (Port 0)	183
9-2.	Block Diagram of P02 to P07 (Port 0)	183
9-3.	Block Diagram of P10 to P17 (Port 1)	186
9-4.	Block Diagram of P20 (Port 2)	188
9-5.	Block Diagram of P21 to P24 (Port 2)	188
9-6.	Block Diagram of P25 (Port 2)	189
9-7.	Block Diagram of P26 (Port 2)	189
9-8.	Block Diagram of P27 (Port 2)	190
9-9.	Block Diagram of P30, P33, P35 (Port 3)	193
9-10.	Block Diagram of P31, P36 (Port 3)	194
9-11.	Block Diagram of P32, P37 (Port 3)	194
9-12.	Block Diagram of P34 (Port 3)	195
9-13.	Block Diagram of P40 to P47 (Port 4)	197
9-14.	Block Diagram of P50 to P57 (Port 5)	199
9-15.	Block Diagram of P60 to 67 (Port 6)	202
9-16.	Block Diagram of P90 to P97 (Port 9)	203
9-17.	Block Diagram of P100, P103 (Port 10)	205
9-18.	Block Diagram of P101 (Port 10)	206
9-19.	Block Diagram of P102 (Port 10)	206
9-20.	Example of Noise Elimination Timing	208
11-1	PROM Read Timing	219

LIST OF TABLES

 \star

Table No.	Title			
1-1.	Differences between μ PD70P3002 and μ PD70P3002	3		
1-2.	Differences between V851 and V852	10		
3-1.	Program Registers	29		
3-2.	System Register Numbers	30		
4-1.	Bus Priority	65		
5-1.	Interrupt List	68		
5-2.	Addresses and Bits of Interrupt Control Register	83		
6-1.	Operation of Clock Generator by Power Save Control	100		
6-2.	Operating Status in HALT Mode	104		
6-3.	Operating Status in IDLE Mode	106		
6-4.	Operating Status in Software STOP Mode	108		
6-5.	Example of Count Time	112		
7-1.	Configuration of RPU	116		
7-2.	Capture Trigger Signal to 16-Bit Capture Register (TM1)	130		
7-3.	Interrupt Request Signal from 16-Bit Compare Register (TM1)	132		
8-1.	Default Priority of Interrupts	157		
8-2.	BRG Set-up Values	174		
10-1.	Operating Status of Each Pin During Reset Period	209		
10-2.	Initial Values of Each Register at Reset	211		

[MEMO]

CHAPTER 1 INTRODUCTION

Phase-out/Discontinued

The V852 is a product of NEC's V850 family of single-chip microcontrollers for real-time control applications. This chapter briefly outlines the V852.

1.1 General

The V852 is a 32-/16-bit single-chip microcontroller that employs the CPU core of the V850 family of highperformance 32-bit single-chip microcontrollers for real-time control applications, and integrates peripheral functions such as ROM/RAM, real-time pulse unit, and serial interface.

The V852 is provided with multiplication instructions that are executed with a hardware multiplier, saturated operation instructions, and bit manipulation instructions that are ideal for digital servo control applications, in addition to basic instructions that have a high real-time response speed and can be executed in 1 clock cycle. This microcontroller can be applied as a real-time control system to numerous fields such as the AV field (camcorders, VCRs, etc.), OA field (PPCs, LBPs, printers, etc.), industrial field (motor control, NC machine tools, etc.), and communication field (cellular phones, etc.). In any of these applications, the V852 demonstrates an extremely high cost effectiveness.

1.2 Features

○ Number of instructions	: 74
\bigcirc Minimum instruction execution time	: 40 ns (at 25 MHz)
○ General register	: 32 bits x 32
○ Instruction set	 Signed multiply (16 bits x 16 bits -> 32 bits): 1 to 2 clocks Saturated operation instructions (with overflow/underflow detection function) 32-bit shift instructions: 1 clock Bit manipulation instructions Load/store instructions with long/short format
○ Memory space	 16 MB linear (common to program/data) Memory is divided in 1 MB unit blocks and wait states can be inserted into a bus cycle for every two blocks. Programmable wait function Idle state insertion function
○ External bus interface	 16-bit data bus (address/data multiplexed) Bus hold function External wait function
○ Internal memory	: ROM/PROM : 90 KB RAM : 3 KB
O Interrupt/exception	 Non-maskable: 1 source Maskable: 16 sources (Eight levels of priorities can be set.) Illegal instruction code exception
⊖ I/O line	: I/O port : 67
○ Real-time pulse unit	 16-bit timer/event counter: 1 ch 16-bit capture/compare register: 4 16-bit interval timer: 1 ch 16-bit compare register: 1
○ Serial interface	: Asynchronous serial interface (UART): 1 ch Clocked serial interface (CSI): 3 ch Dedicated baud rate generator
○ Clock generator	: Multiplication function by PLL clock synthesizer
○ Power save function	: HALT/IDLE/STOP mode Clock output stop function
○ CMOS technology	

1.3 Application Fields

AV field	: Camcorders, VCRs, etc.				
OA field	: PPCs, LBPs, printers, etc.				
Industrial field	: Motor control, NC machine tools, etc.				
Communication field : Cellular phones, etc.					

1.4 Ordering Information

*

Part number	Package	Internal ROM
µPD703002GC-25-xxx-7EA	100-pin plastic QFP (fine pitch) (14 x 14 mm)	Mask ROM
μPD70P3002GC-25-7EA	100-pin plastic QFP (fine pitch) (14 x 14 mm)	One-time PROM

Remark xxx indicates a ROM code suffix.

1.5 Differences between μ PD70P3002 and μ PD703002

The μ PD70P3002 is a PROM version of the μ PD703002. Therefore, these two versions are identical except for differences because of the ROM specifications (for example, specifications concerning writing and verifying). Table 1-1 and 1-2 show the differences between the two.

Item Part Number	μPD70P3002	μPD703002			
Internal program memory (electrical writing)	One-time PROM (can be written only once)	Mask ROM			
PROM programming pin	Provided	None			
Setting of MODE0 and MODE1 pins	 In normal operation mode MODE0, 1 = LH In PROM programming mode MODE0, 1 = HH 	 In normal operation mode MODE0, 1 = LH In ROM-less mode MODE0, 1 = LL 			
Electrical characteristics	Supply current, recommended oscillation circuit, etc. are differe	nt.			
Internal ROM empty area When programming the internal ROM, write the same instruction code for the empty are the PROM and mask ROM versions.					
Others	Noise immunity and noise radiation differ because circuit scale and mask layout differ.				

Table 1-1	Differences	between	UPD70P3002	and	//PD703002
	Differences	Detween		anu	

Cautions 1. The PROM and mask ROM versions differ from each other in terms of noise immunity and noise emission. When replacing the PROM version with the mask ROM version in the course of switching from experimental production to mass production, perform thorough evaluation with the CS model (not ES model) of the mask ROM version.

- 2. Directly connect the MODE0 and MODE1 pins to V_{DD} or $V_{\text{SS}}.$
- Remark L : low level
 - H: high level

1.6 Pin Configuration (Top View)

1.6.1 Normal operation mode

- μPD703002GC-25-xxx-7EA
- μ**PD70P3002GC-25-7EA**

Caution The content in parentheses indicates the processing of the pin not used in the normal operation mode.

G: Connect this pin to Vss.

P00 to P07	:	Port0	A16 to A23	:	Address Bus
P10 to P17	:	Port1	LBEN	:	Lower Byte Enable
P20 to P27	:	Port2	UBEN	:	Upper Byte Enable
P30 to P37	:	Port3	R/W	:	Read/Write Status
P40 to P47	:	Port4	DSTB	:	Data Strobe
P50 to P57	:	Port5	ASTB	:	Address Strobe
P60 to P67	:	Port6	ST0, ST1	:	Status
P90 to P97	:	Port9	HLDAK	:	Hold Acknowledge
P100 to P103	:	Port10	HLDRQ	:	Hold Request
TO10, TO11	:	Timer Output	CLKOUT	:	Clock Output
TCLR1	:	Timer Clear	CKSEL	:	Clock Select
TI1	:	Timer Input	PLLSEL	:	PLL Select
INTP00 to INTP03,			WAIT	:	Wait
INTP10 to INTP13	:	Interrupt Request From Peripherals	MODE0, MODE1	:	Mode
NMI	:	Non-maskable Interrupt Request	RESET	:	Reset
SO0 to SO2	:	Serial Output	X1, X2	:	Crystal
SI0 to SI2	:	Serial Input	CVDD	:	Clock Generator Power Supply
$\overline{\text{SCK0}}$ to $\overline{\text{SCK2}}$:	Serial Clock	CVss	:	Clock Generator Ground
TXD	:	Transmit Data	Vdd	:	Power Supply
RXD	:	Receive Data	Vss	:	Ground
AD0 to AD15	:	Address/Data Bus	IC0	:	Internally Connected

* 1.6.2 PROM programming mode

• μ**PD70P3002GC-25-7EA**

Caution The content in parentheses indicates the connection of the pin not used in the PROM programming mode.

- L : Individually connect this pin to Vss via a resistor.
- H : Connect this pin to VDD via a resistor.
- G : Connect this pin to Vss.
- V : Connect this pin to VDD.

Open : Connect nothing to this pin.

A0 to A16	:	Address Bus	MODE0, MODE1	:	Programming Mode Set
D0 to D7	:	Data Bus	Vdd	:	Power Supply
CE	:	Chip Enable	Vss	:	Ground
OE	:	Output Enable	Vpp	:	Programming Power Supply
PGM	:	Programming Mode			

1.7 Function Block Configuration

* 1.7.1 Internal block diagram

Note Pins used in the PROM programming mode

1.7.2 Internal units

(1) CPU

Executes almost all the instruction processing such as address calculation, arithmetic/logic operation, and data transfer in 1 clock by using a 5-stage pipeline.

Dedicated hardware devices such as a multiplier (16 bits x 16 bits -> 32 bits) and a barrel shifter (32 bits) are provided to increase the speed of processing complicated instructions.

(2) Bus control unit (BCU)

Initiates the necessary number of external bus cycles based on the physical address obtained by the CPU. If the CPU does not issue a request to start a bus cycle when fetching an instruction from the external memory area, generates a prefetch address to prefetch an instruction code. The prefetched instruction code is loaded to the internal instruction queue.

(3) ROM/PROM

ROM or PROM of 90 Kbytes mapped starting from address 00000000H. Access is enabled/disabled by the MODE0 and MODE1 pins. With the PROM version, the programming mode is specified by these two pins. This ROM/PROM is accessed in 1 clock by the CPU when an instruction is fetched.

(4) RAM

3-KB RAM mapped starting from address FFFFE000H. This RAM can be accessed in 1 clock by the CPU when data is accessed.

(5) Interrupt controller (INTC)

Processes interrupt requests (NMI, INTP00 to INTP03, INTP10 to INTP13) from the internal peripheral hardware and external sources. Eight levels of priorities can be specified for these interrupt requests, and multiplexed processing control can be performed on an interrupt source.

(6) Clock generator (CG)

Supplies the CPU clock whose frequency is one or five times (when the internal PLL is used) or 1/2 times (when the PLL is not used) the frequency of the oscillator connected across the X1 and X2 pins. Input from an external clock source can also be referenced instead of using the oscillator.

(7) Real-time pulse unit (RPU)

Provides a 16-bit timer/event counter, a 16-bit interval timer, and capabilities for measuring pulse width and frequency, and generation of programmable pulse outputs.

(8) Serial interface (SIO)

The serial interface of the V852 consists of 1-channel asynchronous serial interface (UART) and 3-channel synchronous or clocked serial interface (CSI).

UART transfers data by using the TXD and RXD pins, and the CSI transfers data by using the SO0 to SO2, SI0 to SI2, and $\overline{SCK0}$ to $\overline{SCK2}$ pins.

The output of the baud rate generator and system clock can be selected as the serial interface clock source.

(9) Ports

The V852 is provided with a total of 68 I/O port pins (one of them is input only) that constitute ports 0 to 10. These port pins also function as various control pins.

Port	I/O		Function				
Port0	8-bit I/O	General port Timer I/O, external interrupt					
Port1			-				
Port2			External interrupt, serial interface				
Port3		Serial interface					
Port4		External address/data bus					
Port5							
Port6			External address bus				
Port9		External bus interface control signal I/O					
Port10	4-bit I/O						

1.8 Differences between V851[™] and V852

The V852 is provided with increased internal ROM/RAM capacity and more CSI channels of the serial interface. The number of PLL multiplication can be selected from either one or five.

Table 1-2. Differences between V851 and V852						
Item		V851	V852			
Internal ROM capacity	y	32 KB	90 KB			
Internal RAM capacity	/	1 KB	3 КВ			
Serial interface		UART : 1 ch	UART : 1 ch			
		CSI : 1 ch	CSI : 3 ch			
		Baud rate generator : 1	Baud rate generator : 2			
Interrupt source		External: 9 sources (Including NMI)	External : 9 sources (Including NMI)			
		Internal : 10 sources	Internal : 12 sources			
Interrupt/	00000160H		INTCSI1			
exception table	00000170H		INTCSI2			
Number of multiplicati	ion	Multiplication by 5	Multiplication by 1 or 5			
when using PLL						
I/O port (total 68)		Dedicated pins : 17	Dedicated pins : 11			
		Shared with control pins : 51	Shared with control pins : 57			
Pin name (at normal of	operation mode)					
	QFP pin number					
	52	IC1	PLLSEL			
	78	P27	P27/SCK2			
	79	P26	P26/SI2			
	80	P25	P25/SO2			
	88	P37	P37/SCK1			
	89	P36	P36/SI1			
	90	P35	P35/SO1			
	93	P32/SCK	P32/SCK0			
	94	P31/SI	P31/SI0			
	95	P30/SO	P30/SO0			
Peripheral I/O registe	r					
	I/O address					
	FFFFF094H	_	BRG1			
	FFFFF096H	_	BPRM1			
	FFFFF098H	_	CSIM1			
FFFF09AH		_	SIO1			
FFFF0A8H		_	CSIM2			
	FFFFF0AAH		SIO2			
	FFFFF11CH		CSIC1			
	FFFFF11EH		CSIC2			

Table 1-2. Differences between V851 and V852

CHAPTER 2 PIN FUNCTIONS

The following table shows the names and functions of the V852's pins. These pins can be divided by function into port pins and other pins.

2.1 Pin Function List

2.1.1 Normal operation mode

(1) Port pins

			(1/2)
Pin Name	I/O	Function	Alternate Function
P00	I/O	Port 0.	TO10
P01		8-bit I/O port.	TO11
P02	-	Can be specified in input/output mode in 1-bit units.	TCLR1
P03			TI1
P04			INTP10
P05			INTP11
P06			INTP12
P07	1		INTP13
P10 to P17	I/O	Port 1. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	_
P20	Input	Port 2.	NMI
P21	I/O	P20 is an input-only port.	INTP00
P22		Indicates NMI input status with bit 0 of P2 register.	INTP01
P23		P21 to P27 are 7-bit I/O ports.	INTP02
P24	_	Input/output can be specified in 1-bit units.	INTP03
P25			SO2
P26			SI2
P27			SCK2

			(2/2)
Pin Name	I/O	Function	Alternate Function
P30	I/O	Port 3.	SO0
P31	1	8-bit I/O port.	SI0
P32]	Can be specified in inpurouput mode in 1-bit units.	SCK0
P33	1		TXD
P34			RXD
P35			SO1
P36			SI1
P37			SCK1
P40 to 47	I/O	Port 4. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	AD0 to AD7
P50 to P57	I/O	Port 5. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	AD8 to AD15
P60 to P67	I/O	Port 6. 8-bit I/O port. Can be specified in input/output mode in 1-bit units.	A16 to A23
P90	I/O	Port 9.	LBEN
P91		8-bit I/O port.	UBEN
P92		Can be specified in input/output mode in 1-bit units.	R/W
P93			DSTB
P94			ASTB
P95]		ST0
P96			ST1
P97]		_
P100	I/O	Port 10.	HLDAK
P101]	4-bit I/O port.	HLDRQ
P102]		-
P103			-

(2) Non-port pins

(1/2							
Pin Name	I/O	Function	Alternate Function				
TO10	Output	Pulse signal output from timer 1.	P00				
TO11			P01				
TCLR1	Input	External clear signal input to timer 1.	P02				
TI1		External count clock input to timer 1.	P03				
INTP10	Input	External capture trigger input to timer 1. Also used to input external	P04				
INTP11	1	maskable interrupt request.	P05				
INTP12			P06				
INTP13	1		P07				
NMI	Input	Non-maskable interrupt request input.	P20				
INTP00	Input	External maskable interrupt request input.	P21				
INTP01]		P22				
INTP02			P23				
INTP03			P24				
SO0	Output	Serial transmit data output from CSI0.	P30				
SI0	Input	Serial receive data input to CSI0.	P31				
SCK0	I/O	Serial clock I/O from/to CSI0.	P32				
SO1	Output	Serial transmit data output from CSI1.	P35				
SI1	Input	Serial receive data input to CSI1.	P36				
SCK1	I/O	Serial clock I/O from/to CSI1.	P37				
SO2	Output	Serial transmit data output from CSI2.	P25				
SI2	Input	Serial receive data input to CSI2.	P26				
SCK2	I/O	Serial clock I/O from/to CSI2.	P27				
TXD	Output	Serial transmit data output from UART.	P33				
RXD	Input	Serial receive data input to UART.	P34				
AD0 to AD7	I/O	16-bit multiplexed address/data bus when external memory is used.	P40 to P47				
AD8 to AD15			P50 to P57				
A16 to A23	0	Higher address bus when external memory is used.	P60 to P67				
LBEN	Output	Lower byte enable signal output of external data bus.	P90				
UBEN		Higher byte enable signal output of external data bus.	P91				
R/W		External read/write status output.	P92				
DSTB		External data strobe signal output.	P93				
ASTB		External address strobe signal output.	P94				
ST0		External bus cycle status output.	P95				
ST1			P96				
HLDAK	Output	Bus hold acknowledge output.	P100				
HLDRQ	Input	Bus hold request input.	P101				
CLKOUT	Output	System clock output.					

			(2/2)
Pin Name	I/O	Function	Alternate Function
CKSEL	Input	Input specifying operation mode of clock generator.	-
PLLSEL	Input	Input specifying the number of PLL multiplication.	-
WAIT	Input	Control signal input inserting wait state to bus cycle.	-
MODE0, MODE1	Input	Specifies operation mode of the V852.	-
RESET	Input	System reset input.	-
X1	Input	System clock oscillator connecting pins. Supply external clock to X1.	-
X2	-		-
CVDD		Positive power supply for internal clock generator.	-
CVss	-	Ground for internal clock generator.	-
Vdd	-	Positive power supply	-
Vss	_	Ground	_
IC0	_	Internally connected	_

2.1.2 PROM programming mode (µPD70P3002 only)

Control and timing of the V852 in the PROM mode are compatible with those of the μ PD27C1001A. The functions of the pins of the V852 in the PROM mode are as follows:

Pin Name	Function in PROM Mode	Function in Normal Operation Mode		
A0 to A7	Address input, low (A0 to A7)	P60 to P67		
A8, A9, A10 to A16	Address input, high (A8 to A16)	P50, P20, P51 to P57		
D0 to D7	Data input/output	P40 to P47		
CE	CE (chip enable) input	P25		
ŌE	OE (output enable) input	P26		
PGM	PGM (program) input	P27		
Vpp	Power supply for program write	ICO		
MODE0, MODE1	Operation mode specification	MODE0, MODE1		

 \star

2.2 Pin Status

* *

The operating status of each pin in each operation mode is as follows:

Operating Status Pin	Reset	STOP Mode	IDLE Mode	Bus Hold	Idle State	HALT Mode
AD0 to AD15	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
A16 to A23	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained ^{Note 1}	Retained
LBEN, UBEN	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained ^{Note 1}	Retained
R/W	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
DSTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
ASTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
ST0, ST1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Idle status	Idle status
HLDRQ	-	-	-	Operates	Operates	Operates
HLDAK	Hi-Z	Hi-Z	Hi-Z	L	Operates	Operates
WAIT	_	-	-	-	-	_
CLKOUT	Operates	L	L	OperatesNote 2	OperatesNote 2	OperatesNote 2

Hi-Z : high-impedance

Retained : Retains status in external bus cycle immediately before

L : low-level output

H : high-level output

- : input not sampled

Notes 1. Undefined immediately after bus hold ends.

2. "L" during clock output inhibit mode.

2.3 Pin Function

2.3.1 Normal operation mode

(1) P00 to P07 (Port0) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 0. They also serve as control signal pins. P00 to P07 function not only as I/O port pins, but also as the I/O pins of the real-time pulse unit (RPU) and external interrupt request input pins. Each bit of port 0 can be specified in the port or control mode, by using port mode control register 0 (PMC0).

(a) Port mode

P00 to P07 can be set in the input or output mode in 1-bit units by using port mode register 0 (PM0).

(b) Control mode

P00 to P07 can be set in the port or control mode in 1-bit units by the PMC0 register.

- (i) TO10, TO11 (Timer Output) ... output These pins output pulse signals from timer 1.
- (ii) TCLR1 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI1 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

(iv) INTP10 to INTP13 (Interrupt Request From Peripherals) ... input

These pins are the external interrupt request input pins of timer 1.

(2) P10 to P17 (Port 1) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 1, which can be set in the input or output mode in 1-bit units by using port mode register 1 (PM1).

The pins of port 1 function only as I/O pins and are not multiplexed with control pins.

(3) P20 to P27 (Port 2) ... 3-state I/O

These pins constitute an I/O port, port 2, which can be set in the input or output mode in 1-bit units except P20 which is fixed to the input mode. They function not only as port pins but also as external interrupt input and serial interface (CSI) pins.

Each bit of this port can be specified in the port or control mode by using port mode control register 2 (PMC2).

(a) Port mode

P21 to P27 can be set in the input or output mode in 1-bit units by port mode register 2 (PM2). PM20 is an input-only port, and operates as an NMI input when a valid edge is input.

(b) Control mode

P21 to P27 can be set in the port or control mode in 1-bit units by port mode control register 2 (PMC2). P20 is dedicated to the control mode.

- (i) NMI (Non-Maskable Interrupt Request) ... input This pin inputs a non-maskable interrupt request.
- (ii) INTP00 to INTP03 (Interrupt Request From Peripherals) ... input These pins input external maskable interrupt requests.
- (iii) SO2 (Serial Output) ... output This pin outputs the serial transmit data of CSI2.
- (iv) SI2 (Serial Input) ... input This pin inputs the serial receive data of CSI2.
- (v) SCK2 (Serial Clock) ... 3-state I/O This pin inputs/outputs the serial clock of CSI2.

(4) P30 to P37 (Port 3) ... 3-state input

These pins constitute an 8-bit I/O port, port 3. They also function as control signal pins. P30 to P37 function not only as I/O port pins but also as serial interface (UART, CSI) I/O pins in the control mode.

(a) Port mode

P30 to P37 can be set in the input or output mode in 1-bit units by port mode register 3 (PM3).

(b) Control mode

P30 to P37 can be set in the port or control mode in 1-bit units by the PMC3 register.

(i) SO0 (Serial Output) ... output
 This pin outputs the serial transmit data of CSI0.

(ii) SI0 (Serial Input) ... input

This pin inputs the serial receive data of CSI0.

(iii) SCK0 (Serial Clock) ... 3-state I/O

This pin inputs/outputs the serial clock of CSI0.

(iv) SO1 (Serial Output) ... output

This pin outputs the serial transmit data of CSI1.

(v) SI1 (Serial Input) ... input

This pin inputs the serial receive data of CSI1.

(vi) SCK1 (Serial Clock) ... 3-state I/O

This pin inputs/outputs the serial clock of CSI1.

(vii) TXD (Transmit Data) ... output

This pin outputs the serial transmit data of UART. Transmit disabled : high-impedance Transmit enabled : high-level

(viii) RXD (Receive Data) ... input

This pin inputs the serial receive data of UART.

(5) P40 to P47 (Port 4) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 4. They also form a portion of the address/data bus connected to external memory.

P40 to P47 function not only as I/O port pins but also as multiplexed address/data bus pins (AD0 to AD7) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode, in 1-bit units, by using mode specification pins (MODE0 and MODE1), and memory expansion mode register (MM).

(a) Port mode

P40 to P47 can be set in the input or output port mode in 1-bit units by using port mode register 4 (PM4).

(b) Control mode (external expansion mode)

P40 to P47 can be specified as AD0 to AD7 by using the MODE0 and MODE1 pins and MM register.

(i) AD0 to AD7 (Address/Data0 to 7) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A0 to A7 output pins of a 24-bit address in the address timing (T1 state), and as the lower 8-bit data I/O bus pins of 16-bit data in the data timing (T2, TW, T3).

The output status of these pins changes in synchronization with the rising edge of the clock in each state of the bus cycle. AD0 to AD7 go into a high-impedance state in the idle state (TI).

(6) P50 to P57 (Port 5) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 5. They also form a portion of the address/data bus connected to external memory.

P50 to P57 function not only as I/O port pins but also as multiplexed address/data bus pins (AD8 to AD15) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode in 1-bit units by using mode specification pins (MODE0 and MODE1), and memory expansion mode register (MM).

(a) Port mode

P50 to P57 can be set in the input or output port mode in 1-bit units by using port mode register 5 (PM5).

(b) Control mode (external expansion mode)

P50 to P57 can be specified as AD8 to AD15 by using the MODE0 and MODE1 pins and MM register.

(i) AD8 to AD15 (Address/Data8 to 15) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A8 to A15 output pins of a 24-bit address in the address timing (T1 state), and as the higher 8-bit data I/O bus pins of 16-bit data in the data timing (T2, TW, T3).

The output status of these pins changes in synchronization with the rising edge of the clock in each state of the bus cycle. AD8 to AD15 go into a high-impedance state in the idle state (TI).

(7) P60 to P67 (Port 6) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 6. They also form a portion of the address/data bus connected to external memory.

P60 to P67 function not only as I/O port pins but also as address bus pins (A16 to A23) in the control mode (external expansion mode) when an external memory is connected. This port can be set in the port or control mode in 2-bit units by using mode specification pins (MODE0 and MODE1), and memory expansion mode register (MM).

(a) Port mode

P60 to P67 can be set in the input or output port mode in 1-bit units by using port mode register 6 (PM6).

(b) Control mode (external expansion mode)

P60 to P67 can be specified as A16 to A23 by using the MODE0 and MODE1 pins and MM register.

(i) A16 to A23 (Address/Data16 to 23) ... output

These pins constitute the higher 8 bits of a 24-bit address bus when the external memory is accessed. The output status of these pins changes in synchronization with the rising edge of the clock in the T1 state. During the idle state (TI), the address of the bus cycle immediately before entering the idle state is retained.

(8) P90 to P97 (Port 9) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 9, and are also used to output control signals.

P90 to P96 function not only as I/O port pins but also as control signal output pins in the control mode (external expansion mode) when an external memory is used.

This port can be set in the port or control mode in 5-, 2-, or 1-bit units by using mode specification pins (MODE0 and MODE1), and memory expansion mode register (MM).

P97 functions only as I/O pin and is not multiplexed with control pin.

(a) Port mode

P90 to P97 can be set in the input or output port mode in 1-bit units by using port mode register 9 (PM9).

(b) Control mode (external expansion mode)

P90 to P96 can be used to output control signals when so specified by the MODE0 and MODE1 pins and MM register when an external memory is used.

(i) LBEN (Lower Byte Enable) ... output

This is the lower byte enable signal of the 16-bit external data bus.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. During the idle state (TI), the address of the bus cycle immediately before entering the idle state is retained.

(ii) UBEN (Upper Byte Enable) ... output

This is the upper byte enable signal of the 16-bit external data bus. It becomes active (low) in the odd-number byte access mode, and becomes inactive (high) in the even-number byte access mode. This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. During the idle state (TI), the address of the bus cycle immediately before entering the idle state is retained.

	Access	UBEN	LBEN	A0
Word Access		0	0	0
Half-word Acc	ess	0	0	0
Byte Access	Even address	1	0	0
	Odd address	0	1	1

(iii) R/W (Read/Write Status) ... output

This is a status signal that indicates whether the bus cycle for external access is a read or write cycle. It goes high in the read cycle and low in the write cycle.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. It goes high in the idle state (TI).

(iv) DSTB (Data Strobe) ... output

This is the access strobe signal of the external data bus. It becomes active (low) in the T2 or TW state of the bus cycle, and becomes inactive (high) in the idle state (TI).

(v) ASTB (Address Strobe) ... output

This is the latch strobe signal of the external address bus.

It becomes active (low) in synchronization with the falling edge of the clock in the T1 state of the bus cycle, and becomes inactive (high) in synchronization with the falling edge of the clock in the T3 state. It goes high in the idle state (TI).

(vi) ST0, ST1 (Status0, 1) ... output

These are status signals which indicate the access type of the current bus cycle when external memory is referenced. The status changes in synchronization with the rising edge of the clock in the T1 and TI states of the bus cycle.

ST1	ST0	Bus Cycle Status
0	0	Idle cycle
0	1	Instruction fetch (branch)
1	0	Operand data access
1	1	Instruction fetch (continuous)

In the following cases, the "Instruction fetch (branch)" is output in the first bus cycle branched (T1 to T3 states).

- Instruction fetch of the branched destination by the branch instructions (JMP, JR, JARL, Bcond)
- Instruction fetch of the source by the RETI instruction
- Instruction fetch of the jumped destination (interrupt/exception table) by reset, TRAP instruction, and interrupt

Instruction fetches other than the above output the status of the instruction fetch (continuous).

(9) P100 to P103 (Port 10) ... 3-state I/O

Port 10 is a 4-bit I/O port that can be set in the input or output mode in 1-bit units. In addition to the function as a port, the pins constituting port 10 are used to input/output control signals, in the control mode, when an external bus master or ASIC is connected.

If port 10 is accessed in 8-bit units, the higher 4 bits are ignored if the access is write, and undefined if the access is read.

P102 and P103 function only as I/O pins and are not multiplexed with control pins.

(a) Port mode

P100 to P103 can be set in the input or output mode, in 1-bit units, by port mode register (PM10).

(b) Control mode

P100 and P101 function as input and output pins for bus hold control signals when the function is enabled by mode control register 10 (PMC10).

(i) **HLDAK** (Hold Acknowledge) ... output

This is an acknowledge signal that indicates that the V852 has set the address bus, data bus, and control bus in the high-impedance state in response to a bus hold request.

As long as this signal is active, the address/data bus, and control signals remain in a high-impedance state.

(ii) HLDRQ (Hold Request) ... input

This input signal is used by an external device to request that the V852 relinquish control of the address, data bus, and control signals. This signal can be activated asynchronously with CLKOUT. When this signal becomes active, the V852 sets the address/data bus and control signals in the high-impedance state, after the current bus cycle completes. If there is no current bus activity, the address/ data bus and control signals are immediately set to high-impedance. HLDAK is then made active and the bus and control lines are released.

(10) CLKOUT (Clock Output) ... output

This pin outputs the system clock, even during reset. The output of this pin can be fixed to low level when the clock output inhibit mode is set by the PSC register.

(11) CKSEL (Clock Select) ... input

This pin specifies the operation mode of the clock generation circuit. Once set, the input value of this pin cannot be changed during operation.

CKSEL	Operation Mode
0	PLL mode
1	Direct mode

(12) PLLSEL (PLL Select) ... input

This input pin selects whether the system clock has a frequency one $(1 \times fxx)$ or five $(5 \times fxx)$ times the frequency (fxx) of the external oscillator or external clock in the PLL mode (CKSEL = 0).

Once set, the input value of this pin cannot be changed during operations.

This pin has no function in the direct mode (CKSEL = 1). Leave it as an unused pin.

PLLSEL	φ
0	fxx
1	5 imes fxx

(13) WAIT (Wait) ... input

This control signal input pin inserts a data wait state to the bus cycle, and can be activated asynchronously to CLKOUT. This pin is sampled at the falling edge of the clock in the T2 and TW states of the bus cycle. If the set/hold time for the sampling timing is not satisfied, the wait state may not be inserted.

(14) MODE0, MODE1 (Mode0, 1) ... input

These pins specify the operation mode of the V852. Three operation modes can be selectable: single-chip mode, ROM-less mode, and PROM programming mode. The input value of these pins cannot be changed during normal operation.

MODE1	MODE0	Operation Mode	
0	0	ROM-less mode	
0	1	RFU (reserved	()
1	0	Single-chip mo	ode
1	1	PROM mode	V _{PP} = 5 V : read mode
			V _{PP} = 12.5 V: programming mode

(15) RESET (Reset) ... input

The RESET signal is an asynchronous input signal. A valid low-level signal on the RESET pin initiates a system reset, regardless of the clock operation. In addition to normal system initialization/start functions, the RESET signal is also used for exiting processor power-save modes (HALT, IDLE, or STOP).

(16) X1, X2 (Crystal) ... input

An oscillator for system clock generation is connected across these pins. An external clock source can also be referenced by connecting the external clock input to the X1 pin and leaving the X2 pin open.

(17) CVDD (Power Supply for Clock Generator)

This pin supplies positive power to the internal clock generator.

(18) CVss (Ground for Clock Generator)

This is the ground pin of the internal clock generator.

(19) VDD (Power Supply)

This pin supplies positive power. Connect all the VDD pins to a positive power supply.

(20) Vss (Ground)

This is a ground pin. Connect all the Vss pins to ground.

(21) IC0 (Internally Connected)

This pin is internally connected and must be connected to Vss.

2.3.2 PROM programming mode (µPD70P3002 only)

(1) A0 to A16 ... input

These pins constitute an address bus that selects an address of the internal PROM (00000H to 167FFH).

(2) D0 to D7 ... I/O

These pins constitute a data bus through which the internal PROM is written/read.

(3) **PGM** ... input

This pin inputs a program pulse and is activated when $V_{PP} = 12.5 \text{ V}$, $\overline{CE} = 0$, and $\overline{OE} = 1$. Upon activation, the program on D0 to D7 is written to an internal PROM cell selected by A0 to A16.

(4) CE ... input

This is a chip enable input pin. When this signal is active, the program in PROM can be written/read.

(5) OE ... input

This is an output enable signal input pin and inputs a read strobe signal to the internal PROM. When the signal is activated while $\overline{CE} = 0$, the program (1 byte) of the internal PROM cell selected by A0 to A16, will appear at the outputs, D0 to D7.

(6) VPP ... input

This pin inputs a program pulse. When this pin is activated while $V_{PP} = 12.5 \text{ V}$, $\overline{CE} = 0$, and $\overline{OE} = 1$, the program byte on D0 to D7 can be written to the internal PROM cell selected by A0 to A16.

(7) Vdd

Positive power supply pin

(8) Vss

GND pin

2.4 I/O Circuit Type and Connection of Unused Pins

* When connecting to V_{DD} or V_{SS} via a resistor, it is recommended to connect a resistor with a resistance of 1 to 10 kΩ.

	Pin	I/O Circuit Type	Recommended Connection
	P00/TO10, P01/TO11	5	Input status : Individually connect to VDD or VSS
	P02/TCLR1, P03/TI1, P04/INTP10 to P07/INTP13	8	via resistor
	P10 to P17	5	Output status : Open
*	P20/NMI	2	Directly connect to Vss
	P21/INTP00 to P24/INTP03	8	Input status $\ :$ Individually connect to V_DD or Vss
	P25/SO2	5	via resistor
	P26/SI2, P27/SCK2	8	Output status : Open
	P30/SO0	5	
	P31/SI0, P32/SCK0	8	
	P33/TXD, P34/RXD, P35/SO1	5	
	P36/SI1, P37/SCK1	8	
	P40/AD0 to P47/AD7	5	
	P50/AD8 to P57/AD15		
	P60/A16 to P67/A23		
	P90/LBEN		
	P91/UBEN		
	P92/R/W		
	P93/DSTB		
	P94/ASTB		
	P95/ST0, P96/ST1		
	P97		
	P100/HLDAK		
	P101/HLDRQ		
	P102		
	P103		
	CLKOUT	3	Open
	CKSEL	2	-
	PLLSEL	2	_
*	WAIT	1	Directly connect to VDD
	MODE0, MODE1	2	-
	RESET		
	ICO	-	Directly connect to Vss
*	CVDD	-	Directly connect to VDD
*	CVss	_	Directly connect to Vss

2.5 Pin I/O Circuits

CHAPTER 3 CPU FUNCTIONS

The CPU of the V852 is based on a RISC architecture and executes most instructions in one clock cycle by using a 5-stage pipeline.

3.1 Features

- O Minimum instruction execution time: 40 ns (at 25 MHz)
- Address space: 16 MB linear
- Thirty-two 32-bit general registers
- Internal 32-bit architecture
- Five-stage pipeline control
- Multiplication/division instructions
- Saturated operation instructions
- Single-cycle 32-bit shift instruction
- \bigcirc Long/short instruction format
- Internal memory
 - ROM/PROM : 90 KB
 - RAM : 3 KB
- $\, \odot \,$ Four types of bit manipulation instructions
 - Set
 - Clear
 - Not
 - Test

0

0

0

3.2 CPU Register Set

The registers of the V852 can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers are 32 bits wide.

31

For more details, refer to V850 Family User's Manual Architecture.

Program register set

System register set

31	0
rO	Zero Register
r1	Reserved for Address Generation
r2	Interrupt Stack Pointer
r3	Stack Pointer (SP)
r4	Global Pointer (GP)
r5	Text Pointer (TP)
r6	
r7	
r8	
r9	
r10	
r11	
r12	
r13	
r14	
r15	
r16	
r17	
r18	
r19	
r20	
r21	
r22	
r23	
r24	
r25	
r26	
r27	
r28	
r29	
r30	Element Pointer (EP)
r31	Link Pointer (LP)

EIPC	Exception/Interrupt PC	
EIPSW	Exception/Interrupt PSW	
31		0
FEPC	Fatal Error PC	
FEPSW	Fatal Error PSW	

31 ECR Exception Cause Register

31 PSW Program Status Word

3	1

PC	Program Counter	

0

3.2.1 Program register set

The program register set includes general registers and a program counter.

(1) General registers

Thirty-two general registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. Also, r1 to r5 and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used.

Also, for the details of r1 to r5 and r31, refer to CA850 User's Manual.

Name	Usage	Operation
rO	Zero register	Always holds 0
r1	Assembler-reserved register	Used as a working register for creating 32-bit immediate
r2	Interrupt stack pointer	Stack pointer for interrupt handler
r3	Stack pointer	Used to generate stack frame when function is called
r4	Global pointer	Used to access global variable in data area
r5	Text pointer	Used as a register specifying the start of the text area ^{Note}
r6 to r29	-	Address/data variable registers
r30	Element pointer	Base pointer register when memory is accessed
r31	Link pointer	Used by compiler when calling function
PC	Program counter	Holds instruction address during program execution

Table 3-1. Program R

Note Area to allocate the program code.

(2) Program counter

This register holds the address of the instruction under execution. The lower 24 bits of this register are valid, and bits 31 to 24 are fixed to 0. If a carry occurs from bit 23 to 24, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

Figure 3-1. Program Counter (PC)

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

No.	System Register Name	Usage	Operation
0	EIPC	Status saving registers during interrupt	These registers save the PC and PSW when an exception or interrupt occurs. Because only one set of these registers is available, their contents must be saved when
1	EIPSW		multiple interrupts are enabled. The high 8 bits of the EIPC and the high 24 bits of the EIPSW are fixed to 0.
2	FEPC	Status saving registers for NMI	These registers save PC and PSW when NMI occurs.
3	FEPSW		FEPSW are fixed to 0.
4	ECR	Interrupt source register	If exception, maskable interrupt, or NMI occurs, this register will contain information referencing the interrupt source. The high 16 bits of this register are called FECC, to which exception code of NMI is set. The low 16 bits are called EICC to which exception code of exception/ interrupt is set (refer to Figure 3-2).
5	PSW	Program status word	Program status word is a collection of flags that indicate program status (instruction execution result) and CPU status (refer to Figure 3-3).
6 to 31	Reserved		

Table 3-2	System	Register	Numbers
	Oystem	Register	Number 3

To read/write these system registers, specify a system register number indicated by the system register load/store instruction (LDSR or STSR instruction).

Figure 3-2. Interrupt Source Register (ECR)

Bit Position	Bit Name	Meaning
31 to 16	FECC	Fatal Error Cause Code Exception code of NMI (Refer to Table 5-1 Interrupt List)
15 to 0	EICC	Exception/Interrupt Cause Code Exception code of exception/interrupt (Refer to Table 5-1 Interrupt List)

Figure 3-3. Program Status Word (PSW)

Bit Position	Bit Name	Function
31 to 8	RFU	Reserved field (fixed to 0)
7	NP	NMI Pending Indicates that NMI processing is in progress. This flag is set when NMI is accepted, and disables multiple interrupts.
6	EP	Exception Pending Indicates that exception processing is in progress. This flag is set when exception is generated and does not accept maskable interrupt request.
5	ID	Interrupt Disable Indicates that accepting external interrupt request is disabled.
4	SAT	Saturated Math This flag is set if result of executing saturated operation instruction overflows (if overflow does not occur, value of previous operation is held).
3	CY	Carry This flag is set if carry or borrow occurs as result of operation (if carry or borrow does not occur, it is reset).
2	OV	Overflow This flag is set if overflow occurs during operation (if overflow does not occur, it is reset).
1	S	Sign This flag is set if result of operation is negative. It is reset if result is positive.
0	Z	Zero This flag is set if result of operation is zero (if result is not zero, it is reset).

3.3 Operation Modes

3.3.1 Operation modes

The V852 has the following operations modes. These modes are selected by the MODE0 and MODE1 pins.

(1) Single-chip mode

In single-chip mode, after the system has been released from the reset status, the pins related to the bus interface are set for I/O port mode, execution branches to the reset entry address of the internal ROM/PROM, and instruction processing is started. The external expansion mode can be set in which external devices can be connected to the external memory area by setting the memory expansion mode register (MM) using instructions (Refer to **3.4.6 (1) External expansion mode register (MM)**).

(2) ROM-less mode

After the system reset has been released from the reset status, the pins related to the bus interface are set for the control mode, execution branches to the external device (memory) reset entry addresses, and instruction processing is started. Instruction fetch and data access from internal ROM/PROM are disabled.

(3) PROM programming mode

This mode is provided only for the PROM version. In PROM programming mode, the appropriate pins function to provide a μ PD27C1001A compatible interface. By using a PROM programmer, the internal PROM of the V852 can be programmed.

(4) PROM read mode

This mode is provided only for the PROM version. In PROM read mode, the appropriate pins function to provide a μ PD27C1001A compatible interface. By using a PROM programmer, the internal PROM of the V852 can be read.

3.3.2 Specifying operation mode

The operation mode of the V852 is specified by using the MODE0 and MODE1 pins. Set these pins in the application system. Do not change the setting of these pins during operation.

If the setting is changed during operation, the functionality is not guaranteed.

(1) In normal mode

MODE1	MODE0	Operation Mode
0	0	ROM-less mode
0	1	RFU (reserved)
1	0	Single-chip mode
1	1	RFU (reserved)

(2) In PROM mode

Pin Status			Operation Mode		
Vpp	MODE1	MODE0	Operation mode		
5 V	0	0	RFU (reserved)		
	0	1			
	1	0			
	1	1	PROM mode (read mode)		
12.5 V	1	1	PROM mode (programming mode)		

3.4 Address Space

3.4.1 CPU address space

The CPU of the V852 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). When referencing instruction addresses, a linear address space (program space) of up to 16 MB is supported.

Figure 3-4 shows the CPU address space.

3.4.2 Image (Virtual Address Space)

The core CPU supports 4 GB of "virtual" addressing space, or 256 memory blocks, each containing 16-MB memory locations. In actuality, the same 16-MB block is accessed regardless of the values of bits 31 to 24 of the CPU address. Figure 3-5 shows the image of the virtual addressing space.

Because the higher 8 bits of a 32-bit CPU address are ignored and the CPU address is only seen as a 24-bit external physical address, the physical location XX000000H is equally referenced by multiple address values 00000000H, 010000000H, 02000000H... through FE000000H, FF000000H.

3.4.3 Wrap-around of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 8 bits are set to "0", and only the lower 24 bits are valid. Even if a carry or borrow occurs from bit 23 to 24 as a result of branch address calculation, the higher 8 bits ignore the carry or borrow and remain at "0".

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 00FFFFFH are contiguous addresses. The condition in which the lower-limit address and upper-limit address of the program space are contiguous is called wrap-around.

Caution No instruction can be fetched from the 4-KB area of 00FFF000H to 00FFFFFFH because this area is defined as peripheral I/O area. Therefore, do not execute any branch operation instructions in which the destination address will reside in any part of this area.

(2) Data space

The result of operand address calculation that exceeds 32 bits is ignored.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

3.4.4 Memory map

The V852 reserves areas as shown below. Each mode is specified by using the MODE0 and MODE1 pins (refer to **3.3 Operation Modes**).

	Single-chip mode	(e	Single-chip mode xternal expansion mod	le)	ROM-less mode	_	
XXFFFFFFH XXFFF000H	Peripheral I/O area		Peripheral I/O area		Peripheral I/O area		4 KB
XXFFEFFFH XXFFE000H	Internal RAM area		Internal RAM area		Internal RAM area		4 KB
XXFFDFFFH XX100000H XX0FFFFFH	(access prohibited)		External memory area		External memory area		16 MB
ХХ000000Н	Internal ROM/PROM area		Internal ROM/PROM area				1 MB

3.4.5 Area

(1) Internal ROM/PROM area

A 1-MB area corresponding to addresses 000000H to 0FFFFFH is reserved for the internal ROM/PROM area. The V852 is provided with a 90-KB area of addresses 000000H to 0167FFH as a physical internal ROM/PROM. The 38-KB area of addresses 016800H to 01FFFFH are fixed to "0". The image of 000000H to 01FFFFH is seen in the rest of the area (020000H to 0FFFFH)

Interrupt/exception table

The V852 increases the interrupt response speed by assigning destination addresses corresponding to interrupts/exceptions.

The collection of these destination addresses is called an interrupt/exception table, which is located in the internal ROM/PROM area. When an interrupt/exception request is granted, execution jumps to the corresponding destination address, and the program written at that memory address is executed. Figure 3-6 shows the names of interrupts/exceptions, and the corresponding addresses.

	Internal ROM/PROM area
00000170H	INTCSI2
00000160H	INTCSI1
00000150H	INTP03
00000140H	INTP02
00000130H	INTP01
00000120H	INTP00
00000110H	INTST0
00000100H	INTSR0
000000F0H	INTSER0
000000E0H	INTCSI0
000000D0H	INTCM4
000000C0H	INTP13/INTCC13
000000B0H	INTP12/INTCC12
000000A0H	INTP11/INTCC11
00000090H	INTP10/INTCC10
00000080H	INTOV1
00000060H	ILGOP
00000050H	TRAP1n (n = 0 to FH)
00000040H	TRAP0n (n = 0 to FH)
0000010H	NMI
00000000	RESET
	▲ 16 bytes
	10 29100

Figure 3-6. Interrupt/Exception Table

In the ROM-less mode, the internal ROM/PROM area is referenced as external memory area. To assure correct operation after reset, the destination address for the reset routine should be set to address 0 of the external memory.

(2) Internal RAM area

A 4-KB area corresponding to addresses FFE000H through FFEFFFH is reserved as an internal RAM area. The V852 is provided with 3 KB of addresses FFE000H to FFEBFFH as a physical internal RAM area, and the rest of the area (FFEC00H to FFEFFH) is fixed to "0".

(3) Peripheral I/O area

A 4-KB area of addresses FFF000H to FFFFFH is reserved as a peripheral I/O area. The V852 is provided with a 1-KB area of addresses FFF000H to FFF3FFH as a physical peripheral I/O area, and the image of FFF000H to FFF3FFH can be seen on the rest of the area (FFF400H to FFFFFFH).

The peripheral I/O register assigned with functions such as on-chip peripheral hardware operation mode specifying function and state monitoring function are all memory-mapped to the peripheral I/O area. Instruction fetches are not allowed in this area.

- Cautions 1. The least significant bit of an address is not decoded. If an odd address (2n+1) in the peripheral I/O area is referenced, the register at the next lowest even address (2n) will be accessed.
 - 2. The V852 does not have a peripheral I/O register than can be accessed in word units. If a register is accessed with a word operation, the effects will be limited to the halfword referenced by the instruction.
 - If a register that can be accessed in byte units is accessed in half-word units, the higher 8 bits become undefined, if the access is a read operation. If a write access is made, only the data in the lower 8 bits is written to the register.
 - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

(4) External memory area

The V852 can use an area of up to xx100000H to xxFFDFFFH in the single-chip mode and an area of up to xx000000H to xxFFDFFFH in the ROM-less mode, for external memory accesses.

Phase-out/Discontinued

In the external memory area, 64 KB, 256 KB, 1 MB, 4 MB, or 16 MB of physical external memory can be allocated when the external expansion mode is specified. The same image as that of the physical external memory can be seen continuously on the external memory area, as shown in Figures 3-7 through 3-9, when the memory is not fully expanded (to 16 MB).

The internal RAM area, peripheral I/O area, and internal ROM/PROM area in the single-chip mode are not subject to external memory access.

Figure 3-8. External Memory Area (when expanded to 4 MB)

Note The image of the physical external memory can be seen continuously in the ROM-less mode.

Figure 3-9. External Memory Area (when fully expanded)

Note It becomes the external memory area in the ROM-less mode.

3.4.6 External expansion mode

The V852 allows external devices to be connected to the external memory space by using the pins of ports 4 through 10. To connect an external device, the port pins must be set in the external expansion mode by using the MODE0 and MODE1 pins and memory expansion mode register (MM). The MODE0 and MODE1 pins specify the operation mode of the V852. When MODE0 = 0 and MODE1 = 0, the V852 is set in the ROM-less mode; when MODE0 = 0 and MODE1 = 1, the single-chip mode is used.

In ROM-less mode, pins in the port4 to port6 and the P90 to P94 become the control mode after reset, thereby enabling the external memory.

In single-chip mode, port/control mode alternate function pins are in the port mode, thereby disabling the external device. When using an external device (external expansion mode), set the MM register by programming. In addition, when using the bus hold function, set the PMC10 register to control mode.

(1) Memory expansion mode register (MM)

This register sets the mode of each pin of ports 4 through 9. In the external expansion mode, an external device can be connected to the external memory area of up to 16 MB. However, the external device cannot be connected to the internal RAM area, peripheral I/O area, and internal ROM/PROM area in the single-chip mode (Not accessible even if connected physically).

The MM register can be read/written in 8- or 1-bit units. Bits 7, 5, and 4 of this register are fixed to 1.

Bit Position	Bit Name					Functio	า		
3	MM3	Memory	Expansi	on Mode					
		Specifies	operation	on mode	of P95 and I	P96 of port	9.		
		MM3		Operatio	on mode	P95 I	> 96		
		0	Port	mode		Port			
		1	Exte	rnal expa	ansion mode	ST0 S	ST1		
2 to 0	MM2 to MM0	Memory Expansion Mode Specifies operation mode of ports 4, 5, 6, and 9 (P90 to P94).							
		MM2	MM1	MM0	Address space	Port 4	Port 5	Port 6	Port 9 (P90 to P94)
		0	0	0	_	Port mode			
		0	1	1	64-KB expansion	AD0 to AD7	AD8 to AD15		UBEN,
		1	0	0	256-KB expansion			A16 A17	R/W,
		1	0	1	1-MB expansion			A18 A19	ASTB
		1	1	0	4-MB expansion			A20 A21	
		1	1	1	16-MB expansion			A2	2 3
			(Others			RFU (re	eserved)	

Remark For the details of the operation of each port pin, refer to 2.3 Pin Function.

3.4.7 Recommended use of address space

The architecture of the V852 requires that a register that serves as a pointer be secured for address generation when executing operand data access in a data space. The operand data access can be performed directly from an instruction for ±32-Kbyte addresses in the pointer register. But general-perpose registers used as pointer registers have a limit. By minimizing performance degradation due to address calculations when changing a pointer value, the number of usable general registers for handling variables is maximized, and the program size can be saved.

To enhance the efficiency of using the pointer in connection with the memory map of the V852, the following points are recommended:

(1) Program space

Of the 32 bits of the PC (program counter), the higher 8 bits are fixed to "0", and only the lower 24 bits are valid. Therefore, a contiguous 16-MB space, starting from address 00000000H, unconditionally corresponds to the memory map of the program space.

(2) Data space

For the efficient use of resources to be performed through the wrap-around feature of the data space, the continuous 8-MB address spaces 0000000H to 007FFFFH and FF800000H to FFFFFFFH of the 4-GB CPU are used as the data space. With the V852, 16-MB physical address space is seen as 256 images in the 4-GB CPU address space. The highest bit (bit 23) of this 24-bit address is assigned as address signextended to 32 bits.

Application of wrap-around

For example, when R = r0 (zero register) is specified for the LD/ST disp 16 [R] instruction, an addressing range of 00000000H \pm 32 KB can be referenced with the sign-extended, 16-bit displacement value. By mapping the external memory in the 24-KB area in the figure, all resources including on-chip hardware can be accessed with one pointer.

The zero register (r0) is a register set to 0 by the hardware, and eliminates the need for additional registers for the pointer.

Figure 3-10. Recommended Memory Map

Note This area cannot be used as a program area.

Remark The areas shown by arrows indicate the recommended area.

3.4.8 Peripheral I/O registers

				В	it Units f		
Address	Function Register Name	Symbol	R/W	Μ	anipulat	ion	After reset
				1 bit	8 bits	16 bits	
FFFFF000H	Port 0	P0		0	0		
FFFFF002H	Port 1	P1		0	0		
FFFFF004H	Port 2	P2		0	0		
FFFFF006H	Port 3	P3		0	0		
FFFFF008H	Port 4	P4		0	0		Undefined
FFFFF00AH	Port 5	P5		0	0		
FFFFF00CH	Port 6	P6]	0	0		
FFFFF012H	Port 9	P9		0	0		
FFFFF014H	Port 10	P10		0	0		
FFFFF020H	Port 0 mode register	PM0		0	0		
FFFFF022H	Port 1 mode register	PM1		0	0		
FFFFF024H	Port 2 mode register	PM2		0	0		
FFFFF026H	Port 3 mode register	PM3		0	0		
FFFFF028H	Port 4 mode register	PM4		0	0		FFH
FFFFF02AH	Port 5 mode register	PM5		0	0		
FFFFF02CH	Port 6 mode register	PM6		0	0		
FFFFF032H	Port 9 mode register	PM9		0	0		
FFFFF034H	Port 10 mode register	PM10		0	0		
FFFFF040H	Port 0 mode control register	PMC0		0	0		00H
FFFFF044H	Port 2 mode control register	PMC2	R/W	0	0		01H
FFFFF046H	Port 3 mode control register	PMC3		0	0		00H
FFFFF04CH	Memory expansion mode register	ММ		0	0		B0H/B7H
FFFFF054H	Port 10 mode control register	PMC10]	0	0		00H
FFFFF060H	Data wait control register	DWC				0	FFFFH
FFFFF062H	Bus cycle control register	BCC				0	AAAH
FFFFF070H	Power save control register	PSC		0	0		00H
FFFFF078H	System status register	SYS		0	0		0000000XB
FFFFF084H	Baud rate generator register 0	BRG0		0	0		Undefined
FFFFF086H	Baud rate generator prescaler mode register 0	BPRM0		0	0		00H
FFFFF088H	Clocked serial interface mode register 0	CSIM0		0	0		0011
FFFFF08AH	Serial I/O shift register 0	SIO0]	0	0		l la define d
FFFFF094H	Baud rate generator register 1	BRG1		0	0		Undefined
FFFFF096H	Baud rate generator prescaler mode register 1	BPRM1		0	0		00H
FFFFF098H	Clocked serial interface mode register 1	CSIM1		0	0		
FFFFF09AH	Serial I/O shift register 1	SIO1		0	0		Undefined
FFFFF0A8H	Clocked serial interface mode register 2	CSIM2		0	0		00H
FFFFF0AAH	Serial I/O shift register 2	SIO2		0	0		Undefined
FFFFF0C0H	Asynchronous serial interface mode register 00	ASIM00		0	0		80H

				Bit Units for			
Address	Function Register Name	Symbol	R/W	M	anipulati	ion	After reset
	Acus characteristic interfaces mode register 04	A CIN404				TO DITS	
FFFFF0C2H	Asynchronous serial interface mode register 01	ASIMUT	R/W	0	0		00H
FFFFF0C4H	Asynchronous serial interface status register 0	A5150		0	0		
FFFFF0C8H		RXB0	ĸ				
FFFFF0CAH	Receive buffer 0L (lower 8 bits)	RXB0L		0	0		Undefined
FFFFF0CCH	Transmit shift register 0 (9 bits)	TXS0	W			0	
FFFFF0CEH	I ransmit shift register 0L (lower 8 bits)	TXSOL			0		
FFFFF100H	Interrupt control register	OVIC1		0	0		
FFFFF102H	Interrupt control register	P1IC0		0	0		
FFFFF104H	Interrupt control register	P1IC1		0	0		
FFFFF106H	Interrupt control register	P1IC2		0	0		
FFFFF108H	Interrupt control register	P1IC3		0	0		
FFFFF10AH	Interrupt control register	CMIC4		0	0		
FFFFF10CH	Interrupt control register	CSIC0		0	0		
FFFFF10EH	Interrupt control register	SEIC0		0	0		471
FFFFF110H	Interrupt control register	SRIC0	K/VV	0	0		4711
FFFFF112H	Interrupt control register	STIC0		0	0		
FFFFF114H	Interrupt control register	P0IC0		0	0		
FFFFF116H	Interrupt control register	P0IC1		0	0		
FFFFF118H	Interrupt control register	P0IC2		0	0		
FFFFF11AH	Interrupt control register	P0IC3		0	0		
FFFFF11CH	Interrupt control register	CSIC1		0	0		
FFFFF11EH	Interrupt control register	CSIC2		0	0		
FFFFF166H	In-service priority register	ISPR	R	0	0		00H
FFFFF170H	Command register	PRCMD	W	0	0		Undefined
FFFFF180H	External interrupt mode register 0	INTM0		0	0		
FFFFF182H	External interrupt mode register 1	INTM1		0	0		0011
FFFFF184H	External interrupt mode register 2	INTM2		0	0		00H
FFFFF230H	Timer overflow status register	TOVS	R/W	0	0		
FFFFF240H	Timer unit mode register 1	TUM1				0	0000H
FFFFF242H	Timer control register 1	TMC1		0	0		0011
FFFFF244H	Timer output control register 1	TOC1		0	0		001
FFFFF250H	Timer 1	TM1	R			0	0000H
FFFFF252H	Capture/compare register 10	CC10				0	
FFFFF254H	Capture/compare register 11	CC11				0	l la define d
FFFFF256H	Capture/compare register 12	CC12	R/W			0	Undefined
FFFFF258H	Capture/compare register 13	CC13				0	
FFFFF342H	Timer control register 4	TMC4		0	0		00H
FFFFF350H	Timer 4	TM4	R			0	0000H
FFFFF352H	Compare register 4	CM4	R/W			0	Undefined

CHAPTER 4 BUS CONTROL FUNCTION

The V852 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

4.1 Features

- \bigcirc 16-bit data bus
- $\odot\,$ External devices connected through multiplexed I/O port pins
- Wait function
 - Programmable wait function, capable of inserting up to 3 wait states per 2 blocks
 - External wait control through WAIT input pin
- Idle state insertion function
- $\bigcirc\,$ Bus mastership arbitration function
- Bus hold function

4.2 Bus Control Pins

The following pins are used for interfacing to external devices:

External Bus Interface Function	Corresponding Port (pins)			
Address/data bus (AD0 to AD7)	Port 4 (P40 to P47)			
Address/data bus (AD8 to AD15)	Port 5 (P50 to P57)			
Address bus (A16 to A23)	Port 6 (P60 to P67)			
Read/write control (IBEN, UBEN, R/W, DSTB)	Port 9 (P90 to P93)			
Address strobe (ASTB)	Port 9 (P94)			
External wait control (WAIT)	WAIT			
Bus cycle status (ST0, ST1)	Port 9 (P95 to P96)			
Bus hold control (HLDRQ, HLDAK)	Port 10 (P100 to P101)			

The bus interface function of each pin is enabled by the memory expansion mode register (MM). In ROM-less mode, the bus interface function of each pin is unconditionally enabled by the MODE0 and MODE1 inputs. For the details of specifying an operation mode of the external bus interface, refer to **3.4.6 (1) Memory expansion mode register (MM)**.

4.3 Bus Access

4.3.1 Number of access clocks

The number of basic clocks necessary for accessing each resource is as follows:

Bus Cycle Type	Resource (bus width)							
	Internal ROM (32 bits)	Internal RAM (32 bits)	Peripheral I/O (16 bits)	External Memory (16 bits)				
Instruction fetch	1	3	Disabled	3 + n				
Operand data access	3	1	3 + n	3 + n				

Remarks 1. Unit: clock/access

2. n: number of inserted wait clock

★ 4.3.2 Bus width

The V852 carries out peripheral I/O access and external memory access in 8-, 16-, or 32-bit units. The following shows the operation for each access.

(1) Byte access (8 bits)

Byte access is divided into two types, the access to even address and the access to odd address.

(2) Halfword access (16 bits)

In halfword access to external memory, data is dealt with as it is because the data bus is 16-bit fixed.

(3) Word access (32 bits)

In word access to external memory, the lower halfword is accessed first and then the upper halfword is accessed.

4.4 Memory Block Function

The 16-MB memory space is divided into memory blocks of 1-MB units. The programmable wait function and bus cycle operation mode can be independently controlled for every two memory blocks.

FFFFFFH	-	FFFFFH
F00000H	Block 15	Peripheral I/O area
ELLER	Block 14	↓ FFF000H
DFFFFFH	Block 13	Internal RAM area
D00000H CFFFFFH	Diask 12	\
C00000H BEEEEEH	BIOCK 12	
B00000H	Block 11	
AFFFFH	Block 10	
9FFFFH	Block 9	
900000H 8FFFFFH		
800000H	Block 8	External memory area
766666	Block 7	
6FFFFFH	Block 6	
600000H 5FFFFFH		
500000H	BIOCK 5	
400000H	Block 4	
3FFFFFH	Block 3	
300000H 2FFFFFH	Plack 2	
200000H 1FFFFFH		
100000H	Block 1	↓ ↓ ▼
0FFFFFH	Block 0	Internal ROM/PROM area
000000H		J Y

4.5 Wait Function

4.5.1 Programmable wait function

To facilitate interfacing with low-speed memories and I/O devices, up to 3 data wait states can be inserted in a bus cycle for two memory blocks. The number of wait states can be programmed by using data wait control register (DWC). Immediately after the system has been reset, three data wait states are automatically programmed for all memory blocks.

(1) Data wait control register (DWC)

This register can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DWC	DW71	DW70	DW61	DW60	DW51	DW50	DW41	DW40	DW31	DW30	DW21	DW20	DW11	DW10	DW01	DW00	Address FFFFF060H	At reset FFFFH

		Function									
DWn0 (n = 0 to 7)	Data Wait Specifies number of wait states to be inserted										
	DWn1	DWn0	Number of Wait States to be Inserted								
	0	0	0								
	0	1	1								
	1	0	2								
	1	1	3								
	<u> </u>										
	n	B	Blocks into Which Wait States are Inserted								
	0	Blocks (Blocks 0/1								
	1	Blocks 2	Blocks 2/3								
	2	Blocks 4	Blocks 4/5								
	3	Blocks 6	Blocks 6/7								
	4	Blocks 8	Blocks 8/9								
	5	Blocks 1	Blocks 10/11								
	6	Blocks 1	Blocks 12/13								
	7	Blocks 1	Blocks 14/15								
L) (r	vn0 n = 0 to 7)	Wn0 Specifies number n = 0 to 7) DWn1 0 0 1 1 1 1 0 1 1 1 1 1 2 3 4 5 6 7	Number of wait states $n = 0 \text{ to } 7$) $ DWn1 \ DWn0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1$								

- Cautions 1. Block 0 is reserved for the internal ROM/PROM area in the single-chip mode. It is not subject to programmable wait control, regardless of the setting of DWC, and is always accessed without wait states.
 - 2. The internal RAM area of block 15 is not subject to programmable wait control and is always accessed without wait states. The peripheral I/O area of this block is not subject to programmable wait control, either. The only wait control is dependent upon the execution of each peripheral function.

When an extremely slow device, I/O, or asynchronous system is connected, any number of wait states can be inserted in a bus cycle by sampling the external wait pin (\overline{WAIT}) to synchronize with the external device.

The external $\overline{\text{WAIT}}$ signal does not affect the access times of the internal ROM/PROM, internal RAM, and peripheral I/O areas. Input of the external $\overline{\text{WAIT}}$ signal can be done asynchronously to CLKOUT and is sampled at the falling edge of the clock in the T2 and TW states of a bus cycle. If the set-up and hold time of the $\overline{\text{WAIT}}$ input is not satisfied, the wait state may or may not be inserted in the next state.

4.5.3 Relationships between programmable wait and external wait

A wait cycle is inserted as a result of an OR operation between the wait cycle specified by the set value of programmable wait and the wait cycle controlled by the \overline{WAIT} pin. In other words, the number of wait cycles is determined by the programmable wait value or the length of evaluation at the \overline{WAIT} input pin.

For example, if the number of programmable wait states is 2 and the timing of the WAIT pin input signal is as illustrated below, three wait states will be inserted in the bus cycle.

Figure 4-1. Example of Inserting Wait States

4.6 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices and meeting the data output float delay time (tDF) on memory read accesses, one idle state (TI) can be inserted into the current bus cycle after the T3 state. The bus cycle following continuous bus cycles starts after one idle state.

Specifying insertion of the idle state is programmable by using the bus cycle control register (BCC).

Immediately after the system has been reset, idle state insertion is automatically programmed for all memory blocks.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
BCC	BC71	0	BC61	0	BC51	0	BC41	0	BC31	0	BC21	0	BC11	0	BC01	0	Address FFFFF062H	At reset AAAAH

Bit Position	Bit Name		Function
15, 13, 11, 9, 7, 5, 3, 1	BCn1 (n = 0 to 7)	Bus Cycle Specifies insertion of 0: Not inserted 1: Inserted	of idle state.
		n	Blocks into Which Idle State is Inserted
		0	Blocks 0/1
		1	Blocks 2/3
		2	Blocks 4/5
		3	Blocks 6/7
		4	Blocks 8/9
		5	Blocks 10/11
		6	Blocks 12/13
		7	Blocks 14/15

- Cautions 1. Block 0 is reserved for the internal ROM/PROM area in the single-chip mode and therefore, no idle state is specified for this block.
 - 2. The internal RAM area and peripheral I/O area of block 15 are not subject to insertion of the idle state.
 - 3. Always set the BCC bits 0, 2, 4, 6, 8, 10, 12 and 14 to 0. Normal operation is not guaranteed when they are set to 1.

4.7 Bus Hold Function

4.7.1 Outline of function

When P100 and P101 of port 10 are programmed to be in the control mode, the functions of the HLDRQ and HLDAK pins become valid.

When the HLDRQ pin becomes active (low) indicating that other bus master is requesting acquisition of the bus, the external address/data bus and strobe pins go into a high-impedance state, and the bus is released (bus hold status). When the HLDRQ pin becomes inactive (high) indicating that the request for the bus is cleared, these pins are driven again.

V852 internal operation continues until external memory is accessed during bus hold.

In the bus hold status, the HLDAK pin becomes active (low).

This feature can be used to design a system where two or more bus masters exist, such as when a multi-processor configuration is used and when a DMA controller is connected.

However, bus hold requests are accepted neither between the first and the second word access, nor between read access and write access during read modify write access of bit manipulation instructions.

4.7.2 Bus hold procedure

The procedure of bus hold function is illustrated below.

4.7.3 Operation in power save mode

In the STOP or IDLE mode, the system clock is stopped. Consequently, the bus hold status is not set even if the HLDRQ pin becomes active.

In the HALT mode, the HLDAK pin immediately becomes active when the HLDRQ pin becomes active, and the bus hold status is set. When the $\overline{\text{HLDRQ}}$ pin becomes inactive, the $\overline{\text{HLDAK}}$ pin becomes inactive. As a result, the bus hold status is cleared, and the HALT mode is set again.

4.8 Bus Timing

(1) Memory read (0 wait)

(2) Memory read (1 wait)

(3) Memory read (0 wait, idle state)

(4) Memory read (1 wait, idle state)

(5) Memory write (0 wait)

Note AD0 to AD7 output invalid data when odd address byte data is accessed. AD8 to AD15 output invalid data when even address byte data is accessed.

Remarks 1. O indicates the sampling timing when the number of programmable waits is set to 0.2. The dotted line indicates the high-impedance state.

(6) Memory write (1 wait)

- **Note** AD0 to AD7 output invalid data when odd address byte data is accessed. AD8 to AD15 output invalid data when even address byte data is accessed.
- Remarks 1. O indicates the sampling timing when the number of programmable waits is set to 0.2. The dotted line indicates the high-impedance state.

(7) Bus hold timing

Remarks 1. O indicates the sampling timing.

- 2. The dotted line indicates the high-impedance state.
- ★ Caution In case of transition to the bus hold status after a write cycle, a momentary high-level output from the R/W pin may occur just before the HLDAK signal changes from high-level to low-level.

There are four external bus cycles: bus hold, operand data access, instruction fetch (branch), and instruction fetch (continuous). The bus hold cycle is given the highest priority, followed by operand data access, instruction fetch (branch), and instruction fetch (continuous), in that order.

The instruction fetch cycle may be inserted in between the read access and write access of read-modify-write access.

The instruction fetch cycle and bus hold cycle are not inserted between the lower half-word access and higher half-word access of word operations.

External Bus Cycle	Priority
Bus hold	1
Operand data access	2
Instruction fetch (branch)	3
Instruction fetch (continuous)	4

Table 4-1	1. Bus	Priority
-----------	--------	----------

4.10 Memory Boundary Operation Condition

4.10.1 Program space

- (1) Do not execute branch to the peripheral I/O area or continuous fetch from the internal RAM area to the peripheral I/O area. When executing the branch or continuous fetch, it is impossible to fetch from external memory. If it is executed nevertheless, the NOP instruction code is continuously fetched.
- (2) A prefetch operation straddling over the peripheral I/O area (invalid fetch) does not take place if a branch instruction exists at the upper-limit address of the internal RAM area.

4.10.2 Data space

Only the address aligned at the half-word (when the least significant bit of the address is "0")/word (when the lowest 2 bits of the address are "0") boundary is accessed for data half-word (16 bits)/word (32 bits) long.

Therefore, access that straddles over the memory or memory block boundary does not take place.

The word access to the external memory is performed in the order of the lower half-word and then the higher halfword.

Refer to V850 family User's Manual Architecture for details.

★

4.11 Internal Peripheral I/O Interface

Access to the internal peripheral I/O area is not output to the external bus. Therefore, the internal peripheral I/O area can be accessed in parallel with instruction fetch access.

Accesses to the internal peripheral I/O area takes, in most cases, three clock cycles. However, accesses to the following timer/counter registers may take from 3 to 4 cycles.

Peripheral I/O Register	Access
TM1	Read
TM4	
CC10	Read/write
CC11	
CC12	
CC13	
CM4	Write

CHAPTER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V852 is provided with a dedicated interrupt controller (INTC) for interrupt processing and can process a total of 17 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event that occurs dependently on program execution. Generally, an exception takes precedence over an interrupt.

The V852 can process interrupt requests from the internal peripheral hardware and external sources. Moreover, exception processing can be started (exception trap) by a TRAP instruction (software exception) or by generation of an exception event (fetching of an illegal op code).

5.1 Features

○ Interrupt

- Non-maskable interrupt: 1 source
- Maskable interrupt: 16 sources
- 8 levels programmable priorities
- Multiple interrupt control according to priority
- Each maskable interrupt can be individually disabled.
- Noise elimination, edge detection, and rising and/or falling edge of external interrupt request signal can be specified.
- Exception
 - Software exception: 32 sources
 - Exception trap: 1 source (illegal op code exception)

These interrupt/exception sources are listed in Table 5-1.

	Clossifi		Interrupt/E	xception Source	Defeult	Freedier		Destared		
Туре	cation	Name	Control Register	Generating Source	Generating Unit	Priority	Code	Vector Address	PC	
Reset	Interrupt	RESET	-	Reset input	-	-	0000H	00000000H	Undefined	
Non-maskable	Interrupt	NMI	-	NMI input	-	-	0010H	00000010H	nextPC	
Software	Exception	TRAP0n ^{Note}	-	TRAP instruction	-	-	004n ^{Note} H	00000040H	nextPC	
exception	Exception	TRAP1n ^{Note}	-	TRAP instruction	_	-	005n ^{Note} H	00000050H	nextPC	
Exception trap	Exception	ILGOP	-	Illegal op code	-	-	0060H	00000060H	nextPC	
Maskable	Interrupt	INTOV1	OVIC1	Timer 1 overflow	RPU	0	0080H	00000080H	nextPC	
	Interrupt	INTP10/INTCC10	P1IC0	INTP10 pin/CC10 coincidence	Pin/RPU	1	0090H	00000090H	nextPC	
	Interrupt	INTP11/INTCC11	P1IC1	INTP11 pin/CC11 coincidence	Pin/RPU	2	00A0H	000000A0H	nextPC	
	Interrupt	INTP12/INTCC12	P1IC2	INTP12 pin/CC12 coincidence	Pin/RPU	3	00B0H	000000B0H	nextPC	
	Interrupt	INTP13/INTCC13	P1IC3	INTP13 pin/CC13 Pin/RF coincidence		4	00C0H	000000C0H	nextPC	
	Interrupt	INTCM4	CMIC4	CM4 coincidence	RPU	5	00D0H	000000D0H	nextPC	
	Interrupt	INTCSI0	CSIC0	CSI0 transmission/ reception completion	SIO	6	00E0H	000000E0H	nextPC	
	Interrupt	INTSER0	SEIC0	UART0 reception error	SIO	7	00F0H	000000F0H	nextPC	
	Interrupt	INTSR0	SRIC0	UART0 reception completion	SIO	8	0100H	00000100H	nextPC	
	Interrupt	INTST0	STIC0	UART0 transmission	SIO completion	9	0110H	00000110H	nextpc	
	Interrupt	INTP00	P0IC0	INTP00 pin	Pin	10	0120H	00000120H	nextPC	
	Interrupt	INTP01	P0IC1	INTP01 pin	Pin	11	0130H	00000130H	nextPC	
	Interrupt	INTP02	P0IC2	INTP02 pin	Pin	12	0140H	00000140H	nextPC	
	Interrupt	INTP03	P0IC3	INTP03 pin	Pin	13	0150H	00000150H	nextPC	
	Interrupt	INTCSI1	CSIC1	CSI1 transmission/ reception completion	SIO	14	0160H	00000160H	nextPC	
	Interrupt	INTCSI2	CSIC2	CSI2 transmission/ reception completion	SIO	15	0170H	00000170H	nextPC	

Table 5-1. Interrupt List

Note n: value of 0 to FH

- **Remarks 1.** Default Priority: Priority that takes precedence when two or more maskable interrupt requests of the same priority level occur at the same time. The highest priority is 0.
 - Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC saved when an interrupt is granted during the DIVH (division) instruction execution is the value of the PC of the current instruction (DIVH).
 - 2. The execution address of the illegal instruction when an illegal op code exception occurs is calculated as follows: (Restored PC-4)

5.2 Non-Maskable Interrupt

The non-maskable interrupt request is accepted unconditionally, even when interrupts are disabled (DI states) in the interrupt disabled (DI) status. The NMI is not subject to priority control and takes precedence over all the other interrupts.

The non-maskable interrupt request is input from the NMI pin. When the valid edge specified by the bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

While the service routine of the non-maskable interrupt is being executed, (PSW.NP = 1), the acceptance of another non-maskable interrupt request is kept pending. The pending NMI is accepted after the original service routine of the non-maskable interrupt under execution has been terminated (by the RETI instruction), or when PSW.NP is cleared to 0 by the LDSR instruction. Note that if two or more NMI requests are input during the execution of the service routine for an NMI, the number of NMIs that will be acknowledged after PSW.NP goes to "0", is only one.

5.2.1 Accepting operation

If the non-maskable interrupt is generated by NMI input, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the contents of restored PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes exception code 0010H to the higher half-word (FECC) of ECR.
- (4) Sets the NP and ID bits of PSW and clears the EP bit.
- (5) Loads the vector address (00000010H) of the non-maskable interrupt routine to the PC, and transfers control.

Figure 5-1 illustrates how the non-maskable interrupt is processed.

Figure 5-1. Non-Maskable Interrupt Processing

Figure 5-2. Accepting Non-Maskable Interrupt Request

(a) If a new NMI request is generated while an NMI service routine is executing:

(b) If a new NMI request is generated twice while an NMI service routine is executing:

5.2.2 Restore operation

Execution is restored from the non-maskable interrupt processing by the RETI instruction.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from FEPC and FEPSW, respectively, because the EP bit of PSW is 0 and the NP bit of PSW is 1.
- (2) Transfers control back to the address of the restored PC and PSW.

Figure 5-3 illustrates how the RETI instruction is processed.

Figure 5-3. RETI Instruction Processing

Caution When the PSW.EP bit and PSW.NP bit have been changed using the LDSR instruction during the non-maskable interrupt processing, to restore the values of PC and PSW when normal execution returns via the RETI instruction, it is necessary to set PSW.EP = 0 and PSW.NP = 1 immediately before the RETI instruction is executed using the LDSR instruction.

Remark The solid lines indicate the CPU processing.

5.2.3 NP flag

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) processing is under execution. This flag is set when the NMI interrupt has been accepted, and masks the all interrupt requests to prohibit multiple interrupts from being acknowledged.

Bit Position	Bit Name	Function				
7	NP	NMI Pending				
		Indicates that NMI interrupt processing is under execution				
		0: No NMI interrupt processing				
		1: NMI interrupt currently processing				

*

5.2.4 Noise elimination for NMI pin

Noise is eliminated from the NMI pin by analog delay.

The delay time is 60 to 220 ns. Input of a signal whose level changes within a time interval shorter than this delay time is not accepted internally.

The NMI pin is used for releasing the software STOP mode.

Since the internal system clock stops in the software STOP mode, noise elimination using the system clock is not performed.

5.2.5 External interrupt mode register 0 (INTM0)

INTM0 is a register that specifies the valid edge of the non-maskable interrupt (NMI). The valid edge of NMI can be specified as the rising or falling edge by the ESN0 bit of this register.

This register can be read or written in 8- or 1- bit units.

	7	6	5	4	3	2	1	0		
INTM0	0	0	0	0	0	0	0	ESN0	Address FFFFF180H	At reset 00H

Bit Position	Bit Name	Function
0	ESN0	Edge Select NMI Specifies valid edge of NMI pin 0: Falling edge 1: Rising edge

5.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V852 has 16 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are accepted according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers, allowing programmable priority control.

When an interrupt request has been acknowledged, the interrupt disabled (DI) status is set and the acceptance of other maskable interrupts is disabled.

When the EI instruction is executed in an interrupt processing routine, the interrupt enabled (EI) status is set which enables interrupts having a higher priority to immediately interrupt the current service routine in progress. Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

To perform multiple interrupts, the next preprocessings are necessary.

- <1> Save EIPC and EIPSW to memory or general-perpose register before executing the EI instruction
- <2> Execute the DI instruction before executing the RETI instruction, and return the value that saved in the process of <1> to the EIPC and EIPSW

5.3.1 Block diagram

Phase-out/Discontinued

- xx: Identification name of each peripheral unit (OV, P1, CM, CS, SE, SR, ST, P0)
- n: Peripheral unit number (0 to 4)

5.3.2 Operation

If a maskable interrupt occurs, the CPU performs the following processing, and transfers control to a vector routine:

- (1) Saves the value of PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower half-word of ECR (EICC).
- (4) Sets the ID bit of PSW and clears the EP bit.
- (5) Loads the corresponding vector address to the PC, and transfers control.

Figure 5-5 illustrates how the maskable interrupts are processed.

Figure 5-5. Maskable Interrupt Processing

The INT input masked by the interrupt control registers and that occurs while a previous interrupt is being processed (when PSW.NP = 1 or PSW.ID = 1) are internally monitored by the interrupt controller. When the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 by using the RETI and LDSR instructions, the new maskable interrupts can then be acknowledged, by the pending INT input, and processed.

5.3.3 Restore

To restore or return execution from the maskable interrupt service routine, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

Phase-out/Discontinued

- Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 0 and the NP bit of PSW is 0.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-6 illustrates the processing of the RETI instruction.

Figure 5-6. RETI Instruction Processing

Caution When the PSW.EP bit and PSW.NP bit have been changed using the LDSR instruction during the maskable interrupt processing, to restore the values of PC and PSW when normal execution returns via the RETI instruction, it is necessary to return each value of PSW.EP and PSW.NP to 0 immediately before the RETI instruction is executed using the LDSR instruction.

Remark The solid lines indicate the CPU processing.

5.3.4 Priorities of maskable interrupts

The V852 processes multiple interrupts which accept another interrupt during interrupt processing. Multiple interrupts can be controlled by the priority level. There are two priority control criteria in the V852: control based on the default priority levels, and programmable priority control based on interrupt priority specification bit (xxPRn). The priority level control by the default priority levels performs interrupt processing according to the priority level (default priority level) preassigned to each interrupt request when several interrupts of the same priority by xxPRn occur at the same time (Refer to **Table 5-1. List of Interrupts**). The programmable priority level control customizes the interrupt requests into eight levels according to the setting of the priority level specification flag.

Note that when an interrupt is acknowledged, the ID flag of PSW is automatically set to "1". Therefore, when multiple interrupts are to be used, clear the ID flag to "0" beforehand (for example, by placing the EI instruction into the interrupt service program) to set the interrupt enable mode.

Figure 5-7. Example of Interrupt Nesting Process (1/2)

Caution The values of EIPC and EIPSW must be saved before executing multiple interrupts.

Figure 5-8. Example of Processing Interrupt Requests Simultaneously Generated

Phase-out/Discontinued

5.3.5 Interrupt control register (xxICn)

An interrupt control register is assigned to each maskable interrupt and holds the control conditions for each maskable interrupt request.

The interrupt control register can be read/written in 8- or 1-bit units.

Specifies level 4

Specifies level 5

Specifies level 6

Specifies level 7 (lowest)

Remark xx: identification name of each peripheral unit (OV, P1, CM, CS, SE, SR, ST, P0)

0

0

1

1

0

1

0

1

1

1

1

1

n: peripheral unit number (0 to 4)

The address and bit of each interrupt control register is as follows.

Address	Register				В	Bit			
		7	6	5	4	3	2	1	0
FFFFF100H	OVIC1	OVIF1	OVMK1	0	0	0	OVPR12	OVPR11	OVPR10
FFFFF102H	P1IC0	P1IF0	P1MK0	0	0	0	P1PR02	P1PR01	P1PR00
FFFFF104H	P1IC1	P1IF1	P1MK1	0	0	0	P1PR12	P1PR11	P1PR10
FFFFF106H	P1IC2	P1IF2	P1MK2	0	0	0	P1PR22	P1PR21	P1PR20
FFFFF108H	P1IC3	P1IF3	P1MK3	0	0	0	P1PR32	P1PR31	P1PR30
FFFFF10AH	CMIC4	CMIF4	CMMK4	0	0	0	CMPR42	CMPR41	CMPR40
FFFFF10CH	CSIC0	CSIF0	CSMK0	0	0	0	CSPR02	CSPR01	CSPR00
FFFFF10EH	SEIC0	SEIF0	SEMK0	0	0	0	SEPR02	SEPR01	SEPR00
FFFFF110H	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00
FFFFF112H	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00
FFFFF114H	P0IC0	P0IF0	P0MK0	0	0	0	P0PR02	P0PR01	P0PR00
FFFFF116H	P0IC1	P0IF1	P0MK1	0	0	0	P0PR12	P0PR11	P0PR10
FFFFF118H	P0IC2	P0IF2	P0MK2	0	0	0	P0PR22	P0PR21	P0PR20
FFFFF11AH	P0IC3	P0IF3	P0MK3	0	0	0	P0PR32	P0PR31	P0PR30
FFFFF11CH	CSIC1	CSIF1	CSMK1	0	0	0	CSPR12	CSPR11	CSPR10
FFFFF11EH	CSIC2	CSIF2	CSMK2	0	0	0	CSPR22	CSPR21	CSPR20

Table 5-2. Addresses and Bits of Interrupt Control Register

5.3.6 External interrupt mode registers 1 and 2 (INTM1 and INTM2)

These registers specify the valid edges of external interrupt requests INTP00 to INTP03 and INTP10 to INTP13 that are input from external pins. INTM1 controls INTP00 to INTP03, and INTM2 controls INTP10 to INTP13.

The valid edge of each pin can be specified to be the rising, falling, and both rising and falling edges. Both the registers can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function								
7, 5, 3, 1	ES0n1	Edge Seled	Edge Select							
6, 4, 2, 0	ES0n0 (n = 3 to 0)	Specifies v	Specifies valid edge of INTP0n pin							
	· · · ·	ES0n1	ES0n1 ES0n0 Operation							
		0	0	Falling edge						
		0	1	Rising edge						
		1	0	RFU (reserved)						
		1	1	Both rising and falling edges						

Bit Position	Bit Name		Function							
7, 5, 3, 1	ES1n1	E	Edge Select							
6, 4, 2, 0	ES1n0 (n = 3 to 0)	S	Specifies valid edge of INTP1n pin							
	``´´		ES1n1 ES1n0 Operation							
			0	0	Falling edge					
			0	1	Rising edge					
			1 0 RFU (reserved)							
			1	1	Both rising and falling edges					
		⁻								

5.3.7 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently accepted. When an interrupt request is accepted, the bit of this register corresponding to the priority level of that interrupt is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically reset to 0 by hardware. However, it is not reset when execution is returned from non-maskable processing or exception processing.

This register can be only read in 8- or 1- bit units.

Bit Position	Bit Name	Function
7 to 0	ISPR7 to ISPR0	In-Service Priority FlagIndicates priority of interrupt currently accepted0: Interrupt request with priority n not accepted1: Interrupt request with priority n accepted

Remark n: 0 to 7 (priority level)

5.3.8 Maskable interrupt status flag

The interrupt disable status flag (ID) of the PSW controls the enabling and disabling of maskable interrupt requests. As a status flag, it also displays the current maskable interrupt acceptance condition.

Bit Position	Bit Name	Function
5	ID	Interrupt Disable Indicates enabling or disabling maskable interrupt processing. 0: Maskable interrupt accepting enabled 1: Maskable interrupt accepting disabled (pending) It is set to 1 by the DI instruction and reset to 0 by the EI instruction. Its value is also modified by the RETI instruction or LDSR instruction when referencing the PSW. Non-maskable interrupt and exceptions are acknowledged regardless of this flag. When a maskable interrupt is accepted, ID flag is automatically set to 1 by hardware. Interrupt requests generated during accept disabled (ID = 1) can be accepted if the xxIFn bit of the xxICn register is set (1) and the ID flag is reset (0).

5.4 Software Exception

The software exception is generated when the CPU executes the TRAP instruction, and can always be accepted.

TRAP instruction format: TRAP vector (where vector is 0 to 1FH)

5.4.1 Operation

If the software exception occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the value of PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the vector address (00000040H or 00000050H) of the software exception routine in the PC, and transfers control.

Figure 5-9 illustrates how the software exception is processed.

The vector address is determined by the operand of the TRAP instruction. If the operand is 0 to 0FH, the vector address is 00000040H; if the operand is 10H to 1FH, it is 00000050H.

5.4.2 Restore

To restore or return execution from the software exception service routine, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

Phase-out/Discontinued

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-10 illustrates the processing of the RETI instruction.

Figure 5-10. RETI Instruction Processing

Caution When the PSW.EP bit and PSW.NP bit have been changed using the LDSR instruction during the software exception interrupt processing, to restore the values of PC and PSW when normal execution returns via the RETI instruction, it is necessary to return the value of PSW.EP to 1 immediately before the RETI instruction is executed using the LDSR instruction.

Remark The solid lines indicate the CPU processing.

5.4.3 EP flag

The EP flag in the PSW is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.

Bit Position	Bit Name	Function
6	EP	Exception Pending Indicates that trap processing is in progress 0: Exception processing is not in progress 1: Exception processing is in progress

5.5 Exception Trap

The exception trap is an interrupt that is requested when illegal execution of an instruction takes place. In the V852, an illegal op code exception (ILGOP: ILleGal OPcode trap) is considered as an exception trap.

Illegal op code exception: occurs if the subop code field of an instruction to be executed next is not a valid op code.

5.5.1 Illegal op code definition

An illegal op code is defined to be a 32-bit word with bits 5 to 10 being 111111B and bits 23 to 26 being 0011B to 1111B.

15		13	12	11	10					5	4				0	31				27	26			23	22	21	20				16
	1			I		1	I	I	I	I			I	I	I		I		I	I	0	0	1	1	I			I	I	I	
X	Х	X	Х	Х	1	1	1	1	1	1	X	Х	Х	Х	Х	X	Х	Х	Х	Х		4	2		Х	Х	х	Х	Х	Х	X
																					1	1	1	1							

x: don't care

5.5.2 Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine:

Phase-out/Discontinued

- (1) Saves the value of restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code (0060H) to the lower 16 bits (EICC) of ECR.
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the vector address (00000060H) for the exception trap routine to the PC, and transfers control.

Figure 5-11 illustrates how the exception trap is processed.

Figure 5-11. Exception Trap Processing

5.5.3 Restore

To restore from the exception trap, the RETI instruction is used.

Operation of RETI instruction

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 5-12 illustrates the processing of the RETI instruction.

Figure 5-12. RETI Instruction Processing

Caution When the PSW.EP bit and PSW.NP bit have been changed using the LDSR instruction during the exception trap interrupt processing, to restore the values of PC and PSW when normal execution returns via the RETI instruction, it is necessary to return the value of PSW.EP to 1 immediately before the RETI instruction is executed using the LDSR instruction.

Remark The solid lines indicate the CPU processing.
5.6 Priority Control

5.6.1 Priorities of interrupts and exceptions

	RESET	NMI	INT	TRAP	ILGOP
RESET		*	*	*	*
NMI	х		<-	<-	<-
INT	х	↑		<-	<-
TRAP	х	↑	↑		<-
ILGOP	х	↑ (↑ (1	

RESET	:	reset
NMI	:	non-maskable interrupt
INT	:	maskable interrupt
TRAP	:	software exception
ILGOP	:	illegal code exception
*	:	Item on the left ignores the item above.
х	:	Item on the left is ignored by the item above.
\uparrow	:	Item above is higher than the item on the left in priority.
<-	:	Item on the left is higher than the item above in priority.

5.6.2 Multiple interrupt processing

Multiple interrupt processing is a function which allows the nesting of interrupts. If a higher priority interrupt is generated and accepted, it will be allowed to stop a current interrupt service routine in progress.

If an interrupt with a lower or equal priority is generated and a service routine is currently in progress, the later interrupt will be kept pending.

Multiple interrupt processing control is performed while an interrupt service routine is currently in progress and the interrupts are kept enabled (ID = 0). If a maskable interrupt or exception is generated and accepted while a prior interrupt routine is under progress, the higher priority interrupting routine must save the current contents of EIPC and EIPSW to allow proper restoration when the routine ends.

Programming examples used for interrupt nesting are shown in the following code fragments:

(1) To accept maskable interrupts in service routine

Service routine of maskable interrupt or exception

(2) To generate exception in service program

Service program of maskable interrupt or exception

Priorities 0 to 7 (0 is the highest) can be programmed for each maskable interrupt request for multiple interrupt processing control. To set a priority level, write values to the xxPRn0 to xxPRn2 bits of the interrupt request control register (xxICn) corresponding to each maskable interrupt request. At reset, the interrupt request is masked by the xxMKn bit, and the priority level is set to 7 by the xxPRn0 to xxPRn2 bits.

Priorities of maskable interrupts

(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)

Interrupt processing that has been suspended as a result of multiple interrupt processing is resumed after the interrupt processing of the higher priority has been completed and the RETI instruction has been executed.

A pending interrupt request is accepted after the current interrupt processing has been completed and the RETI instruction has been executed.

Caution The maskable interrupts are not accepted but pended in non-maskable interrupt processing routine (time until the RETI instruction is executed).

5.7 Interrupt Latency Time

*

The interrupt latency time is defined as the time measured between the generation of the interrupt request and the execution of the first instruction in the corresponding interrupt service routine. The following describes the interrupt latency time.

Figure 5-13. Pipeline Operation upon Reception of Interrupt Request (Outline)

IDx : Instruction decode to be invalid

Interru	Interrupt Latency Time (System clock)		Condition
	Internal Interrupt	External Interrupt	
Minimum	11	13	Except when: • In IDLE/STOP mode • External bus is accessed
Maximum	18	20	 Two or more interrupt request non-sample instructions are executed in succession Accessed interrupt control register

5.8 Periods Where Interrupt Is Not Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, no interrupt is acknowledged between interrupt request non-sample instruction and next instruction.

Interrupt request non-sample instruction

- El instruction
- DI instruction
- LDSR reg2, 0 x 5 instruction (vs. PSW)

CHAPTER 6 CLOCK GENERATION FUNCTION

Phase-out/Discontinued

The clock generator produces and controls the internal system clock (ϕ) which is supplied to all the internal hardware units including the CPU.

6.1 Features

- O Multiplication function by PLL (Phase Locked Loop) synthesizer
- Clock source
 - Oscillation through oscillator connection: $fxx = \frac{1}{1} x \phi$, $fxx = \frac{1}{5} x \phi$ External clock (PLL mode): $fxx = \frac{1}{1} \times \phi$, $fxx = \frac{1}{5} \times \phi$

 - External clock (direct mode): $f_{XX} = 2 \times \phi$

○ Power save mode

- HALT mode
- · IDLE mode
- · Software STOP mode
- Clock output inhibit function

6.2 Configuration

fvco : VCO oscillation frequency (= 2 • fxx: PLLSEL = 0), (= 10 • fxx: at PLLSEL = 1)

: internal system clock frequency (= 1/2 • fvco: in PLL mode) φ internal system clock frequency (= 1/2 • fxx: in direct mode)

- OSC : oscillator (PLL mode only)
- PFC : phase frequency comparator

SCF : switched capacitor filter

VCO : voltage-controlled oscillator

Frequency divider circuit (=1/4: PLLSEL = 0), (=1/20: PLLSEL = 1)

6.3 Selecting Input Clock

The clock generator consists of a clock oscillator and a PLL synthesizer. It can generate, for example, at PLLSEL = 1 a 25-MHz system clock when a 5-MHz crystal resonator or ceramic resonator is connected across the X1 and X2 pins.

An external clock can be directly connected to the oscillator circuit. In this case, input the clock signal to the X1 pin, and leave the X2 pin open.

The clock generator has two operation modes: PLL and direct modes, which are selected by the CKSEL pin, as shown in the table below.

CKSEL	Operation mode
0	PLL mode
1	Direct mode

Caution The CKSEL pin level should never be changed during operation. The V852 may not operate correctly.

6.3.1 Direct mode

In the direct mode, an external clock with a frequency two times higher than that of the system clock is input. Because OSC and PLL synthesizer do not operate, the power dissipation can be significantly reduced. This mode is used mainly in applications where the V852 must operate on a relatively low frequency. To minimize the influence by noise, it is recommended that the frequency of the external clock, fxx, be kept to within 32 MHz (system clock ϕ = 16 MHz).

6.3.2 PLL mode

In the PLL mode, an external clock is input by connecting an external oscillator, which is multiplied by the PLL synthesizer to generate system clock (ϕ).

The system clock (ϕ) can be selected between mutiplication by 1 (1 × fxx) or by 5 (5 × fxx) of the external resonator or external clock frequency (fxx). (Refer to **2.3.1. (12) PLLSEL**)

PLLSEL	ϕ
0	fxx
1	5 imes fxx

Caution Fix the PLLSEL pin so that the input level of this pin cannot be changed during operations (changes in input levels during operations may lead to incorrect operations). The PLLSEL pin has no function when the direct mode (CKSEL = 1) is set using the CKSEL pin. Leave it as an unused pin.

In the PLL mode, if the external oscillator or external clock source fails, the clock generator continues to provide the internal system clock (ϕ) based on the free-running frequency of the VCO. In this mode, the internal system clock ϕ operates at about 1 MHz (target).

Example of clock in PLL mode

PLLSEL	System clock frequency (<i>\phi</i>) [MHz]	External oscillator/external clock frequency (fxx) [MHz]
0	25.000	
$(\phi = f \times x)$	20.000	
	16.384	
1	25.000	5.0000
$(\phi = 5 \times fxx)$	20.000	4.0000
	16.384	3.2768

6.4 PLL Stabilization

Following a power-on reset or when exiting the software STOP mode, an amount of time is required for the PLL to phase lock at a fixed frequency and stabilize. This required time is PLL lock-up time. The status in which the frequency is not stable is called unlock status and the status in which it has been stabilized is called lock status.

Two system status flags are available to check with the stabilization of the PLL frequency: UNLOCK flag that indicates the stabilization status of the PLL frequency, and PRERR flag that indicates occurrence of a protection error (for the details of the PRERR flag, refer to **6.5.2 (2) Command register (PRCMD)**).

The SYS register, which contains these UNLOCK and PREERR flags, can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
0	UNLOCK	Unlock Status Flag This is read-only flag and indicates unlock status of PLL. It holds "0" as long as lock up status is maintained, and is not initialized even if system is reset. 0 : Indicates lock status 1 : Indicates unlock status

Remark For the description of the PRERR flag, refer to 6.5.2 (2) Command register (PRCMD).

If the unlock status condition should arise, due to a power or clock source failure, the UNLOCK flag should be checked to verify that the PLL has stabilized before performing any execution speed dependent operations, such as real-time processing.

The static processing such as setting of the on-chip hardware units and initialization of the register data and memory data, however, can be executed before the UNLOCK flag is reset.

The following is the relationship between the oscillation stabilization time (stabilization time of input waveform after resonator start oscillating) and PLL lock-up time (a time required for frequency stabilization) if a resonator is used.

Oscillation stabilization time < PLL lock-up time

6.5 Power Save Control

6.5.1 General

The V852 has following power save modes.

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues operation, but the operating clock of the CPU stops. The internal peripherals continue to function in reference to the internal system clock. The total power consumption of the system can be reduced through intermittent operations between normal operation and the HALT mode.

The HALT mode is entered by a dedicated instruction (HALT instruction).

(2) IDLE mode

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuits to stabilize.

The IDLE mode is entered by programming the PSC register.

The IDLE mode stands between the STOP and HALT modes in terms of clock stabilization time and power consumption, and is used in applications where the clock stabilization time should be eliminated but low power consumption is required.

(3) Software STOP mode

In this mode, the CPU clock, the internal system clock, and the clock generator are stopped, reducing power consumption to only the leakage current. In this state, power consumption is minimized.

(a) In PLL mode

The software STOP mode is entered by programming the PSC register. As soon as the oscillator circuit stops, the clock output of the PLL synthesizer is stopped. After the software STOP mode has been released, it is necessary to allow for stabilization time of the oscillator and system clock. Moreover, the lock up or stabilization time of the PLL may also be necessary, depending on the application. However, when the processor operates on an external clock, the need for oscillation stabilization time of the oscillator will become unnecessary.

(b) In direct mode

To stop the clock, fix the X1 pin to the low level. The PLL lock up or stabilization time is not regired to allow in the direct mode.

(4) Clock output inhibit

Output of the system clock from the CLKOUT pin is disabled.

The operations of the clock generator in the normal, HALT, IDLE, and software STOP modes are shown in Table 6-1.

By combining and selecting the mode ideal for a specific application, the power consumption of the system can be effectively reduced.

Clock Source		Standby Mode	Oscillator Circuit (OSC)	PLL Synthesizer	Clock Supply to Peripheral I/O	Clock Supply to CPU
PLL mode	Oscillation by	Normal	0	0	0	0
	resoantor	HALT	0	0	0	х
		IDLE	0	0	х	х
		STOP	х	х	х	х
	External clock	Normal	х	0	0	0
		HALT	х	0	0	х
		IDLE	х	0	х	х
		STOP	х	х	х	х
Direct mode		Normal	х	х	0	0
		HALT	х	х	0	х
		IDLE	х	х	х	х
		STOP	х	х	х	х

				_	-	
Table 6-1.	Operation	of Clock	Generator by	Power	Save	Control

 \bigcirc : operates

x : stops

Status Transition Diagram

6.5.2 Control registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the power save mode. It can be written only by a specific combination of instruction sequences so that its contents are not written by mistake due to erroneous program execution. This register can be read/written in 8- or 1-bit units.

Phase-out/Discontinued

Bit Position	Bit Name	Function					
7, 6	DCLKn (n = 1, 0)	Disable CL Specifies o	COUT	le of CLKOUT pin			
		DCLK1	DCLK1 DCLK0 Mode				
		0	0	Normal output mode			
		0	1	RFU (reserved)			
		1	0	RFU (reserved)			
		1	1	Clock output inhibit mode			
5	TBCS	Time Base Count Select Selects clock of time base counter 0: fxx/2 ⁸ 1: fxx/2 ⁹ For details, refer to explanation of " Time Base Counter (TBC) " in section 6.6 "Specifying Oscillation Stabilization Time"					
4	CESEL	Crystal/External Select Specifies functions of X1 and X2 pins 0: Oscillator connected to X1 and X2 pins 1: External clock connected to X1 pin When CESEL = 1, the feedback loop of the oscillation circuit is cut so that the leakage current can be avoided during STOP mode and the oscillation stabilization time by the time base counter (TBC) after the STOP mode is released is not counted.					
2	IDLE	IDLE Mode Specifies IDLE mode. When "1" is written to this bit, IDLE mode is entered. When IDLE mode is released, this bit is automatically reset to "0".					
1	STP	STOP Mode Specifies software STOP mode. When "1" is written to this bit, STOP mode is entered. When STOP mode is released, this bit is automatically reset to "0".					

The PSC register is programmed in the following special sequence:

- <1> The interrupt disable is set (PSW NP bit is set to 1).
- <2> Any 8-bit data is written in the command register (PRCMD).
- <3> The setting data is written in the PSC register (using the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)
- <4> The interrupt disable is released (PSW NP bit is set to 0).

<5> The NOP instruction (2 or 5 instructions) is inserted.

No special sequence is necessary for reading the PSC register.

Cautions 1. If interrupts are accepted in the time between the PRCMD issue (<2>) and the PSC register writing (<3>) directly after, PSC register is not written and protection error (SYS register PRERR bit is "1") is generated in some cases. Therefore, set the PSW NP bit to 1 (<1>) and disable the INT/NMI acceptance.

> The same applies when the bit manipulation instruction is used to set the PSC register. Insert the NOP instruction (<5>) as the dummy instruction so that the routine is executed correctly after the STOP/IDLE mode is released. If the PSW ID bit value is not to be changed by the execution of the instruction which returns the NP bit to 0 (<4>), insert two NOP instructions. If it is to be changed, insert five.

The following are examples.

```
[Example]
LDSR rX,5
                     ; NP bit = 1
ST.B r0,PRCMD [r0] ; Writing in PRCMD
ST.B rD,PSC [r0]
                     ; Sets PSC register
LDSR rY,5
                     ; NP bit = 0
NOP
                     ; Dummy instruction (2 or 5 instructions)
NOP
(next instruction)
                     ; Execution routine after STOP/IDLE mode has been released
             ÷
      rX: Value written in PSW
       rY: Value written back to PSW
```

rD: Value set to PSC

When saving the PSW value, it is necessary to transfer the PSW value before setting the NP bit to the rY register.

2. The instruction (<4> interrupt disable release, <5> NOP instruction) after the store instruction for the PSC register to be set to the software STOP mode and IDLE mode are executed before each power save mode is set.

(2) Command register (PRCMD)

The command register protects the PSC register from being illegally written so that the application system does not stop due to erroneous program execution.

Phase-out/Discontinued

Only data written first to the PSC register after the PRCMD register has been written becomes valid. Because the register value can be rewritten only in a fixed sequence, illegal write operations are prevented. The command register can be only written in 8-bit units (when this register is read, undefined data is read).

	7	6	5	4	3	2	1	0		
PRCMD	REG7	REG6	REG5	REG4	REG3	REG2	REG1	REG0	Address FFFFF170H	At reset undefined

Bit Position	Bit Name	Function
7 to 0	REG7 to REG0	Registration Code Registration code (any 8-bit data)

Occurrence of an illegal store operation can be checked by the PRERR flag of the system status register (SYS).

	7	6	5	4	3	2	1	0		
SYS	0	0	0	PRERR	0	0	0	UNLOCK	Address FFFFF078H	At reset 0000000XB

Bit Position	Bit Name	Function
4	PRERR	 Protection Error Flag Indicates that PSC register is not written in the correct sequence and that a protection error has occurred. 0: Protection error does not occur 1: Protection error occurs

Remark For the description of the UNLOCK flag, refer to 6.4 PLL Stabilization.

Operation conditions of PRERR flag

>	Set condition (PRERR = "1")	: <1> If the store instruction to the peripheral I/O most recently executed does
		not write data to the PRCMD register, but to the PSC register
		<2> If the first store instruction executed after the write operation to the
		PRCMD register is to a peripheral I/O register except PSC register.
•	Reset condition (PRERR = "0")	: <1> When "0" is written to the PRERR flag of the SYS register.
		<2> At system reset

6.5.3 HALT mode

(1) Entering and operation status

In the HALT mode, the clock generator (oscillator circuit and PLL synthesizer) operates, while the operating clock of the CPU stops. The internal peripherals continue to function in reference to the internal system clock. By entering the HALT mode during the idle time of the CPU, the total power consumption of the system can be reduced.

This mode is entered by the HALT instruction.

In the HALT mode, program execution stops, but the contents of the registers and internal RAM immediately before entering the HALT mode are retained. The on-chip peripheral functions that are not dependent on the instruction processing of the CPU continue to operate.

Table 6-2 shows the status of each hardware unit in the HALT mode.

Fu	nction	Operating Status			
Clock Gene	rator	Operates			
Internal Sys	tem Clock	Operates			
CPU		Stops			
I/O Line		Retained			
Peripheral F	unction	Operates			
Internal Data	a	Status of internal data before setting of HALT mode, such as CPU registers, status, data, and internal RAM contents, are retained.			
External	AD0 to AD15	High impedance ^{Note}			
Expansion	A16 to A23	Retained ^{Note}	High-impedance when $\overline{\text{HLDAK}} = 0$		
Mode	LBEN, UBEN				
	R/W	High-level			
	DSTB	output ^{Note}			
	ASTB				
	ST0, ST1	Low-level output ^{Note}			
	HLDAK	Operates			
CLKOUT		Clock output (when clock output is not inhibited)			

Table 6-2. Operating Status in HALT Mode

Note The instruction fetch operation continues even after the HALT instruction has been executed, until the internal instruction prefetch queue becomes full. After the queue has become full, the operation stops in the status indicated in the above table.

*

(2) Releasing HALT mode

The HALT mode can be released by a non-maskable interrupt request, unmasked maskable interrupt request, or the RESET signal input.

Phase-out/Discontinued

(a) Releasing by interrupt request

The HALT mode is unconditionally released by the NMI request or an unmasked maskable interrupt request, regardless of the priority. However, if the HALT mode is set in an interrupt processing routine, the operation differs as follows:

- (i) If an interrupt request with a priority lower than that of the interrupt request under execution is generated, the HALT mode is released, but the newly generated interrupt request is not accepted. The new interrupt request is kept pending.
- (ii) If an interrupt request with a priority higher (including NMI request) than the interrupt request under execution is generated, the HALT mode is released, and the interrupt request is also accepted.

Operation after HALT mode has been released by interrupt request

Releasing Source	Interrupt Enable (EI) Status	Interrupt Disable (DI) Status
NMI request	Branches to handler address	
Maskable interrupt request	Branches to handler address or executes next instruction	Executes next instruction

(b) Releasing by RESET signal input

The same operation as the normal reset operation is performed.

6.5.4 IDLE mode

(1) Setting and operation status

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuit to stabilize.

The IDLE mode is entered when the PSC register is programmed by the store (ST/SST) instruction or bit manipulation (SET1/CLR1/NOT1) instruction.

Execution of the program is stopped in the IDLE mode, but the contents of the registers and internal RAM immediately before entering the IDLE mode are retained. The on-chip peripheral functions are stopped in this mode. External bus hold request (HLDRQ) is not accepted.

Table 6-3 shows the hardware status in the IDLE mode.

Function		Operating Status				
Clock Generator		Operates				
Internal Sys	tem Clock	Stops				
CPU		Stops				
I/O Line		Retained				
Peripheral F	unction	Stops				
Internal Data		Status of all internal data immediately before IDLE mode is entered, such as CPU registers, status, data, and internal RAM contents, are retained.				
External	AD0 to AD15	High-impedance				
Expansion	A16 to A23					
wode	LBEN, UBEN					
	R/W					
	DSTB					
	ASTB					
	ST0, ST1					
	HLDAK					
CLKOUT		Low-level output				

Table 6-3. Operating Status in IDLE Mode

(2) Releasing IDLE mode

The IDLE mode is released by the NMI signal input or RESET signal input.

(a) Releasing by NMI signal input

The NMI request is accepted and serviced as soon as the IDLE mode has been released. If the IDLE mode is entered in the NMI processing routine, however, only the IDLE mode is released, and the interrupt will not be accepted. The interrupt request is retained and kept pending. The interrupt processing that is started by the NMI signal input when the IDLE mode is released is treated in the same manner as a normal NMI interrupt that is processed (because there is only one vector address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software status should be defined in advance, and the status must be set before setting the IDLE flag by the store/bit manipulation instruction. By checking this status during the NMI interrupt processing, the NMI used to release the IDLE mode can be distinguished from the normal NMI.

(b) Releasing by RESET signal input

The same operation as the normal reset operation is performed.

6.5.5 Software STOP mode

(1) Entering and operaton status

In this mode, the clock generator (oscillation circuit and PLL synthesizer) is stopped, reducing power consumption to only leakage current. In this state, the whole system is stopped and power consumption is minimized.

The software STOP mode is entered by programming the PSC register using the store (ST/SST) or bit manipulation (SET1/CLR1/NOT1) instruction.

It is necessary to ensure the oscillation stabilization time of the oscillator circuit after the software STOP mode has been released, when the PLL mode (CKSEL pin = "0") and the resonator connection mode (CESEL bit = "0") are set.

In the software STOP mode, program execution is stopped, but all the contents of the registers and internal RAM immediately before entering the STOP mode are retained. The on-chip peripheral function also stops operation.

Table 6-4 shows the hardware status in the software STOP mode.

Function		Operating Status			
Clock Generator		Stops			
Internal Sys	tem Clock	Stops			
CPU		Stops			
I/O Line ^{Note}		Retained			
Peripheral F	unction ^{Note}	Stops			
Internal Data		Status of all internal data immediately before software STOP mode is set, such as CPU registers, status, data, and internal RAM contents, are retained.			
External	AD0 to AD15	High-impedance			
Expansion	A16 to A23				
wode	LBEN, UBEN				
	R/W				
	DSTB				
	ASTB				
	ST0, ST1				
	HLDAK				
CLKOUT		Low-level output			

Table 6-4. Operating Status in Software STOP Mode

Note When the value of VDD is within the operating range.

Even if VDD drops below the minimum operating voltage, the contents of the internal RAM can be retained if the data retention voltage VDDDR is maintained.

(2) Releasing software STOP mode

The STOP mode is released by the NMI signal input or RESET signal input.

It is necessary to ensure the oscillation stabilization time when releasing from the STOP mode if the status is in the operating condition of the oscillator circuit (PLL mode (CKSEL pin = "0") and in the resonator connection mode (CESEL bit = "0")).

Phase-out/Discontinued

When using in the PROM programming mode, refer to **11.6 Cautions on STOP Mode Release when Using External Clock**.

(a) Releasing by NMI signal input

When the STOP mode is released by the NMI signal, the NMI request is also accepted. If the STOP mode is set in an NMI processing routine, however, only the STOP mode is released, and the interrupt is not accepted. The interrupt request is retained and kept pending.

Caution If the external clock is input to the X1 pin, supply the external clock more than 150 μ s before releasing by the NMI input.

NMI interrupt processing on releasing STOP mode

The interrupt processing that is started by the NMI signal input when the STOP mode is released is treated in the same manner as a normal NMI interrupt that is processed (because there is only one vector address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software status should be defined in advance, and the status must be set before setting the STOP flag by the store/bit manipulation instruction. By checking this status during the NMI interrupt processing, the NMI used to release the STOP mode can be distinguished from the normal NMI.

(b) Releasing by RESET signal input

The same operation as the normal reset operation is performed.

Caution If the external clock is input to the X1 pin, supply the clock and maintain the low level width of the RESET pin for more than 150 μ s.

6.6 Specifying Oscillation Stabilization Time

The time required for the oscillator circuit to become stabilized after the STOP mode has been released can be specified in the following two ways:

(1) By using internal time base counter (NMI signal input)

When the valid edge is input to the NMI pin, the STOP mode is released. When the inactive edge is input to the pin, the time base counter (TBC) starts counting, and the time required for the clock output from the oscillator circuit to become stabilized is specified by that count time.

Oscillation stabilization time \simeq (Active level width after valid edge of NMI input has been detected) + (Count time of TBC)

After a specific time has elapsed, the system clock output is started, and execution branches to the vector address of the NMI interrupt.

Normally, the NMI pin should be kept at the inactive level (e.g. at a high level when the valid edge is specified to be the falling edge).

If an operation to enter the STOP mode is performed while a valid edge has been input to the NMI pin before the CPU accepts the interrupt, the STOP mode will immediately be released. Program execution is immediately started if the clock generator is in the direct mode (CKSEL = "1") or is driven by external clock (CESEL = 1). If the clock generator is in the PLL mode (CKSEL = "0) and is driven by a resonator (CESEL = 0), program execution is started after the oscillation stabilization time specified in the time base counter has elapsed, following the inactive edge input to the NMI pin.

(2) To specify time by signal level width (RESET signal input)

The STOP mode is released when the falling edge is input to the $\overline{\text{RESET}}$ pin.

The time required for the clock output from the oscillator circuit to become stabilized is specified by the lowlevel width of the signal input to the $\overrightarrow{\text{RESET}}$ pin.

Phase-out/Discontinued

After the rising edge has been input to the RESET pin, operation of the internal system clock begins, and execution branches to the vector address that is used when the system is reset.

Time base counter (TBC)

The time base counter is used to secure the oscillation stabilization time of the oscillator circuit when the software STOP mode is released.

• When external clock is connected (CESEL bit of the PSC register = 1)

Oscillation stabilization time count is not performed by TBC and the program execution starts immediately after the STOP mode cancelation.

• When resonator is connected (CESEL bit of the PSC register = 0)

Oscillation stabilization time is counted by TBC after the cancelation of the STOP mode and the program execution starts after counting finish.

The count clock of TBC is selected by the TBCS bit of the PSC register, and the following count time can be set:

		Count Time					
TBCS	Count Clock	fxx = 13.500 MHz	fxx = 20.000 MHz	fxx = 25.000 MHz			
		φ = 13.500 MHz	φ = 20.000 MHz	φ = 25.000 MHz			
0	fxx/2 ⁸	19.4 ms	13.1 ms	10.4 ms			
1	fxx/2 ⁹	38.8 ms	26.2 ms	20.9 ms			

Table 6-5. Example of Count Time (a) At multiplication by 1 (PLLSEL = 0)

fxx : external oscillator frequency

 ϕ : internal system clock frequency

(b) At multiplication by 5 (PLLSEL = 1)

		Count Time					
TBCS	Count Clock	fxx = 3.2768 MHz	fxx = 4.0000 MHz	fxx = 5.0000 MHz			
		φ = 16.384 MHz	φ = 20.000 MHz	$\phi = 25.000 \text{ MHz}$			
0	fxx/2 ⁸	20.0 ms	16.3 ms	13.1 ms			
1	fxx/2 ⁹	40.0 ms	32.7 ms	26.2 ms			

fxx : external oscillator frequency

 ϕ : internal system clock frequency

Figure 6-1. Block Configuration

6.7 Clock Output Control

The operation mode of the CLKOUT pin can be selected by the DCLK0 and DCLK1 bits of the PSC register. By using this operation mode in combination with the HALT, IDLE, or STOP mode, the power dissipation can be effectively reduced (for how to write these bits, refer to **6.5.2 Control registers**).

Clock output inhibit mode

The clock output from the CLKOUT pin is inhibited.

L

This mode is ideal for single-chip mode systems or systems that fetch instructions to external expansion devices or asynchronously access data.

Because the operation of CLKOUT is completely stopped in this mode, the power dissipation can be minimized and radiation noise from the CLKOUT pin can be suppressed.

CLKOUT (clock output inhibit mode)

(Fixed to low level)

CHAPTER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

7.1 Features

O Measures pulse intervals and frequency, and outputs programmable pulse

- 16-bit measurement possible
- Generates pulses of various shapes (interval pulse, one-shot pulse)
- \bigcirc Timer 1
 - 16-bit timer/event counter
 - Count clock source: 2 types (divided system clock and external pulse input)
 - Capture/compare register: 4
 - Count clear pin: TCLR1
 - Interrupt source: 5 types
 - External pulse output: 2

 \bigcirc Timer 4

- 16-bit interval timer
- Count clock selected from divided system clock
- Compare register: 1
- Interrupt source: 1

7.2 Basic Configuration

The basic configuration of the real-time pulse unit (RPU) is shown in the table below.

Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output SR	Other Function
Timer 1	φ/2	TM1	Read	INTOV1	-	-	External clear
	φ/4 φ/8	CC10	Read/write	INTCC10	INTP10	TO10 (S)	-
	φ/16	CC11	Read/Write	INTCC11	INTP11	TO10 (R)	_
φ/ φ/	$\phi / 32$ $\phi / 64$	CC12	Read/Write	INTCC12	INTP12	TO11 (S)	-
	TI1 pin input	CC13	Read/Write	INTCC13	INTP13	TO11 (R)	-
Timer 4	φ/32 φ/64 φ/128 φ/256	TM4	Read	_	_	_	_
		CM4	Read/write	INTCM4	_	_	_

Table 7-1. Configuration of RPU

Remark ϕ : system clock

SR: set/reset

(1) Timer 1 (16-bit timer/event counter)

Notes 1. Internal count clock frequency

- 2. External count clock frequency
- 3. Reset priority

Remark ϕ indicates the system clock.

(2) Timer 4 (16-bit interval timer)

Note Internal count clock

Remark ϕ indicates the system clock.

7.2.1 Timer 1

(1) Timer 1 (TM1)

TM1 functions as a 16-bit free-running timer or event counter for external signals. Timer 1 is used to measure cycles and frequency, and also for pulse generation.

TM1 can be only read in 16-bit units.

TM1 counts up the internal count clock or external count clock. The TM1 is started or stopped by the CE1 bit of timer control register 1 (TMC1).

Whether the internal or external count clock is used is specified by the TMC1 register.

Caution Count clock cannot be changed during the timer operation.

(a) When external count clock is selected

TM1 operates as an event counter. The valid edge is specified by timer unit mode register 1 (TUM1), and TM1 counts up the signal input from the TI1 pin

(b) When internal count clock is selected

TM1 operates as a free-running timer. The count clock selects the division by the prescaler by the TMC1 register from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, or $\phi/64$.

When the timer overflows, an overflow interrupt can be generated. The timer can be stopped after an overflow has occurred, if so specified by the TUM1 register.

The timer can be cleared and started by external TCLR1 input. At this time, the prescaler is cleared at the same time. As a result, the time from the TCLR1 input to the first count up by the timer is held constant, according to the division ratio of the prescaler. The operation is set by the TUM1 register.

When the $\overline{\text{RESET}}$ signal is input, all the bits of TM1 are cleared to 0.

(2) Capture/compare registers 10 to 13 (CC10 to CC13)

Capture/compare registers are 16-bit registers and are connected to the TM1. These registers can be used as capture or compare register depending on the specification of the timer unit mode register 1 (TUM1). They can be read/written in 16-bit units.

(a) When used as capture register

When a capture/compare register is used as a capture register, it detects the valid edge of the corresponding external interrupt (INTPn (n = 10 to 13)) as a capture trigger. Timer 1 latches the count value in synchronization with the capture trigger (capture operation). The capture operation is performed asynchronously with the count clock. The latched value is held by the capture register, until the next capture operation is performed.

If the capture (latch) timing of the capture register contends with a register write operation by an instruction, the latter takes precedence, and the capture operation is ignored.

The valid edge of the external interrupt (rising, falling, or both edges) can be selected by external interrupt mode register (INTM2).

When a capture/compare register is used as a capture register, and when the valid edge of INTPn is detected, an interrupt is generated. During this time, no interrupt can be generated by a coincidence signal INTCCn (n = 10 to 13) of a compare register.

(b) When used as compare register

When a capture/compare register is used as a compare register, it compares its contents with the value of the timer at each clock tick. When the two values match, a coincidence signal INTCCn is generated. The compare register is equipped with a set/reset output function. This function synchronizes with the generation of the coincidence signal and sets or resets the corresponding timer output.

The interrupt source depends on the register mode, whether it is used as a capture or compare register. When used as a compare register, coincidence signal INTCCn or the valid edge of INTPn can be selected as an interrupt signal, depending on the specification of the TUM1 register.

When INTPn is selected, an external interrupt from INTPn is acknowledged and timer outputs by compare register's set/reset output function are enabled.

7.2.2 Timer 4

(1) Timer 4 (TM4)

TM4 is a 16-bit timer and is mainly used as an interval timer for software. This timer can be only read in 16-bit units.

TM4 is started or stopped by the CE4 bit of the timer control register 4 (TMC4).

The count clock selects the divider of the prescaler by the TMC4 register from $\phi/32$, $\phi/64$, $\phi/128$, or $\phi/256$. All the bits of TM4 are cleared to 0 by the RESET input.

- Cautions 1. When the value of the timer coincides with the value of the compare register, the timer is cleared by the next clock tick. When the division ratio is large, the timer value may not be cleared to 0 yet, even if the timer is read immediately after the occurrence of the coincidence signal interrupt.
 - 2. Count clock cannot be changed during the timer operation.

(2) Compare register 4 (CM4)

CM4 is a 16-bit register and is connected to TM4. This register can be read/written in 16-bit units.

CM4 compares its value with the value of TM4 at each clock tick of TM4, and generates an interrupt (INTCM4) when the two values match or coincide with each other. TM4 is cleared in synchronization with this coincidence.

7.3 Control Registers

(1) Timer unit mode register 1 (TUM1)

TUM1 is a register that controls the operation of TM1, and specifies the operation mode of the capture/compare registers.

This register can be read/written in 16-bit units.

Bit Position	Bit Name	Function				
13	OST	Overflow Stop Specifies operation of timer after occurrence of overflow. This flag is valid only for TM1. 0: Timer continues counting after overflow has occurred. 1: Timer holds 0000H and stops after overflow has occurred. At this time, CE1 bit of TMC1 register remains "1". Timer resumes counting when following operation is performed: When ECLR1 = "0": Writing "1" to CE1 bit When ECLR1 = "1": Trigger input to timer clear pin (TCLR1)				
12	ECLR1	External Input Timer Clear Enables clearing TM1 by external clear input (TCLR1) 0: TM1 is not cleared by external input 1: TM1 is cleared by external input After TM1 has been cleared, it starts counting.				
11, 10	TES11, TES10	TI1 Edge Select Specifies valid edge of external clock input (TI1) TES11 TES10 Valid edge 0 0 Falling edge 0 1 Rising edge 1 0 RFU (reserved) 1 1 Both rising and falling edges		e of external clock input (TI1) Valid edge Falling edge Rising edge RFU (reserved) Both rising and falling edges		
9, 8	CES11, CES10	TCLR1 Edge Select Specifies valid edge of external CES11 CES10 0 0 Falling edg 0 1 Rising edg 1 0 RFU (resert 1 1 Both rising		t e of external clear input (TCLR1) Valid edge Falling edge Rising edge RFU (reserved) Both rising and falling edge		

CHAPTER 7 TIMER/COUNTER FUNCTION (REAL-TIME PULSE U) Phase-out/Discontinued

Bit Position	Bit Name	Function
7 to 4	CMS13 to CMS10	Capture/Compare Mode Select Selects operation mode of capture/compare registers (CCn) 0: Capture register. However, capture operation is performed only when CE1 of TMC1 register = "1". 1: Compare register
3 to 0	IMS13 to IMS10	Interrupt Mode Select Selects INTPn or INTCCn as interrupt source 0: Uses coincidence signal of INTCCn of compare register as interrupt signal 1: Uses external input signal INTPn as interrupt signal

Remark n = 13 to 10

(2) Timer control register 1 (TMC1)

TMC1 controls the operation of TM1.

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
TMC1	CE1	0	0	ETI	PRS11	PRS10	PRM11	0	Address FFFFF242H	At reset 00H

Bit Position	Bit Name			Function				
7	CE1	Count Enable Controls timer operation. 0: Timer stops at "0000H" and does not operate. 1: Timer performs count operation. However, it does not start counting when TUM1.ECLR1 = "1", until TCLR1 signal is input. When TUM1.ECLR1 = "0", starting counting of timer by CE1 = "1" is triggered by writing "1" to CE1 bit. Therefore, timer is not started even when TUM1.ECLR1 = "0" after CE1 has been set with TUM1.ECLR1 = "1".						
4	ETI	 External TI1 Input Specifies external or internal count clock. 0: φ (internal) 1: TI1 (external) 						
3, 2	PRS11, PRS10	Prescaler Selects in PRS11 0 0 1 1	Clock Sel ternal cou PRS10 0 1 0 1	lect unt clock (¢m is intermediate clock) Count clock ¢m ¢m/4 ¢m/8 ¢m/16				
1	PRM11	Prescaler Selects in 0: $\phi/2$ 1: $\phi/4$	Clock Mo termediate	de e clock ϕ m of count clock (ϕ is system clock).				

Caution Do not change the count clock frequency while the timer operates.

(3) Timer control register 4 (TMC4)

TMC4 controls the operation of TM4.

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0	_	
TMC4	CE4	0	0	0	0	PRS40	PRM41	PRM40	Address FFFFF342H	At reset 00H

Bit Position	Bit Name	Function						
7	CE4	Count Enable Controls operation of timer. 0: Timer stops at "0000H" and does not operate. 1: Timer performs count operation.						
2	PRS40	Prescaler Clock Select Selects internal count clock (<i>φ</i> m is intermediate clock). 0: <i>φ</i> m/16 1: <i>φ</i> m/32						
1, 0	PRM41, PRM40	Prescaler Clock Mode Selects intermediate clock ϕ m of count clock (ϕ is system clock).						
		PRM41	PRM40	φm				
		0	0	φ/2				
		0	1	φ/4				
		1 0 φ/8						
		1	1	RFU (reserved)				

Caution Do not change the count clock frequency while the timer operates.

(4) Timer output control register 1 (TOC1)

TOC1 controls the timer output from the TO10 and TO11 pins.

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0	_	
TOC1	ENTO11	ALV11	ENTO10	ALV10	0	0	0	0	Address FFFFF244H	At reset 00H

Bit Position	Bit Name	Function
7, 5	ENTO11, ENTO10	 Enable TOxx pin xx = 11, 10 Enables corresponding timer output (TOxx). 0: Timer output is disabled. The reverse phase level of active level specified in the ALV bit (inactive level) is output from the corresponding TOxx pin. Even if coincidence signal is generated from corresponding compare register, level of TOxx pin does not change. 1: Timer output function is enabled. Timer output changes when coincidence signal is generated from corresponding compare register. After the timer output has been enabled before the first coincidence signal is generated, the reverse phase level of active level of active level specified in the ALV bit is output.
6, 4	ALV11, ALV10	Active Level TOxx pin xx = 11, 10 Specifies active level of timer output. 0: Active-low 1: Active-high

Remark F/F of TOxx output gives priority to reset.

Caution The TOxx output is not changed by the external interrupt signal (INTPn) (n = 10 to 13). When using TOxx, specify a capture/compare register as a compare register (CMSn = 1) (n = 10 to 13).

(5) External interrupt mode register 2 (INTM2)

If n (n = 10 to 13) of TM1 is used as a capture register, a valid edge of external interrupt INTPn is used as a capture trigger. This valid edge can be specified with the INTM2 register. For details, refer to **Section 5.3.6 "External interrupt mode registers 1 and 2 (INTM1 and INTM2)**".

(6) Timer overflow status register (TOVS)

Flags that indicate occurrence of an overflow from TM1 and TM4 are assigned to this register. This register can be read/written in 8- or 1-bit units.

By testing and resetting the TOVS register via software, occurrence of an overflow can be polled.

	7	6	5	4	3	2	1	0		
TOVS	0	0	0	OVF4	0	0	OVF1	0	Address FFFFF230H	At reset 00H

Bit Position	Bit Name	Function
4, 1	OVFn	Overflow Flag TMn (n = 4, 1) overflow flag. 0: No overflow from TMn 1: Overflow from TMn Caution The INVTOV1 interrupt request signal is generated for the interrupt controller
		by synchronizing with the overflow from the TM1. However, the interrupt operations are independent from the TOVS. Overflow flags (OVF1) from the TM1 can be manipulated by the software like other overflow flags. At this time, the interrupt request flag (OVF1) in the interrupt controller for the INTOV1 will not be affected.
		The overflow flags will not be transmitted to the TOVS register while accessing from the CPU. Therefore, when overflows occur during reading of the TOVS register, this overflow condition will be reflected the next time the TOVS register is read, without changing the flag value.
7.4 Timer 1 Operation

7.4.1 Count operation

Timer 1 functions as a 16-bit free-running timer or event counter, as specified by timer control register 1 (TMC1). When it is used as a free-running timer, and when the count value of TM1 coincides with the value of the CCn (n = 10 to 13) register, an interrupt signal is generated, and timer output TOxx (xx = 10, 11) can be set/reset. In addition, a capture operation that holds the current count value of TM1 and loads it into the register CCn, is performed in synchronization with the valid edge detected from the corresponding external interrupt request pin as an external trigger. The captured value is retained until the next capture trigger is generated.

Figure 7-1. Basic Operation of Timer 1

7.4.2 Selecting count clock frequency

An internal or external count clock frequency can be input to timer 1. Which count clock frequency is used is specified by the ETI bit of the TMC1 register.

Caution Do not change the count clock frequency while the timer operates.

(1) Internal count clock (ETI bit = 0)

An internal count clock frequency is selected by the PRM11, PRS11, and PRS10 bits of the TMC1 register, from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, and $\phi/64$.

PRS11	PRS10	PRM11	Count clock frequency
0	0	0	φ/2
0	0	1	φ/4
0	1	0	<i>ф</i> /8
0	1	1	<i>ф</i> /16
1	0	0	<i>ф</i> /16
1	0	1	<i>ф</i> /32
1	1	0	<i>ф</i> /32
1	1	1	<i>ф</i> /64

PULSE UN Phase-out/Discontinued

(2) External count clock (ETI bit = 1)

The signal input to the TI1 pin is counted. At this time, timer 1 can operate as an event counter. The valid edge of TI1 is specified by the TES11 and TES10 bits of the TUM1 register.

TES11	TES10	Valid Edge
0	0	Falling edge
0	1	Rising edge
1	0	RFU (reserved)
1	1	Both rising and falling edges

7.4.3 Overflow

★ If the TM1 register overflows as a result of counting the count clock frequency to FFFFH, the OVF1 bit of the TOVS register is set to 1, and an overflow interrupt (INTOV) is generated.

After the overflow has occurred, the timer can be stopped by setting the OST bit of the TUM1 register to "1". If the timer is stopped due to overflow, the counting operation is not resumed until CE is set to "1" by software.

The operation is not affected even if CE1 is set to 1 during count operation.

7.4.4 Clearing/starting timer by TCLR1 input

Timer 1 usually starts the count operation when the CE1 bit of the TMC1 register is set to 1. It is also possible to clear TM1 and start the count operation by using external input TCLR1.

When the valid edge is input to TCLR1 after ECLR1 = 1, OST = 0, and CE1 is set to 1, the count operation is started. If the valid edge is input to TCLR1 during operation, TM1 clears its value and then resumes the count operation (refer to **Figure 7-3**).

When the valid edge is input to TCLR1 after ECLR1 = 1, OST = 1, and CE1 is set to 1 from 0, the count operation is started. When TM1 overflows, the count operation is stopped once and is not resumed until the valid edge is input to TCLR1. If the valid edge of TCLR1 is detected during count operation, TM1 is cleared and continues counting (refer to **Figure 7-4**). The count operation is not started if setting the CE1 to 1 after the overflow.

Figure 7-3. Clearing/Starting Timer by TCLR1 Input (when ECLR1 = 1, OST = 0)

Figure 7-4. Relationships between Clear/Start by TCLR1 Input and Overflow (when ECLR1 = 1, OST = 1)

7.4.5 Capture operation

A capture operation that captures and holds the count value of TM1 and loads it to a capture register in asynchronization with an external trigger can be performed. The valid edge from the external interrupt request input pin INTPn (n = 10 to 13) is used as the capture trigger. In synchronization with this capture trigger signal, the count value of TM1 during counting, is captured and loaded to the capture register. The value of the capture register is retained until the next capture trigger is generated.

Interrupt signal INTCCn is generated from INTPn input signal.

Capture Register	Capture Trigger Signal
CC10	INTP10
CC11	INTP11
CC12	INTP12
CC13	INTP13

Table 7-2. Capture Trigger Signal to 16-Bit Capture Register (TM1)

The valid edge of the capture trigger is set by external interrupt mode register (INTM2).

When both the rising and falling edges are specified as the capture trigger, the width of an externally input pulse can be measured. If either the rising or falling edge is specified as the capture trigger, the frequency of the input pulse can be measured.

Figure 7-5. Example of TM1 Capture Operation (when both edges are specified)

Remark Dn (n = 0, 1, 2, ...): count value of TM1

The capture operation is not performed even if the interrupt signal is input when CE1 is cleared to 0.

Remark CC10 to CC13 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1 (TUM1).

7.4.6 Compare operation

A comparison between the value in a compare register with the count value of TM1 can be performed.

When the count value of TM1 coincides with the value of the compare register programmed in advance, a coincidence signal is sent to the output control circuit (refer to **Figure 7-7**). The levels of the timer output pins (TO10 and TO11) can be changed by the coincidence signal, and an interrupt request signal can be generated at the same time.

Compare Register	Interrupt Request Signal
CC10	INTCC10
CC11	INTCC11
CC12	INTCC12
CC13	INTCC13

Table 7-3. Interrupt Request Signal from 16-Bit Compare Register (TM1)

Remark CC10 to CC13 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1 (TUM1).

Remark Note that the coincidence signal is generated immediately after TM1 is incremented as shown above.

TM1 has two timer output pins: TO10 and TO11.

The count value of TM1 is compared with the value of CC10. When the two values coincide, the output level of the TO10 pin is set. The count value of TM1 is also compared with the value of CC11. When the two values coincide, the output level of the TO10 pin is reset.

Similarly, the count value of TM1 is compared with the value of CC12. When the two values coincide, the output level of the TO11 pin is set. The count value of TM1 is also compared with the value of CC13. When the two values coincide, the output level of TO11 pin is reset.

The output levels of the TO10 and TO11 pins can be specified by the TOC1 register.

Figure 7-8. Example of TM1 Compare Operation (set/reset output mode)

7.5 Timer 4 Operation

7.5.1 Count operation

Timer 4 functions as a 16-bit interval timer. The operation is specified by the timer control register 4 (TMC4). The operation of timer 4 counts the internal count clocks (ϕ /32 to ϕ /256) specified by the PRS40, PRM41, and PRM40 bits of the TMC4 register.

If the count value of TM4 coincides with the value of CM4, the value TM4 is cleared while simultaneously a coincidence interrupt (INTCM4) is generated.

7.5.2 Selecting the count clock frequency

An internal count clock frequency is selected by the PRS40, PRM40, and PRM41 bits of the TMC4 register, from $\phi/32$, $\phi/64$, $\phi/128$, and $\phi/256$.

Caution Do not change the count clock frequency while the timer operates.

PRS40	PRM40	PRM41	Count clock frequency
0	0	0	<i>ф</i> /32
0	0	1	<i>ф</i> /64
0	1	0	<i>ф</i> /128
0	1	1	RFU (reserved)
1	0	0	<i>ф</i> /64
1	0	1	<i>ф</i> /128
1	1	0	<i>ф</i> /256
1	1	1	RFU (reserved)

7.5.3 Overflow

If TM4 overflows, the OVF4 bit of the TOVS register is set to 1.

7.5.4 Compare operation

A comparison can be performed with the counter value of TM4 and the compare register (CM4).

When the count value of TM4 coincides with the value of the compare register, a coincidence interrupt (INTCM4) is generated. As a result, TM4 is cleared to 0 at the next count timing (refer to **Figure 7-10**). This function allows timer 4 to be used as an interval timer.

Phase-out/Discontinued

CM4 can be also set to 0. In this case, a coincidence is detected when TM4 overflows and is cleared to 0, and INTCM4 is generated. The value of TM4 is cleared to 0 at the next count timing, but INTCM4 is not generated when a coincidence occurs at this time (refer to **Figure 7-11**).

Figure 7-10. Operation with CM4 at 1 to FFFFH

Remark Interval time = (n + 1) x count clock cycle n = 1 to 65535 (FFFFH)

Figure 7-11. When CM4 Is Set to 0

Remark Interval time = (FFFFH + 2) x count clock cycle

7.6 Application Examples

(1) Operation as interval timer (timer 4)

Timer 4 is used as an interval timer that repeatedly generates an interrupt request at time intervals specified by the count value set in advance to compare register CM4. Figure 7-12 shows the timing. Figure 7-13 illustrates the setting procedure.

Remark n: value of CM4 register

t: interval time = (n + 1) x count clock cycle

(2) Pulse width measurement (timer 1)

Timer 1 is used to measure pulse width.

In this example, the width of the high or low level of an external pulse input to the INTP12 pin is measured. The value of timer 1 (TM1) is captured to a capture/compare register (CC12) in synchronization with the valid edge of the INTP12 pin (both the rising and falling edges), as shown in Figure 7-14.

To calculate the pulse width, the difference between the count value of TM1 captured to the CC12 register on detection of valid edge n (Dn), and the count value on detection of valid edge (n-1) (Dn-1) is calculated. This difference is multiplied by the count clock.

Figure 7-15 shows the setting procedure.

 $t^{2} = (1000 \text{ H} - \text{D0}) \times \text{count clock cycle}$ $t^{2} = \{(10000 \text{H} - \text{D1}) + \text{D2}\} \times \text{count clock cycle}$ $t^{3} = (\text{D3} - \text{D2}) \times \text{count clock cycle}$

Remark Dn: count value of TM1 (n = 0, 1, 2, ...)

*

Figure 7-15. Setting Procedure for Pulse Width Measurement (timer 1)

Figure 7-16. Interrupt Request Processing Routine Calculating Pulse Width (timer 1)

Caution If an overflow occurs two times or more between (n–1)th capture and nth capture, the pulse width cannot be measured.

(3) PWM output (timer 1)

Any square wave can be output to timer output pins (TO10 and TO11) by combining the use of timer 1 and the timer output function.

(a) Using timer 1

Two capture/compare registers, CC10 and CC11, are used in this example of PWM output. A PWM signal with an accuracy of 16 bits can be output from the TO10 pin. Figure 7-17 shows the timing. When timer 1 is used as a 16-bit timer, the rising timing of the PWM output is determined by the value set to capture/compare register CC10, and the falling timing is determined by the value set to capture/ compare register CC11.

Figure 7-18 shows the programming procedure at this time.

Figure 7-17. PWM Output Timing (TM1)

Remark	Dxx: set value of compare register
	$t1 = {(10000H-D00) + D01} x count clock cycle$
	t2 = {(10000H–D10) + D11} x count clock cycle

*

Figure 7-18. Programming Procedure of PWM Output (timer 1)

 \star

 \star

(4) Cycle measurement (timer 1)

Timer 1 can be used to measure the cycle or frequency of an external pulse input to the INTPn pin (n = 10 to 13).

In this example, the cycle of the external pulse input to the INTP10 pin is measured with a resolution of 16 bits, by combining the use of timer 1 and the capture/compare register CC10.

The valid edge of the INTP10 input signal is specified by the INTM2 register to be the rising edge.

To calculate the cycle, the difference between the count value of TM1 captured to the CC10 register at the nth rising edge (Dn), and the count value captured at the (n-1)th rising edge (Dn-1), is calculated, and the value multiplied by the count clock frequency.

Figure 7-21 shows the setting procedure at this time.

Remark Dn: count value of TM1 (n = 0, 1, 2, ...)

Figure 7-21. Set-up Procedure for Cycle Measurement (timer 1)

Figure 7-22. Interrupt Request Processing Routine Calculating Cycle (timer 1)

7.7 Note

Coincidence is detected by the compare register immediately after the timer value matches the compare register value, and does not take place in the following cases:

(1) When compare register is rewritten (TM1, TM4)

When timer 1 is used as a free-running timer, the timer value is cleared to 0 when the timer overflows.

CHAPTER 8 SERIAL INTERFACE FUNCTION

8.1 Features

The V852 is provided with four transmission/reception channels for the serial interface function. There are the following two types of interfaces, and each of them functions independently.

- (1) Asynchronous serial interface (UART): 1 channel
- (2) Clocked serial interface (CSIn): 3 channels (n = 0 to 2)

The UART transmits/receives 1-byte serial data following a start bit and can perform full-duplex communication. The CSI uses three signal lines to transfer data (3-wire serial I/O): the serial clock (\overline{SCKn}) (n = 0 to 2), serial input (SIn) (n = 0 to 2), and serial output (SOn) (n = 0 to 2) lines.

8.2 Asynchronous Serial Interface (UART)

8.2.1 Features

- \bigcirc Transfer rate: 110 bps to 38400 bps (with baud rate generator, at $\phi = 25$ MHz) 781 Kbps max.
 - (with $\phi/2$, at $\phi = 25$ MHz)
- Full-duplex communication
- Two-pin configuration: TXD: transmit data output pin
 - RXD: receive data input pin
- Receive error detection function
 - Parity error
 - · Framing error
 - Overrun error
- Three interrupt sources
 - Receive error interrupt (INTSER0)
 - Reception completion interrupt (INTSR0)
 - Transmission completion interrupt (INTST0)
- Character length of transmit/receive data is specified by ASIM00 and ASIM01 registers.
- Character length: 7, 8 bits
 - 9 bits (when extended)
- Parity function: odd, even, 0, none
- Transmit stop bit: 1, 2 bits
- Internal baud rate generator

8.2.2 Configuration of asynchronous serial interface

The asynchronous serial interface is controlled by asynchronous serial interface mode register (ASIM) and asynchronous serial interface status register (ASIS). The receive data is stored in the receive buffer (RXB), and the transmit data is written to the transmit shift register (TXS).

Figure 8-1 shows the configuration of the asynchronous serial interface.

(1) Asynchronous serial interface mode registers (ASIM00, ASIM01)

ASIM00 and ASIM01 are 8-bit registers that specify the operation of the asynchronous serial interface.

(2) Asynchronous serial interface status register (ASIS0)

ASIS0 is a register containing flags that indicate receive errors, if any, and a transmit status flag. Each receive error flag is set to 1 when a receive error occurs, and is reset to 0 when data is read from the receive buffer (RXB0, RXB0L), or when new data is received (if the next data contains an error, the corresponding error flag is set).

The transmit status flag is set to 1 when transmission is started, and reset to 0 when transmission ends.

(3) Reception control parity check

The reception operation is controlled according to the contents programmed in the ASIM00 and ASIM01 registers. During the receive operation, errors such as parity error are also checked. If an error is found, the appropriate value is set to the ASIS0 register.

(4) Receive shift register

This shift register converts the serial data received on the RXD pin into parallel data. When it receives 1 byte of data, it transfers the receive data to the receive buffer. The receive shift register cannot be accessed by the CPU.

(5) Receive buffer (RXB0, RXB0L)

RXB0 is a 9-bit buffer register that holds receive data. If data of 7 or 8 bits/character is received, 0 is stored to the most significant bit position of this register.

If this register is accessed in 16-bit units, RXB0 is specified. To access in lower 8-bit units, RXB0L is specified. While reception is enabled, the receive data is transferred from the receive shift register to the receive buffer in synchronization with shift-in processing of 1 frame.

When the data is transferred to the receive buffer, a reception completion interrupt request (INTSR0) occurs.

(6) Transmit shift register (TXS0, TXS0L)

TXS0 is a 9-bit shift register used for transmit operation. When data is written to this register, the transmission operation is started.

A transmission complete interrupt request (INTST0) is generated after each complete data frame is trasmitted. When this register is accessed in 16-bit units, TXS0 is specified. To access in lower 8-bit units, TXS0L is specified.

(7) Transmission parity control

A start bit, parity bit, and stop bit are appended to the data written to the TXS0 register, according to the contents programmed in the ASIM00 and ASIM01 registers, to control the transmission operation.

(8) Selector

Selects the source of the serial clock.

Figure 8-1. Block Diagram of Asynchronous Serial Interface

8.2.3 Mode registers and control registers

(1) Asynchronous serial interface mode registers (ASIM00 and ASIM01)

These registers specify the transfer mode of the UART. They can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Funciton
6	RXE0	Receive Enable
		Enables/disables reception.
		0: Disables reception
		1: Enables reception
		When reception is disabled, the receive shift register does not detect the start bit. Data is not
		shifted into the receive shift register and neither is any transfer to the receive buffer performed.
		Therefore, the previous contents of receive buffer are retained. When reception is enabled, the
		data is shifted into the receive shift register and transferred to the receive buffer when one
		complete frame has been received. A reception completion interrupt (INTSR0) is generated in
		synchronization with the transfer to the receive buffer.

CHAPTER 8 SERIAL INTERFACE FUNCTION

Phase-out/Discontinued

Bit Position	Bit Name	Function						
5, 4	PS01, PS00	Parity Select						
		Specifies par	Specifies parity bit.					
		PS01	PS00	Operation				
		0	0	No parity. Extended bit operation				
		0	1	0 parity Transmission side -> Transmits with parity bit 0 Reception side -> Does not generate parity error on reception				
		1	0	Odd parity				
		1	1	Even parity				
		 Even parity Parity bit is set to "1" when number of bits equal to one in received data is odd. If numb of bits that are one is even, parity bit is cleared to 0. In this way, number of bits that are " in transmit data and parity bit is controlled to become even. During reception, number of b that are "1" in receive data and parity bit are counted. If it is odd, parity error occurs. Odd parity In contrast to even parity, number of bits included in transmit data and parity bit that are " is controlled to become odd. During reception, parity error occurs if the number of "1"'s in the receive data and parity are added up to become even. O parity Parity bit is cleared to "0" during transmission, regardless of transmit data. During reception, the parity bit is not checked. Therefore, parity error does not occur regardless of whether parity bit is "0" or "1". No parity No parity bit is appended to the transmit data. Reception is performed on assumption that there is no parity bit. Because no parity bit is use parity error does not occur. 						
3	CL0	Character Le Specifies cha 0: 7 bits 1: 8 bits	ngth Iracter len	gth of one frame.				
2	SL0	Stop Bit Leng Specifies sto 0: 1 bit 1: 2 bits	gth p bit.					

Bit Position	Bit Name	Function						
0	SCLS0	Serial Clock Source Specifies serial clock. 0: Specified by baud rate generator and BPRM0 (baud rate generator prescaler mode register) 1: $\phi/2$						
		 When SCLS0 = 1 \$\phi/2\$ (system clock) is selected as serial clock source. In asynchronous mode, baud rate is expressed as follows because sampling rate of x16 is used: Baud rate = \$\frac{\phi/2}{16}\$ bps Value of baud rate when twoical clock is used based on above expression is as follows: 						
		φ 25 MHz 20 MHz 16 MHz 12.5 MHz 10 MHz 8 MHz 5 MHz						
		Baud rate 781 K 625 K 500 K 390 K 312 K 250 K 156 K						
		 When SCLS0 = 0 Baud rate generator output is selected as serial clock source. For details of baud rate generator, refer to 8.4 "Baud Rate Generator (BRG)". 						

Caution The operation of UART is not guaranteed if the bits 0 to 6 of this register are changed while UART is transmitting/receiving data.

	7	6	5	4	3	2	1	0	_	
ASIM01	0	0	0	0	0	0	0	EBS0	Address FFFFF0C2H	At reset 00H

Bit Position	Bit Name	Function
0	EBS0	Extended Bit Select Specifies extended bit operation of transmit/receive data when no parity is specified (PS01, PS00 = 00). 0: Disables extended bit operation 1: Enables extended bit operation When extended bit operation is enabled, 1 data bit is appended as most significant bit to 8-bit transmit/receive data, and therefore 9-bit data is communicated. Extended bit operation is valid only when no parity is specified by ASIM00 register. If zero, even, or odd parity is specified, specification by EBS0 bit is invalid, and extended bit is not appended.

(2) Asynchronous serial interface status register 0 (ASIS0)

This register contains three error flags that indicate the receive error status for each character received and the status of the transmit shift register.

The error flags always indicate the status of an error that has occurred most recently. If two or more errors occur before the current received data, only the status of the error that has occurred last is retained.

If a receive error occurs, read the receive buffer RXB0 or RXB0L after reading the ASIS0 register, and then clear the error flag.

This register can only be read in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
ASIS0	SOT0	0	0	0	0	PE0	FE0	OVE0	Address FFFFF0C4H	At reset 00H

Bit Position	Bit Name	Function		
7	SOTO	Status Of Transmission Status flag that indicates transmission operation status. Set (1) : Beginning of transmission of a data frame (writing to TXS register) Clear (0): End of transmission of a data frame (occurrence of INTSTO) When serial data transfer begins, this flag will indicate if the transmit shift register is ready to be written or not.		
2	PE0	Parity Error Status flag that indicates parity error. Set (1) : Transmit parity and receive parity do not match Clear (0): The data is read from the receive buffer.		
1	FE0	Framing Error Status flag that indicates framing error. Set (1) : Stop bit is not detected Clear (0): The data is read from the receive buffer.		
0	OVE0	Overrun Error Status flag that indicates overrun error. Set (1) : The UART completes the next receive process before taking the receive data from the receive buffer. Clear (0): The data is read from the receive buffer. Because contents of receive shift register are transferred to receive buffer each time one frame of data has been received, if overrun error occurs, next receive data is written over contents of receive buffer, and previous receive data is discarded.		

(3) Receive buffers (RXB0 and RXB0L)

RXB0 is a 9-bit buffer register that holds the receive data. When 7- or 8-bit/character is received, the higher bit of this register is 0.

Phase-out/Discontinued

When this register is accessed in 16-bit units, RXB0 is specified. To access in lower 8-bit units, RXB0L is specified.

When reception is enabled, the receive data is transferred from the receive shift register to the receive buffer when one complete frame of data (or character) has been received.

When the receive data is transferred to the receive buffer, a reception completion interrupt request (INTSR0) occurs.

When reception is disabled, the data is not shifted into the receive shift register and the reception completion interrupt is not generated. The previous contents of the receive buffer are retained.

RXB0 enables 16-bit read access only, and RXB0L enables 8-/1-bit read access only.

Bit Position	Bit Name	Function
8	RXEB0	Receive Extended Buffer Extended bit when 9-bit/character is received. This bit is cleared to zero when 7- or 8-bit/character is received.
7 to 0	RXB0n (n = 7 to 0)	Receive Buffer These bits store receive data. The RXB07 bit is cleared to zero when 7-bit/character is received.

(4) Transmit shift registers (TXS0, TXS0L)

TXS0 is a 9-bit shift register for data transmission. The transmit operation is started when data is written to this register.

Transmission complete interrupt request (INTST0) is generated after each complete data frame is transmitted. When this register is accessed in 16-bit units, TXS0 is specified. To access in lower 8-bit units, TXS0L is specified.

TXS0 enables 16-bit write access only, and TXS0L enables 8-bit write access only.

Bit Position	Bit Name	Function
8	TXED0	Transmit Extended Data
		Extended bit on transmission of 9-bit/character
7 to 0	TXS0n	Transmit Shifter
	(n = 7 to 0)	Writes transmit data.

Caution As the UART of the V852 does not have a transmit buffer, an interrupt request synchronizing with the completion of the transmission of one frame of data is generated instead of the interrupt request generated at the end of transmission (completion of transfer to buffer).

8.2.4 Interrupt request

UART generates the following three types of interrupt requests:

- · Receive error interrupt
- Reception completion interrupt
- Transmission completion interrupt

Of these three, the receive error interrupt has the highest default priority, followed by the reception completion interrupt and transmission completion interrupt.

Interrupt	Priority	
Receive error	1	
Reception completion	2	
Transmission completion	3	

Table 8-1. Default Priority of Interrupts

(1) Receive error interrupt (INTSER0)

A receive error interrupt occurs as a result of ORing the three types of receive errors described in description of the ASIS0 register when reception is enabled.

This interrupt does not occur when reception is disabled.

(2) Reception completion interrupt (INTSR0)

The reception completion interrupt occurs if data is received in the receive shift register and then transferred to the receive buffer when reception is enabled.

This interrupt also occurs when a receive error occurs, but the receive error interrupt has the higher priority. The reception completion interrupt does not occur when reception is disabled.

(3) Transmission completion interrupt (INTST0)

Because the UART of the V852 does not have a transmit buffer, a transmission completion interrupt occurs when one frame of transmit data containing a 7-/8-/9-bit character is shifted out from the transmit shift register. The transmission completion interrupt is output when the last bit of data has been transmitted.

8.2.5 Operation

(1) Data format

Full-duplex serial data is transmitted/received.

One data frame of the transmit/receive data consists of a start bit, character bits, parity bit, and stop bit, as shown in Figure 8-2.

The length of the character bit, parity, and the length of the stop bit in one data frame are specified by the asynchronous serial interface mode registers (ASIM00 and ASIM01).

Figure 8-2. Format of Transmit/Receive Data of Asynchronous Serial Interface

Character bit

- Start bit 1 bit
- Character bit7/8/9 bits (with extended bit)
- Parity/expansion bit Even/odd/0/none/expansion bit
- Stop bit 1/2 bits

(2) Transmission

Transmission is started when data is written to the transmit shift register (TXS0 or TXS0L). The next data is written to the TXS0 or TXS0L register by the processing routine of the transmission completion interrupt (INTST0).

(a) Transmission enabled status

The UART of the V852 is always enabled to transmit data. Because the V852 does not have a pin that inputs a transmit enable signal, a general input port is used when it is necessary to check whether the other party is ready to receive data.

(b) Starting transmission

Transmission is started by writing data to the transmit shift register (TXS0, TXS0L). The transmit data is transferred starting from the start bit with the LSB first. The start bit, parity/expansion bit, and stop bit are automatically appended.

(c) Transmission interrupt request

When one frame of data or character has been completely transferred, a transmission completion interrupt request (INTST0) occurs.

Phase-out/Discontinue

Unless the data to be transmitted next is written to the TXS0 or TXS0L register, the transmit operation is aborted.

The communication rate drops unless the next transmit data is written to the TXS0 or TXS0L register immediately after transmission has been completed.

- Cautions 1. The transmission completion interrupt request (INTST0) is generated after each complete data frame is transmitted out of the transmit shift register. It is not generated by the empty state of TXS0 or TXS0L. Because of this, the INTST0 interrupt will not be generated immediately after reset.
 - 2. During the transmit operation, writing data into the TXS0 or TXS0L register is ignored (the data is discarded) until INTST0 is generated.

Figure 8-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(a) Stop bit length: 1

(b) Stop bit length: 2

(3) Reception

When reception is enabled, sampling of the RXD pin is started, and reception of data begins when the start bit is detected. Each time one frame of data or character has been received, the reception completion interrupt (INTSR0) occurs. Usually, the receive data is transferred from the receive buffer (RXB0, RXB0L) to memory by this interrupt processing.

(a) Reception enabled status

Reception is enabled when the RXE0 bit of the ASIM00 register is set to 1.

RXE0 = 1: Reception is enabled RXE0 = 0: Reception is disabled

When reception is disabled, the receive hardware stands by in the initial status.

At this time, the reception completion interrupt/receive error interrupt does not occur, and the contents of the receive buffer are retained.

(b) Starting reception

Reception is started when the start bit is detected.

The RXD pin is sampled with the serial clock specified by the ASIM00 register. The RXD pin is sampled again eight clocks after the falling edge of the RXD pin has been detected. If the RXD pin is low at this time, it is recognized as the start bit, and reception is started. After that, the RXD pin is sampled in 16 clock ticks.

If the RXD pin is high eight clocks after the falling edge of the RXD pin has been detected, this falling edge is not recognized as the start bit. The serial clock counter is reinitialized, and the UART waits for the input of the next falling edge or valid start bit.

(c) Reception completion interrupt request

When one frame of data has been received with RXE0 = 1, the receive data in the shift register is transferred to RXB0, and a reception completion interrupt request (INTSR0) is generated.

If an error occurs, the receive data that contains an error is transferred to the receive buffer (RXB0, RXB0L), and the transmission completion interrupt (INTSR0) and receive error interrupt (INTSER0) occur simultaneously.

When the RXE0 bit is reset to 0 during reception, the receive operation is immediately disabled. The contents of the receive buffer (RXB0, RXB0L) and asynchronous serial interface status register (ASIS0) are not changed, and the reception completion interrupt (INTSR0) and receive error interrupt (INTSER0) will not be generated.

Figure 8-4. Asynchronous Serial Interface Reception Completion Interrupt Timing

(d) Reception error flag

Three error flags, parity error, framing error, and overrun error flags, are related with the reception operation.

The receive error interrupt request occurs as a result of ORing these three error flags.

By reading the contents of the ASIS0 register, the error which caused the receive error interrupt (INTSER0) can be identified.

The contents of the ASIS0 register are reset to 0 when the receive buffer (RXB0, RXB0L) is read or the next data frame is received (if the next data contains an error, the corresponding error flag is set).

Receive	Error Cause		
Parity Error	Parity specified during transmission does not coincide with parity of receive data		
Framing error	Stop bit is not detected		
Overrun error	Next data is completely received before data is read from receive buffer		

Figure 8-5. Receive Error Timing

RXD (input)	D0 D1 D2 D6 D7 Parity/ Start	Stop	
INTSR0			
INTSER0			

8.3 Clocked Serial Interface 0 to 2 (CSI0 to CSI2)

8.3.1 Features

- \bigcirc Number of channels: 3 channels (CSIn) (n = 0 to 2)
- \bigcirc High transfer speed: 6.25 Mbps max. (with $\phi/2$, at $\phi = 25$ MHz)
- \bigcirc Half duplex communication
- Character length: 8 bits
- MSB first/LSB first selectable
- \bigcirc External serial clock input/internal serial clock output selectable
- \bigcirc 3 lines: SOn : serial data output (n = 0 to 2)

SIn : serial data input (n = 0 to 2)

 \overline{SCKn} : serial clock I/O (n = 0 to 2)

- \bigcirc Interrupt source: 3
 - Interrupt request signal (INTCSIn) (n = 0 to 2)

The CSIn is controlled by the clocked serial interface mode register (CSIMn) (n = 0 to 2). The transmit/receive data is read/written from/to the serial I/O shift register (SIOn) (n = 0 to 2).

(1) Clocked serial interface mode register (CSIMn)

CSIMn is an 8-bit register that specifies the operation of the clocked serial interface.

(2) Serial I/O shift register (SIOn)

SIOn is an 8-bit register that converts serial data into parallel data, and vice versa. SIOn is used for both transmission and reception.

Data is shifted in (received) or shifted out (transmitted) from the MSB or LSB side.

The actual transmitting and receiving of data is actually performed by writing data to and reading data from the SIOn.

(3) Serial clock selector

Selects the serial clock to be used.

(4) Serial clock control circuit

Controls supply of the serial clock to the SIOn. When the internal clock is used, it also controls the clock output to the \overline{SCKn} (n = 0 to 2) pin.

(5) Serial clock counter

Counts the serial clocks being output and the serial clocks received during transmission/reception to check whether 8-bit data has been transmitted or received.

(6) Interrupt signal generation control circuit

Controls whether an interrupt request is generated when the serial clock counter has counted eight serial clocks.
8.3.2 Configuration

8.3.3 Mode registers and control registers

(1) Clocked serial interface mode register n (CSIMn) (n = 0 to 2)

This register specifies the basic operation mode of CSIn.

It can be read/written in 8- or 1-bit units (note, however, that bit 5 can only be read).

	7	6	5	4	3	2	1	0		
CSIM0	CTXE0	CRXE0	CSOT0	0	0	MOD0	CLS01	CLS00	Address FFFFF088H	At reset 00H
	7	6	5	4	3	2	1	0		
CSIM1	CTXE1	CRXE1	CSOT1	0	0	MOD1	CLS11	CLS10	Address FFFFF098H	At reset 00H
	7	6	5	4	3	2	1	0		
CSIM2	CTXE2	CRXE2	CSOT2	0	0	MOD2	CLS21	CLS20	Address FFFFF0A8H	At reset 00H

	Bit Position	Bit Name				Function					
	7	CTXEn	CSI Transn Enables or 0: Disabl 1: Enable When CTX	nit Enable disables t es transm es transmi En = "0", o	transmission. ission ssion output buffers of t	both SO and SI pins go into high-imp	pedance state	2.			
*	6	CRXEn	CSI Receiv Disables or 0: Disabl 1: Enable If serial cloo "0" is input When rece undefined.	CSI Receive Enable Disables or enables reception. 0: Disables reception 1: Enables reception If serial clock is received when transmission enabled (CTXEn = 1) and reception are disabled, "0" is input to SIOn. When reception is disabled (CRXEn = 0) during reception, the contents of SIOn become							
	5	CSOTn	CSI Status Indicates th Set (1): Clear (0): This bit is us by enabling	Of Transr nat transfe Transfer s Transfer e sed to che transmis	nission r operation is in p start timing (writin end timing (INTCS ck whether writing sion (CTXEn = 1)	progress. g to SIO0 register) SI occurs) to SIOn is permitted or not. Serial data	a transfer is st	tarted			
	2	MODn	Mode Specifies fi 0: MSB f 1: LSB fi	rst bit. irst rst							
	1, 0	CLSn1, CLSn0	Clock Sour Specifies s CLSn1 0 0 1 1 1 Notes 1.	ce erial clock CLSn0 0 1 0 1 For setting	External clock Internal clock	Specifies serial clock Specified by BPRMm register ^{Note1} φ/4 ^{Note2} φ/2 ^{Note2} 0, 1) register, refer to section 8.4 "Bat	SCKn pin Input Output Output Output ud Rate Gene	erator			
			2.	(BRG)". φ/4 and φ	/2 indicate divider	signal (ϕ = system clock).					

Remark n = 0 to 2

(2) Serial I/O shift register n (SIOn) (n = 0 to 2)

This register converts 8-bit serial data into parallel data, and vice versa. The actual transmitting and receiving of data is performed by writing data to and reading data from the SIOn.

A shift operation of SIOn is performed when CTXEn (n = 0 to 2) = "1" or CRXEn (n = 0 to 2) = "1". This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
SIO0	SIO07	SIO06	SIO05	SIO04	SIO03	SIO02	SIO01	SIO00	Address FFFFF08AH	At reset Undefined
	7	6	5	4	3	2	1	0		
SIO1	SIO17	SIO16	SIO15	SIO14	SIO13	SIO12	SIO11	SIO10	Address FFFFF09AH	At reset Undefined
	7	6	5	4	3	2	1	0		
SIO2	SIO27	SIO26	SIO25	SIO24	SIO23	SIO22	SIO21	SIO20	Address FFFFF0AAH	At reset Undefined

Bit Position	Bit Name	Function
7 to 0	SIOnm	Serial I/O
		Data is shifted in (received) or out (transmitted) from MSB or LSB side.

Remark n = 0 to 2, m = 0 to 7

8.3.4 Basic operation

(1) Transfer format

The CSIn (n = 0 to 2) of the V852 performs interfacing by using three lines: one clock line and two data lines. Serial transfer is started by executing an instruction that writes transfer data to the SIOn (n = 0 to 2) register. During transmission, the data is output from the SOn (n = 0 to 2) pin in synchronization with the falling edge of \overline{SCKn} (n = 0 to 2).

During reception, the data input to the SIn (n = 0 to 2) pin is latched in synchronization with the rising edge of \overline{SCKn} (n = 0 to 2). \overline{SCKn} stops when the serial clock counter overflows (at the rising of the 8th count), and \overline{SCKn} remains high until the next data transmission or reception is started. At the same time, an interrupt request signal INTCSIn (n = 0 to 2) is generated.

Caution If CTXEn (n = 0 to 2) is changed from 0 to 1 after the transmit data is sent to the SIOn register, serial transfer will not begin.

Remark n = 0 to 2

(2) Enabling transmission/reception

The CSIn (n = 0 to 2) of the V852 has only one 8-bit shift register and does not have a buffer. Transmission and reception are therefore performed simultaneously.

Phase-out/Discontinued

(a) Transmission/reception enabling condition

The CSIn transmission/reception enabling conditions are specified using the CTXEn (n = 0 to 2) and CRXEn (n = 0 to 2) bits of the CSIMn (n = 0 to 2) register.

CTXEn	CRXEn	Transmission/Reception
0	0	Disables transmission/reception
0	1	Enables reception
1	0	Enables transmission
1	1	Enables transmission/reception

Remark n = 0 to 2

(i) Disabling SIOn output by CTXEn

When CTXEn = 0, the SOn pin output of CSIn goes into a high-impedance state. When CTXEn = 1, the data of the SIOn register of CSIn is output.

(ii) Disabling SIOn input by CRXEn

When CRXEn = 0, the SIOn register input of CSIn is "0". When CRXEn = 1, the SIn pin input of CSIn is input to the shift register.

(iii) To check transmit data

To receive the transmit data and to check whether bus contention occurs, set CTXEn and CRXEn to 1.

(b) Starting transmission/reception

Transmission/reception is started by reading/writing the SIOn register. Transmission/reception is controlled by setting the transmission enable bit (CTXEn) and reception enable bit (CRXEn) as follows:

CTXEn	CRXEn	Start Condition
0	0	Does not start
0	1	Reads from SIOn
1	0	Writes to SIOn
1	1	Writes to SIOn
0	0 -> 1	Rewrites CRXEn bit

Remark n = 0 to 2

If CTXEn bit is not changed from 0 to 1 before reading data from or writing data to the SIOn register, transfer will not begin. The bottom of the table means that, if the CRXEn bit is changed from 0 to 1 when the CTXEn bit is "0", the serial clock will be generated to initiate receive operation of CSIn.

8.3.5 Transmission in 3-wire serial I/O mode

Transmission is started when data is written to the SIOn (n = 0 to 2) register after transmission has been enabled by the CSIMn (n = 0 to 2) register.

(1) Starting transmission

Transmission is started by writing the transmit data to the SIOn register after the CTXEn (n = 0 to 2) bit of the CSIMn register has been set (the CRXEn (n = 0 to 2) bit is cleared to "0"). If the CTXEn bit is reset to 0, the SOn (n = 0 to 2) pin goes into a high-impedance state.

(2) Transmitting data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission is started, the serial clock is output from the \overline{SCKn} (n = 0 to 2) pin, and at the same time, data is sequentially output to the SOn pin from SIOn register in synchronization with the falling edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission is started, the data is sequentially output from the SIOn register to the SOn pin in synchronization with the falling of the serial clock input to the \overline{SCKn} pin immediately after transmission has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin if transmission is not enabled, and the output level of the SOn pin will not change.

Remark n = 0 to 2

8.3.6 Reception in 3-wire serial I/O mode

Reception is started if the status is changed from reception disabled to reception enabled status by the CSIMn (n = 0 to 2) register or if the SIOn (n = 0 to 2) register is read by the CPU with reception enabled.

(1) Starting reception

Reception can be started in the following two ways:

- <1> Changing the status of the CRXEn (n = 0 to 2) bit of the CSIMn register from "0" (reception disabled) to "1" (reception enabled)
- <2> Reading the receive data from the SIOn when the CRXE0 bit of the CSIMn register is "1" (reception enabled)
- If CRXEn has already been set to "1", writing "1" to this bit does not initiate receive operation. When CRXEn
- = 0, the input to SIOn register is "0".

(2) Receiving data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When reception is started, the serial clock is output from the \overline{SCKn} (n = 0 to 2) pin, and at the same time, data is sequentially loaded from the SIn (n = 0 to 2) pin to the SIOn register in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When reception is started, the data is sequentially loaded from the SIn (n = 0 to 2) pin to SIOn in synchronization with the rising of the serial clock input to the \overline{SCKn} pin immediately after reception has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin when reception is not enabled.

8.3.7 Transmission/reception in 3-wire serial I/O mode

Transmission and reception can be executed simultaneously if both transmission and reception are enabled by the CSIMn (n = 0 to 2) register.

(1) Starting transmission/reception

Transmission and reception can be performed simultaneously (transmission/reception operation) when both the CTXEn (n = 0 to 2) and CRXEn (n = 0 to 2) bits of the CSIMn register are set to 1.

Transmission/reception can be started by writing the transmit data to the SIOn (n = 0 to 2) register when both the CTXEn and CRXEn bits of the CSIMn register are "1" (transmission/reception enabled).

If CRXEn has already been set to "1", writing "1" to this bit does not initiate transmit/receive operation.

(2) Transmitting data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission/reception is started, the serial clock is output from the \overline{SCKn} (n = 0 to 2) pin, and at the same time, data is sequentially set to the SOn (n = 0 to 2) pin from the SIOn register in synchronization with the falling edge of the serial clock. Simultaneously, the data of the SIn (n = 0 to 2) pin is sequentially loaded to SIOn register in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission/reception is started, the data is sequentially output from the SIOn register to the SOn pin in synchronization with the falling edge of the serial clock input to the SCKn pin immediately after transmission/reception has been started. The data of the SIn pin is sequentially loaded to the SIOn register in synchronization with the rising edge of the serial clock. The shift operation is not performed even if the serial clock is input to the SCKn pin when transmission/reception is not enabled, and the output level of the SOn pin does not change.

8.3.8 System Configuration Example

Data 8 bits long is transferred by using three signal lines: serial clock (\overline{SCKn}) (n = 0 to 2), serial input (SIn) (n = 0 to 2), and serial output (SOn) (n = 0 to 2). This feature is effective for connecting peripheral I/Os and display controllers that have a conventional clocked serial interface.

To connect two or more devices, a handshake line is necessary.

Various devices can be connected, because it can be specified whether the data is transmitted starting from the MSB or LSB.

(3-wire serial I/O - 3-wire serial I/O)

Remark n = 0 to 2

8.4 Baud Rate Generator 0, 1 (BRG0, BRG1)

8.4.1 Configuration and function

The serial interface can use the output of the internal baud rate generator or ϕ (system clock) as the serial clock. The serial clock source for the UART is specified by the SCLS0 bit of the ASIM00 register. The serial clock source for the CSIn (n = 0 to 2) is specified by the CLSn0 and CLSn1 bits of the CSIMn (n = 0 to 2) register.

When the output of the baud rate generator is specified, the baud rate generator will be used as the clock source. Because the serial clock for transmission/reception is shared by both the transmission and reception portions, the

same baud rate is used for both transmission and reception.

Figure 8-10. Block Diagram of Baud Rate Generator

(1) Dedicated baud rate generator (BRG0 and BRG1)

The dedicated baud rate generator BRG consists of an 8-bit timer (TMBRG0, TMBRG1) that generates a shift clock for transmission/reception, a compare register (BRG0, BRG1), and a prescaler.

(a) Input clock

System clock ϕ is input to the BRG0 and BRG1 register.

(b) Set-up value of BRG0 and BRG1 register

(i) UART

If the dedicated baud rate generator is specified for UART, the actual baud rate can be calculated by the following expression, because a sampling rate of x16 is used:

Baud rate =
$$\frac{\phi}{2 \times m \times 2^n \times 16 \times 2}$$
 [bps]

where,

 ϕ : system clock frequency [Hz]

m : Timer-counted value $(1 \le m \le 256^{Note})$: set by BRG0, BRG1

n : Prescaler set-up value (n = 0, 1, 2, 3, 4) : set by BPRM0, BPRM1

Note m = 256 is set by writing 0 to the BRG register.

(ii) CSI0 to CSI2

If the dedicated baud rate generator is specified for CSI0 to CSI2, the actual baud rate can be calculated by the following expression:

Baud rate =
$$\frac{\phi}{2 \text{ x m x } 2^{\text{n}} \text{ x } 2}$$
 [bps]

where,

 ϕ : system clock frequency [Hz]

- m : Timer-counted value $(1 \le m \le 256^{Note})$: set by BRG0, BRG1
- n: Prescaler set-up value (n = 0, 1, 2, 3, 4) : set by BPRM0, BPRM1

Note m = 256 is set by writing 0 to the BRG register.

Table 8-2 shows the set-up values of the baud rate generator when the typical clocks are used:

Baud R	Baud Rate [bps] $\phi =$		∮ = 25 MI	Hz		$\phi = 16 \text{ MHz}$		(¢ = 13.5	MHz	φ = 12.288 MHz		
UART	CSI	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error
110	1760	4	222	0.02 %	4	142	0.03 %	3	240	0.12 %	3	218	0.08 %
150	2400	4	163	0.15 %	3	208	0.16 %	3	176	0.12 %	3	160	0.0 %
300	4800	3	163	0.15 %	2	208	0.16 %	2	176	0.12 %	2	160	0.0 %
600	9600	2	163	0.15 %	1	208	0.16 %	1	176	0.12 %	1	160	0.0 %
1200	19200	1	163	0.15 %	0	208	0.16 %	0	176	0.12 %	0	160	0.0 %
2400	38400	0	163	0.15 %	0	104	0.16 %	0	88	0.12 %	0	80	0.0 %
4800	76800	0	81	0.47 %	0	52	0.16 %	0	44	0.12 %	0	40	0.0 %
9600	153600	0	41	0.76 %	0	26	0.16 %	0	22	0.12 %	0	20	0.0 %
10400	166400	0	38	1.16 %	0	24	1.16 %	0	20	0.12 %	0	18	2.6 %
19200	307200	0	20	1.73 %	0	13	1.16 %	0	11	0.12 %	0	10	0.0 %
38400	614400	0	10	1.73 %	0	7	6.99 % Note	0	6	8.4 %Note	0	5	0.0 %
76800	1228800	0	5	1.73 %	-	-	-	-	-	-	0	3	16.7 % ^{Note}
153600	2457600	0	2	27.2 %	_	-	_	-	-	_	_	-	_

Table 8-2. BRG Set-up Values

Baud R	ate [bps]	Ģ	φ = 20 M	Hz	ϕ	= 14.74	6 MHz		¢ = 12.5	MHz	$\phi = 9.830 \text{ MHz}$		
UART	CSI	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error	BPR	BRG0	Error
110	1760	4	178	0.25 %	4	131	0.07 %	3	222	0.02 %	3	175	0.26 %
150	2400	4	130	0.16 %	3	192	0.0 %	3	163	0.15 %	3	128	0.0 %
300	4800	3	130	0.16 %	2	192	0.0 %	2	163	0.15 %	2	128	0.0 %
600	9600	2	130	0.16 %	1	192	0.0 %	1	163	0.15 %	1	128	0.0 %
1200	19200	1	130	0.16 %	0	192	0.0 %	0	163	0.15 %	0	128	0.0 %
2400	38400	0	130	0.16 %	0	96	0.0 %	0	81	0.47 %	0	64	0.0 %
4800	76800	0	65	0.16 %	0	48	0.0 %	0	41	0.76 %	0	32	0.0 %
9600	153600	0	33	1.36 %	0	24	0.0 %	0	20	1.73 %	0	16	0.0 %
10400	166400	0	30	0.16 %	0	22	0.7 %	0	19	1.16 %	0	15	1.5 %
19200	307200	0	16	1.73 %	0	12	0.0 %	0	10	1.73 %	0	8	0.0 %
38400	614400	0	8	1.73 %	0	6	0.0 %	0	5	1.73 %	0	4	0.0 %
76800	1228800	0	4	1.73 %	0	3	0.0 %	0	3	15.2 % ^{Note}	0	2	0.0 %
153600	2457600	0	2	1.73 %	0	2	25.0 % ^{Note}	-	-	_	0	1	0.0 %

Note Cannot be used because the error is too great.

(c) Error of baud rate generator

The error of the baud rate generator is calculated as follows:

Error [%] = $\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (normal baud rate)}} - \right) \times 100$ Example: (9520/9600-1) × 100 = -0.833 [%] (5000/4800-1) × 100 = +4.167 [%]

(2) Allowable error range of baud rate generator

The allowable error range depends on the number of bits of one frame.

The basic limit is ± 5 % of baud rate error and ± 4.5 % of sample timing with an accuracy of 16 bits. However, the practical limit should be ± 2.3 % of baud rate error, assuming that both the transmission and reception sides contain an error.

8.4.2 Baud rate generator register 0, 1 (BRG0, BRG1)

This is an 8-bit compare register that sets a timer/count value for the dedicated baud rate generator. This register can be read/written in 8- or 1-bit units.

Caution The internal timer (TMBRGn) (n = 0 and 1) is cleared by writing the BRGn (n = 0 and 1) register. Therefore, do not rewrite or program the BRGn register during transmission/reception operation.

8.4.3 Baud rate generator prescaler mode register 0, 1 (BPRM0, BPRM1)

This register controls the timer/count operation of the dedicated baud rate generator and selects a count clock. It can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
BPRM0	BRCE0	0	0	0	0	BPR02	BPR01	BPR00	Address FFFFF086H	At reset 00H
	7	6	5	4	3	2	1	0		
BPRM1	BRCE1	0	0	0	0	BPR12	BPR11	BPR10	Address FFFFF096H	At reset 00H

Bit Position	Bit Name					Function					
7	BRCEm	Ba Co	aud Rate (ontrols cou 0: Stops 1: Enable	Generator unt operati count ope es count o	Count Ena on of BRG ration with peration	able 3. cleared					
2 to 0	BPRm2 to BPRm0	Ba Sp	aud Rate (becifies co	Generator unt clock	Prescaler input to TN	/BRG.	Count clock				
			DI IXO2	DIROT	DI IX00						
			0	0	0	φ/2 (n = 0)					
			0	0	1	φ/4 (n = 1)					
			0	1	0	φ/8 (n = 2)					
			0 1 1 φ/16 (n = 3)								
			1 x x $\phi/32 (n = 4)$								
			n: set va	alue of pre	scaler, <i>q</i> :	system clock					

Caution Do not change the count clock during transmission/reception operation.

Remark m = 0, 1

CHAPTER 9 PORT FUNCTION

9.1 Features

The ports of the V852 have the following features:

 $\bigcirc\,$ Number of pins: input : 1

I/O : 67

- $\bigcirc\,$ Multiplexed with I/O pins of other peripheral functions
- \bigcirc Can be set in input/output mode in 1-bit units
- \bigcirc Noise elimination
- Edge detection

9.2 Basic Configuration of Port

The V852 is provided with a total of 67 input/output port pins that make up ports 0 to 10. The configuration of the V852's ports is shown below.

(1) Function of each port

The ports of the V852 have the functions shown in the table below. In addition to port functions, some ports have functions as internal hardware input/output pins, when placed in the control mode.

Port Name	Port Function	Function in Control Mode	Remarks
Port 0	8-bit ^{Note}	Real-time pulse unit (RPU) input/output	Can be set in port or control mode in 1-bit
	I/O port	External interrupt request input	units
Port 1	I/O bitwise)	-	Fixed to port mode
Port 2	, ,	External interrupt request input	Can be set in port or control mode in 1-bit
		Serial interface (CSI2) input/output	units
Port 3		Serial interface (UART, CSI0, CSI1) input/output	
Port 4		Address/data bus (AD0 to AD7) for external memory	Can be set in port or control mode in 8-bit
Port 5		Address/data bus (AD8 to AD15) for external memory	units
Port 6		Address bus (A16 to A23) for external memory	Can be set in port or control mode in 2-bit units
Port 9		Control signal output for external memory	Can be set in port or control mode in 5-, 2-, or 1-bit units
Port 10	4-bit I/O port (Can specify I/O bitwise)	Control signal input/output for system expansion	Can be set in port or control mode in 1-bit units

Note The port 2 is a 7-bit I/O port.

*

- Caution When switching a port that operates as an output pin or input/output pin during control mode, from port mode to control mode, the procedure below must be followed.
 - <1> Set the inactive level of the the signal which is output as control mode to the relevant bit of port n (Pn) (n = 0, 2, 3 to 6, 9, 10).
 - <2> Change to control mode by port n mode control register (PMCn).

If <1> is not done, a momentary output of the contents of port n (Pn) may occur on changing from port mode to control mode.

(2) Function of ports after reset and register to set port/control mode

Port	Din	Function at reset	(Parentheses indicate I/O)	Register
FUIL	F III	Single-chip mode	ROM-less mode	to set mode
Port 0	P00/TO10	P00 (Input)		PMC0
	P01/TO11	P01 (Input)		
	P02/TCLR1	P02 (Input)		
	P03/TI1	P03 (Input)		
	P04/INTP10	P04 (Input)		
	P05/INTP11	P05 (Input)		
	P06/INTP12	P06 (Input)		
	P07/INTP13	P07 (Input)		
Port 1	P10-P17	P10-P17 (All inputs)		—
Port 2	P20/NMI	NMI (Input)		_
	P21/INTP00	P21 (Input)		PMC2
	P22/INTP01	P22 (Input)		
	P23/INTP02	P23 (Input)		
	P24/INTP03	P24 (Input)		
	P25/SO2	P25 (Input)		
	P26/SI2	P26 (Input)		
	P27/SCK2	P27 (Input)		
Port 3	P30/SO0	P30 (Input)	PMC3	
	P31/SI0	P31 (Input)		
	P32/SCK0	P32 (Input)		
	P33/TXD	P33 (Input)		
	P34/RXD	P34 (Input)		
	P35/SO1	P35 (Input)		
	P36/SI1	P36 (Input)		
	P37/SCK1	P37 (Input)		
Port 4	P40/AD0-P47/AD7	P40-P47 (All inputs)	AD0-AD7	MM
Port 5	P50/AD8-P57/AD15	P50-P57 (All inputs)	AD8-AD15	MM
Port 6	P60/A16-P67/A23	P60-P67 (All inputs)	A16-A23	MM
Port 9	P90/LBEN	P90 (Input)	LBEN	MM
	P91/UBEN	P91 (Input)	UBEN	
	P92/R/W	P92 (Input)	R/W	
	P93/DSTB	P93 (Input)	DSTB	
	P94/ASTB	P94 (Input)	ASTB	
	P95/ST0	P95 (Input)	I	
	P96/ST1	P96 (Input)		
	P97	P97 (Input)		

(2/2)

Dort	Din	Function at reset (Pa	Register	
FOIL	FIII	Single-chip mode	ROM-less mode	to set mode
Port 10	P100/HLDAK	P100 (Input)		PMC10
	P101/HLDRQ	P101 (Input)		-
	P102	P102 (Input)	_	
	P103	P103 (Input)		

9.3 Port Pin Function

9.3.1 Port 0

Port 0 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

Bit Position	Bit Name	Function
7 to 0	P0n (n = 7 to 0)	Port 0 I/O port

In addition to the function as a general I/O port, this port can also be used to input/output signals of the real-time pulse unit (RPU) and input external interrupt requests, when placed in the control mode.

Operation in control mode

	Port	Control Mode	Remarks	
Port 0	P00	TO10	Real-time pulse unit (RPU) output	
	P01	TO11		
	P02	TCLR1	Real-time pulse unit (RPU) input	
	P03	TI1		
	P04 to P07	INTP10 to INTP13	External interrupt input	

(1) Hardware configuration

Figure 9-1. Block Diagram of P00, P01 (Port 0)

Remark n = 0, 1

Remark n = 2 to 7

(2) Setting input/output mode and control mode

The input/output mode of port 0 is set by port mode register 0 (PM0). The control mode is set by port mode control register 0 (PMC0).

Port 0 mode register (PM0)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7 to 0	PM00 to PM07	Port Mode Sets P00 to P07 pins in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Port 0 mode control register (PMC0)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PMC0	PMC07	PMC06	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00	Address FFFFF040H	At reset 00H

Bit Position	Bit Name	Function
7 to 4	PMC07 to PMC04	Port Mode Control Indicates operation mode of P0n pin. 0: I/O port mode 1: External interrupt request input (INTP13 to INTP10)
3	PMC03	Port Mode Control Indicates operation mode of P03 pin. 0: I/O port mode 1: TI1 input mode
2	PMC02	Port Mode Control Indicates operation mode of P02 pin. 0: I/O port mode 1: TCLR1 input mode
1	PMC01	Port Mode Control Indicates operation mode of P01 pin. 0: I/O port mode 1: TO11 output mode
0	PMC00	Port Mode Control Indicates operation mode of P00 pin. 0: I/O port mode 1: TO10 output mode

9.3.2 Port 1

Port 1 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P1	P17	P16	P15	P14	P13	P12	P11	P10	Address FFFFF002H	At reset Undefined

Bit Position	Bit Name	Function
7 to 0	P1n	Port 1
	(n = 7 to 0)	I/O port

Port 1 is not multiplexed with other functions and is fixed in the port mode.

Port		Control Mode	Remarks		
Port 1	P10 to P17	-	Fixed in port mode		

(1) Hardware configuration

Remark n = 0 to 7

(2) Setting input/output mode

The input/output mode of port 1 is set by port mode register 1 (PM1).

Port 1 mode register (PM1)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
7 to 0	PM1n (n = 7 to 0)	Port Mode Sets P1n pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

9.3.3 Port 2

*

Port 2 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units. However, P20 always operates as a NMI when an edge is input.

	7	6	5	4	3	2	1	0		
P2	P27	P26	P25	P24	P23	P22	P21	P20	Address FFFFF004H	At reset Undefined

Bit Position	Bit Name	Function
7 to 1	P2n (n = 7 to 1)	Port 2 I/O port
0	P20	Fixed to NMI input mode

In addition to the function as a port, this port can also be used to input external interrupt requests and clocked serial interface (CSI) I/O in the control mode.

Operation in control mode

F	Port	Control Mode	Remarks
Port 2	P20	NMI	Non-maskable interrupt request input
	P21 to 24	INTP00 to INTP03	External interrupt request input
	P25	SO2	I/O for clocked serial interface (CSI2)
	P26	SI2	
	P27	SCK2	

(1) Hardware configuration

Figure 9-4. Block Diagram of P20 (Port 2)

Figure 9-5. Block Diagram of P21 to P24 (Port 2)

Remark n = 1 to 4

Figure 9-6. Block Diagram of P25 (Port 2)

Figure 9-8. Block Diagram of P27 (Port 2)

(2) Setting input/output mode and control mode

The input/output mode of port 2 is set by port mode register 2 (PM2). The control mode is set by port mode control register 2 (PMC2).

P20 is fixed in the NMI input mode.

Port 2 mode register (PM2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to "1" by hardware. Even if "0" is written to this bit, it is ignored.

	7	6	5	4	3	2	1	0		
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	1	Address FFFFF024H	At reset FFH

Bit Position	Bit Name	Function
7 to 1	PM2n	Port Mode
	(n = 7 to 1)	Sets P2n pin in input/output mode.
		0: Output mode (output buffer ON)
		1: Input mode (output buffer OFF)

Port 2 mode control register (PMC2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to "1" by hardware. If "0" is written to this bit, it is ignored.

	7	6	5	4	3	2	1	0		
PMC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	PMC21	1	Address FFFFF044H	At reset 01H

Bit Position	Bit Name	Function
7	PMC27	Port Mode Control Sets operation mode of P27 pin. 0: I/O port mode 1: SCK2 I/O mode
6	PMC26	Port Mode Control Sets operation mode of P26 pin. 0: I/O port mode 1: SI2 input mode
5	PMC25	Port Mode Control Sets operation mode of P25 pin. 0: I/O port mode 1: SO2 output mode
4	PMC24	Port Mode Control Sets operation mode of P24 pin. 0: I/O port mode 1: INTP03 input mode
3	PMC23	Port Mode Control Sets operation mode of P23 pin. 0: I/O port mode 1: INTP02 input mode
2	PMC22	Port Mode Control Sets operation mode of P22 pin. 0: I/O port mode 1: INTP01 input mode
1	PMC21	Port Mode Control Sets operation mode of P21 pin. 0: I/O port mode 1: INTP00 input mode

9.3.4 Port 3

Port 3 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P3	P37	P36	P35	P34	P33	P32	P31	P30	Address FFFFF006H	At reset Undefined

Bit Position	Bit Name	Function
7 to 0	P3n (n = 7 to 0)	Port 3 I/O port

In addition to the function as a port, this port can also be used as the input/output lines of the serial interface (UART, CSI), when placed in the control mode.

Operation in control mode

P	ort	Control Mode	Remarks
Port 3	P30	SO0	I/O for serial interface (UART, CSI0, CSI1)
	P31	SI0	
	P32	SCK0	
	P33	ТХD	
	P34	RXD	
	P35	SO1	
	P36	SI1	
	P37	SCK1	

(1) Hardware configuration

Remark n = 0, 3, 5

Remark n = 1, 6 m = 0, 1

Figure 9-11. Block Diagram of P32, P37 (Port 3)

Remark n = 2, 7 m = 0, 1

Figure 9-12. Block Diagram of P34 (Port 3)

(2) Setting input/output mode and control mode

The input/output mode of port 3 is set by port mode register 3 (PM3). The control mode is set by port mode control register 3 (PMC3).

Port 3 mode register (PM3)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PM3	PM37	PM36	PM35	PM34	PM33	PM32	PM31	PM30	Address FFFFF026H	At reset FFH

Bit Position	Bit Name	Function
7 to 0	PM3n (n = 7 to 0)	Port Mode Sets P3n pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Port 3 mode control register (PMC3)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30	Address FFFFF046H	At reset 00H

Bit Position	Bit Name	Function
7	PMC37	Port Mode Control Sets operation mode of P37 pin. 0: I/O port mode 1: SCK1 I/O mode
6	PMC36	Port Mode Control Sets operation mode of P36 pin. 0: I/O port mode 1: SI1 input mode
5	PMC35	Port Mode Control Sets operation mode of P35 pin. 0: I/O port mode 1: SO1 output mode
4	PMC34	Port Mode Control Sets operation mode of P34 pin. 0: I/O port mode 1: RXD input mode
3	PMC33	Port Mode Control Sets operation mode of P33 pin. 0: I/O port mode 1: TXD output mode
2	PMC32	Port Mode Control Sets operation mode of P32 pin. 0: I/O port mode 1: SCK0 input/output mode
1	PMC31	Port Mode Control Sets operation mode of P31 pin. 0: I/O port mode 1: SI0 input mode
0	PMC30	Port Mode Control Sets operation mode of P30 pin. 0: I/O port mode 1: SO0 output mode

9.3.5 Port 4

Port 4 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0	_	
P4	P47	P46	P45	P44	P43	P42	P41	P40	Address FFFFF008H	At reset Undefined
									-	
Bit Position		Bit Na	me				Fund	ction		
7 to 0		P4r	n	Port 4						
		(n = 7 t	to 0)	I/O port						

In addition to the function as a general I/O port, this port also serves as an external address/data bus, when placed in the control mode.

Operation in control mode

Port		Control Mode	Remarks				
Port 4	P40 to 47	AD0 to AD7	Address/data bus for external memory				

(1) Hardware configuration

Remark n = 0 to 7

(2) Setting input/output mode and control mode

The input/output mode of port 4 is set by port mode register 4 (PM4). The control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 4 mode register (PM4)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40	Address FFFFF028H	At reset FFH

Bit Position	Bit Name	Function				
7 to 0	PM4n	Port Mode				
	(n = 7 to 0)	Sets P4n pin in input/output mode.				
		0: Output mode (output buffer ON)				
		1: Input mode (output buffer OFF)				

Operation mode of port 4

Bit of	MM Re	egister	Operation Mode								
MM2	MM1	MM0	P40	P41	P42	P43	P44	P45	P46	P47	
0	0	0	Port								
0	1	1									
1	0	0		Address/data bus							
1	0	1		(AD0 to AD7)							
1	1	0									
1	1	1									
	Others		RFU (reserved)								

For the details of mode selection by the MODE0 and MODE1 pins, refer to **3.3.2 Specifying operation mode**. When MODE0 and MODE1 = 00 (ROM-less mode), MM0 to MM2 bits are initialized to 111 at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM2 bits and setting the port mode. If MM0 to MM2 are cleared to 000, the subsequent external instruction cannot be fetched.

9.3.6 Port 5

Port 5 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

Bit Position	Bit Name	Function
7 to 0	P5n	Port 5
	(n = 7 to 0)	I/O port

In addition to the function as a general I/O port, this port also serves as an external address/data bus, when placed in the control mode.

Operation in control mode

Port		Control Mode	Remarks		
Port 5	P50 to 57	AD8 to AD15	Address/data bus for external memory		

(1) Hardware configuration

Remark n = 0 to 7

(2) Setting input/output mode and control mode

The input/output mode of port 5 is set by port mode register 5 (PM5). The control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 5 mode register (PM5)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function			
7 to 0	PM5n	Port Mode			
	(n = 7 to 0)	Sets P5n pin in input/output mode.			
		0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Operation mode of port 5

Bit of MM Register			Operation Mode							
MM2	MM1	MM0	P50	P50 P51 P52 P53 P54 P55 P56 P57						
0	0	0	Port							
0	1	1								
1	0	0	Address/data bus							
1	0	1	(AD8 to AD15)							
1	1	0								
1	1	1								
Others						RFU (re	eserved)		

9.3.7 Port 6

Port 6 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

Bit Position	Bit Name	Function
7 to 0	P6n	Port 6
	(n = 7 to 0)	I/O port

In addition to the function as a general I/O port, this port also serves as an external address bus, when placed in the control mode.

Operation in control mode

Port		Control Mode	Remarks		
Port 6	6 P60 to 67 A16 to A23		Address bus for external memory		

(1) Hardware configuration

Remark n = 0 to 7

(2) Setting input/output mode and control mode

The input/output mode of port 6 is set by port mode register 6 (PM6). The control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 6 mode register (PM6)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function			
7 to 0	PM6n	Port Mode			
	(n = 7 to 0)	Sets P6n pin in input/output mode.			
		0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Operation mode of port 6

Bit of MM Register				Operation Mode										
MM2	MM1	MM0	P60	P61	P62	P63	P64	P65	P66	P67				
0	0	0	Port											
0	1	1												
1	0	0												
1	0	1	440	A17										
1	1	0	AIO			~''	~''	~''		A18	A19	A 20	Δ21	
1	1	1					A20	721	A22	A23				
Others					F	RFU (re	served							

9.3.8 Port 9

Port 9 is an 8-bit input/output port that can be set in the input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P9	P97	P96	P95	P94	P93	P92	P91	P90	Address FFFFF012H	At reset Undefined

Bit Position	Bit Name	Function
7 to 0	P9n (n = 7 to 0)	Port 9 I/O port

In addition to the function as a general I/O port, this port can also be used to output external bus control signals, when placed in the control mode.

Operation in control mode

P	ort	Control Mode	Remarks
Port 9	P90	LBEN	Control signal output for external memory
	P91	UBEN	
	P92	R/W	
	P93	DSTB	
	P94	ASTB	
	P95	ST0	
	P96	ST1	
	P97	_	Fixed in port mode

(1) Hardware configuration

Remark n = 0 to 7

(2) Setting input/output mode and control mode

The input/output mode of port 9 is set by port mode register 9 (PM9). The control mode (external expansion mode) is set by mode specification pins MODE0 and MODE1, and memory expansion mode register (MM: refer to **3.4.6 (1)**).

Port 9 mode register (PM9)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function			
7 to 0	PM9n	Port Mode			
	(n = 7 to 0)	Sets P9n pin in input/output mode.			
		0: Output mode (output buffer ON)			
		1: Input mode (output buffer OFF)			

Operation mode of port 9

P90 to P94

Bit of MM Register			Operation Mode					
MM2	MM1	MM0	P90 P91 P92 P93 P9					
0	0	0	Port					
0	1	1	LBEN	UBEN	R/W	DSTB	ASTB	
1	0	0						
1	0	1						
1	1	0						
1	1	1						
Others				RFL	J (reser	ved)		

P95, P96

Ν	ИМЗ	Operation Mode	P95 P96		
	0	Port mode	Port		
	1	External expansion mode	ST0	ST1	

9.3.9 Port 10

Port 10 is a 4-bit input/output port that can be set in the input or output mode in 1-bit units.

Bit Position	Bit Name	Function
3 to 0	P10n (n = 3 to 0)	Port 10 I/O port

When port 10 is accessed in 8-bit units for write, the higher 4 bits are ignored. When it is accessed in 8-bit units for read, undefined data is read.

In addition to the function as a port, this port can also be used to input and output external control signals to a bus master or ASIC device, when placed in the control mode.

Operation in control mode

Port		Control Mode	Remarks				
Port 10	P100	HLDAK	Bus hold control signal input/output				
	P101	HLDRQ					
	P102, P103	-	Fixed in port mode				

(1) Hardware configuration

Note RFU is an undefined value.

Remark n = 0, 3

Figure 9-18. Block Diagram of P101 (Port 10)

Figure 9-19. Block Diagram of P102 (Port 10)

(2) Setting input/output mode and control mode

The input/output mode of port 10 is set by port mode register 10 (PM10). The control mode is set by port mode control register 10 (PMC10).

Port 10 mode register (PM10)

This register can be read/written in 8- or 1-bit units.

Bit Position	Bit Name	Function
3 to 0	PM10n (n = 3 to 0)	Port Mode Sets P10n pin in input/output mode. 0: Output mode (output buffer ON) 1: Input mode (output buffer OFF)

Port 10 mode control register (PMC10)

This register can be read/written in 8- or 1-bit units.

	7	6	5	4	3	2	1	0		
PMC10	0	0	0	0	0	0	PMC101	PMC100	Address FFFFF054H	At reset 00H

Bit Position	Bit Name	Function
1	PMC101	Port Mode Control Sets operation mode of P101 pin. 0: I/O port mode 1: HLDRQ input mode
0	PMC100	Port Mode Control Sets operation mode of P100 pin. 0: I/O port mode 1: HLDAK output mode

9.4 Noise Elimination Circuit

Pins operating with valid edge inputs in the control mode are provided with timing control circuits for maintaining the following noise elimination time.

A signal input changed less than the noise elimination time is not accepted internally.

Pin	Noise Elimination Time
P20/NMI ^{Note}	Analog delay (60 ns to 220 ns)
P02/TCLR1	2 to 3 system clocks
P03/TI1	
P04/INTP10	
P05/INTP11	
P06/INTP12	
P07/INTP13	
P21/INTP00	
P22/INTP01	
P23/INTP02	
P24/INTP03	

Note The P20/NMI pin is used to release the STOP mode. In the STOP mode, the clock control timing circuit is not used because the clock is stopped.

Figure 9-20. Example of Noise Elimination Timing

CHAPTER 10 RESET FUNCTION

Phase-out/Discontinued

When the low-level is input to the RESET pin, the system is reset and each on-chip hardware is initialized to the initial state.

When the RESET pin changes from low-level to high-level, the reset state is released and the CPU starts executing the program. Initialize the contents of each register in the program as necessary.

10.1 Features

 \odot Analog noise elimination circuit (delay of approx. 60 to 220 ns) provided on reset pin

10.2 Pin Function

During the reset state, all the pins (except CLKOUT, RESET, X2, VDD, VSS, CVDD, and CVSS pins) are in the high-impedance state.

When an external memory is connected, a pull-up (or pull-down) resistor must be connected to each pin of ports 4, 5, 6, and 9. Otherwise, the memory contents may be lost if these pins go into a high-impedance state. Also treat signal outputs of the on-chip peripheral I/O function and the output port so that they will not be affected.

The internal system clock continues to generate the clock signal at CLKOUT pin while the device is in the reset state.

Table 10-1 shows the operating status of each pin during the reset period.

Pin	Operating Status
AD0 to AD15	Hi-Z
A16 to A23	
LBEN, UBEN	
R/W	
DSTB	
ASTB	
ST0, ST1	
HLDRQ	_
HLDAK	Hi-Z
WAIT	_
CLKOUT	Clock output

Table 10-1. Operating Status of Each Pin During Reset Period

(1) Accepting reset signal

Note The internal system reset signal remains active for the duration of at least 4 system clocks after the reset condition is removed from the RESET pin.

(2) Power-ON reset

In the reset operations at power-on (power is turned on), there is a need to maintain oscillation stabilization time of more than 10 ms from the start up of the power until reset is acknowledged to the low-level width of the RESET pin.

10.3 Initialize

Table 10-2 shows the initial value of each register after reset.

The contents of the registers must be initialized in the program as necessary. Especially, set the following registers as necessary because they are related to system setting:

- Power save control register (PSC) ... X1 and X2 pin function, CLKOUT pin operation, etc.
- Data wait control register (DWC) ... Number of data wait states
- Caution In Table 10-2, "Undefined" means an undefined value due to power-on reset or data corruption when a falling edge of RESET coincides with a data write operation. The previous status of data is retained by a falling edge of RESET due to the cases other than the above.

Table 10-2. Initial Values of Each Register at Reset

	Initial Value at Reset	
rO		0000000H
r1 to r31		Undefined
PC		0000000H
PSW		0000020H
EIPC		Undefined
EIPSW		Undefined
FEPC		Undefined
FEPSW		Undefined
ECR		0000000H
Internal RAM		Undefined
Port	Input/output latch (P0 to P6, P9, P10)	Undefined
	Mode register (PM0 to 6, PM9, PM10)	FFH
	Mode control register (PMC0, PMC3, PMC10)	00H
	(PMC2)	01H
	Memory expansion mode register (MM)	B0H or B7H
Clock generator	System status register (SYS)	0000000xB
	Power save control register (PSC)	00H
Real-time pulse unit	Timer unit mode register (TUM1)	0000H
	Timer control register (TMC1, TMC4)	00H
	Timer output control register 1 (TOC1)	00H
	Timer (TM1, TM4)	0000H
	Capture/compare register (CC10 to CC13)	Undefined
	Compare register 4 (CM4)	Undefined
	Timer overflow status register (TOVS)	00H
Serial interface	Asynchronous serial interface mode register 00 (ASIM00)	80H
	Asynchronous serial interface mode register 01 (ASIM01)	00H
	Asynchronous serial interface status register 0 (ASIS0)	00H
	Receive buffer (RXB0, RXB0L)	Undefined
	Transmit shift register (TXS0, TXS0L)	Undefined
	Clocked serial interface mode register n (CSIMn) (n = 0 to 2)	00H
	Serial I/O shift register n (SIOn) (n = 0 to 2)	Undefined
	Baud rate generator register 0, 1 (BRG0, BRG1)	Undefined
	Baud rate generator prescaler mode register 0, 1 (BPRM0, BPRM1)	00H
Interrupt/exception processing function	Interrupt control register (xxCn)	47H
	In-service priority register (ISPR)	00H
	External interrupt mode register (INTM0, INTM1, INTM2)	00H
Memory management function	Data wait control register (DWC)	FFFFH
	Bus cycle control register (BCC)	ААААН
Power save control	Command register (PRCMD)	Undefined
	Power save control register (PSC)	00H

 \star

Remark x: undefined

CautionIn the above table, "undefined" means the undefined value after power-on reset, or the undefined
value caused by data destruction due to synchronization of $\overline{\text{RESET}} \downarrow$ input and data write timings.
With other $\overline{\text{RESET}} \downarrow$ inputs, the data immediately before $\overline{\text{RESET}} \downarrow$ input is maintained.

CHAPTER 11 PROM MODE

The PROM model of the V852 is provided with 90 KB of one-time PROM. Instruction fetch to internal ROM is accessed in 1 clock in the same manner as the mask ROM model.

11.1 PROM Mode

The PROM mode is entered by the setting MODE0 and MODE1 pins.

Connect the pins not used in this mode as described in section 1.5.2 "PROM programming mode".

Vpp	MODE1	MODE0	Operation Mode
5.0 V	1	1	PROM mode (read mode)
12.5 V	1	1	PROM mode (programming mode)

VPP: programming voltage

11.2 Operation Mode

Operation in the PROM programming mode is determined by the setting of the pins shown in the following table.

	D.						
Operation Mode Pin		P25/CE	P26/OE	P27/PGM	Vpp	Vdd	P47/D7 to P40/D0
Read Mode	Read	L	L	Н	+5.0 V +	+5.0 V	Data output
	Output disable	L	н	x			Hi-Z ^{Note}
	Standby	н	x	x			
Programming	Page data latch	н	L	н	+12.5 V	+6.5 V	Data input
Mode	Page program	н	Н	L			Hi-Z
	Byte program	L	н	L			Data input
	Program verify	L	L	Н			Data output
	Program inhibit	х	L	L			Hi-Z ^{Note}
			н	Н			

VPP: programming voltage (12.5 V)

x : optional

Note In this case, the address input is invalid, and 1/0 can be input.

(1) Read mode

The read mode is set when $\overline{CE} = L$ and $\overline{OE} = L$.

(2) Output disable mode

The data output goes into a high-impedance state when $\overline{CE} = L$ and $\overline{OE} = H$, and the output disable mode is set. If two or more μ PD70P3002s are connected to the data bus, any one of the devices can be read by controlling the \overline{OE} pin.

(3) Standby mode

The standby mode is set when $\overline{CE} = H$.

In this mode, the data output goes into a high-impedance state regardless of the status of OE.

(4) Page data latch mode

The page data latch mode is set when $\overline{CE} = H$, $\overline{OE} = L$, and $\overline{PGM} = H$ at the beginning of the page write mode. In this mode, data of 1 page and 4 bytes is latched to the internal address/data latch circuit.

(5) Page write mode

Page write is executed in the page write mode by applying a 0.1-ms program pulse (active low) to the \overrightarrow{PGM} pin with $\overrightarrow{CE} = H$ and $\overrightarrow{OE} = H$, after an address and data of 1 page and 4 bytes have been latched. After that, the program can be verified when $\overrightarrow{CE} = L$ and $\overrightarrow{OE} = L$.

If the program cannot be written by one program pulse, write and verify are repeatedly executed X times (X \leq 10).

(6) Byte write mode

Byte write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = L$ and $\overline{OE} = H$. After that, the program can be verified when $\overline{OE} = L$.

If the program cannot be written by one program pulse, write and verify are repeatedly executed X times (X \leq 10).

(7) Program verify mode

The program verify mode is set by setting $\overline{CE} = L$, $\overline{PGM} = H$, and $\overline{OE} = L$. Use this mode to the check if the program has been correctly written.

(8) Program inhibit mode

The program inhibit mode is used to write data to one of the μ PD70P3002's whose \overline{OE} , V_{PP}, and D0 to D7 pins are connected in parallel.

To write data, the page write mode or byte write mode is used. At this time, data cannot be written to a device whose \overline{PGM} pin is high.

11.3 PROM Write Procedure

*

*

Page programming mode flowchart

Page programming mode timing

Byte programming mode flowchart

 \star

 \star

Byte programming mode timing

11.4 PROM Read Procedure

*

The contents of the PROM are read to the external data bus (D0 to D7) in the following procedure:

- (1) Fix MODE0 = L, and MODE1 = L. Connect the unused pins as described in **1.5.2 PROM programming mode**.
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0 to A16 pins.
- (4) Read mode ($\overline{CE} = L, \overline{OE} = L$)
- (5) The data is output to the D0 to D7 pins.

Figure 11-1 shows the timing of (2) to (5) above.

Figure 11-1. PROM Read Timing

11.5 Screening of OTPROM Version

The one-time-programmable ROM (OTPROM) version, μ PD70P3002GC-7EA, cannot be completely tested by NEC before shipment. It is recommended to perform screening to verify the PROM after the PROM has been stored under the following conditions:

Storage Temperature	Storage Time
125 °C	24 hours

11.6 Caution on STOP Mode Release when Using External Clock

When using the external clock, the clock supply is controlled by an external system.

Therefore, when releasing the STOP mode (released by $\overline{\text{RESET}}$ or NMI input), restart the clock supply more than 150 µs before $\overline{\text{RESET}}$ or NMI input to secure the PROM stabilization time.

APPENDIX A REGISTER INDEX

Symbol	Name	Unit	Page
ASIM00	Asynchronous serial interface mode register 00	UART	151
ASIM01	Asynchronous serial interface mode register 01	UART	153
ASIS0	Asynchronous serial interface status register 0	UART	154
BCC	Bus cycle control register	BCU	56
BPRM0	Baud rate generator prescaler mode register 0	BRG0	176
BPRM1	Baud rate generator prescaler mode register 1	BRG1	176
BRG0	Baud rate generator register 0	BRG0	176
BRG1	Baud rate generator register 1	BRG1	176
CC10	Capture/compare register 10	RPU	119
CC11	Capture/compare register 11	RPU	119
CC12	Capture/compare register 12	RPU	119
CC13	Capture/compare register 13	RPU	119
CM4	Compare register 4	RPU	120
CMIC4	Interrupt control register	INTC	83
CSIC0	Interrupt control register	INTC	83
CSIC1	Interrupt control register	INTC	83
CSIC2	Interrupt control register	INTC	83
CSIM0	Clocked serial interface mode register 0	CSI0	164
CSIM1	Clocked serial interface mode register 1	CSI1	164
CSIM2	Clocked serial interface mode register 2	CSI2	164
DWC	Data wait control register	BCU	54
ECR	Interrupt source register	CPU	30
EIPC	Interrupt status save register	CPU	30
EIPSW	Interrupt status save register	CPU	30
FEPC	NMI status save register	CPU	30
FEPSW	NMI status save register	CPU	30
INTM0	External interrupt mode register 0	INTC	73
INTM1	External interrupt mode register 1	INTC	84
INTM2	External interrupt mode register 2	INTC	84
ISPR	In-service priority register	INTC	85
MM	Memory expansion mode register	Port	46
OVIC1	Interrupt control register	INTC	83
P0	Port 0	Port	182
P1	Port 1	Port	186
P2	Port 2	Port	187

*

Symbol	Name	Unit	Page		
P3	Port 3	Port	192		
P4	Port 4	Port	197		
P5	Port 5	Port	199		
P6	Port 6	Port	201		
P9	Port 9	Port	202		
P10	Port 10	Port	205		
P0IC0	Interrupt control register	INTC	83		
P0IC1	Interrupt control register	INTC	83		
P0IC2	Interrupt control register	INTC	83		
P0IC3	Interrupt control register	INTC	83		
P1IC0	Interrupt control register	INTC	83		
P1IC1	Interrupt control register	INTC	83		
P1IC2	Interrupt control register	INTC	83		
P1IC3	Interrupt control register	INTC	83		
PM0	Port 0 mode register	Port	184		
PM1	Port 1 mode register	Port	187		
PM2	Port 2 mode register	Port	191		
PM3	Port 3 mode register	Port	195		
PM4	Port 4 mode register	Port	198		
PM5	Port 5 mode register	Port	200		
PM6	Port 6 mode register	Port	202		
PM9	Port 9 mode register	Port	204		
PM10	Port 10 mode register	Port	207		
PMC0	Port 0 mode control register	Port	185		
PMC2	Port 2 mode control register	Port	192		
PMC3	Port 3 mode control register	Port	196		
PMC10	Port 10 mode control register	Port	207		
PRCMD	Command register	CG	103		
PSC	Power save control register	CG	101		
PSW	Program status word	CPU	31,73,85,88		
RXB0	Receive buffer 0	UART	155		
RXB0L	Receive buffer 0L	UART	155		
SEIC0	Interrupt control register	INTC	83		
SIO0	Serial I/O shift register 0	CSI0	165		
SIO1	Serial I/O shift register 1	CSI1	165		
SIO2	Serial I/O shift register 2	CSI2	165		
SRIC0	Interrupt control register	INTC	83		

Symbol	Name		Page	
STIC0	Interrupt control register	INTC	83	
SYS	System status register		98, 103	
TM1	Timer 1	RPU	118	
TM4	Timer 4	RPU	120	
TMC1	Timer control register 1	RPU	123	
TMC4	Timer control register 4		124	
TOC1	Timer output control register 1		125	
TOVS	Timer overflow status register		126	
TUM1	Timer unit mode register 1	RPU	121	
TXS0	Transmit shift register 0	UART	156	
TXS0L	Transmit shift register 0L	UART	156	

[MEMO]

APPENDIX B INSTRUCTION SET LIST

Legend

(1) Symbols used for operand description

Symbol	Description
reg1	General register (r0 to r31): Used as source register
reg2	General register (r0 to r31): Mainly used as destination register
immx	x-bit immediate
dispx	x-bit displacement
regID	System register number
bit#3	3-bit data for bit number specification
ер	Element pointer (r30)
CCCC	Condition code
vector	5-bit data specifying trap vector (00H-1FH)

(2) Symbols used for code

Symbol	Description
R	1-bit data of code specifying reg1 or regID
r	1-bit data of code specifying reg2
d	1-bit data of displacement
i	1-bit data of immediate
сссс	4-bit data for condition code specification
bbb	3-bit data for bit number specification

(3) Symbols used for operation description

Symbol	Description
<-	Assignment
GR[]	General register
SR[]	System register
zero-extend (n)	Zero-extends n to word length
sign-extend (n)	Sign-extends n to word length
load-memory (a,b)	Reads data of size b from address a
store-memory (a,b,c)	Writes data b of size c to address a
load-memory-bit (a,b)	Reads bit b of address a
store-memory-bit (a,b,c)	Writes c to bit b of address a
saturated (n)	Performs saturated processing of n (n is 2's complement). If n is $n \ge 7FFFFFFH$ as result of calculation, 7FFFFFFH. If n is $n \le 80000000H$ as result of calculation, 80000000H.
result	Reflects result on flag
Byte	Byte (8 bits)

Symbol	Description
Halfword	Half-word (16 bits)
Word	Word (32 bits)
+	Add
-	Subtract
	Bit concatenation
х	Multiply
÷	Divide
AND	Logical product
OR	Logical sum
XOR	Exclusive logical sum
NOT	Logical negate
logically shift left by	Logical left shift
logically shift right by	Logical right shift
arithmetically shift right by	Arithmetic right shift

(4) Symbols used for execution clock description

Symbol	Description
i: issue	To execute another instruction immediately after instruction execution
r : repeat	To execute same instruction immediately after instruction execution
I: latency	To reference result of instruction execution by the next instruction

(5) Symbols used for flag operation

Identifier	Description
(Blank)	Not affected
0	Cleared to 0
х	Set or cleared according to result
R	Previously saved value is restored

Condition code

Condition Name (cond)	Condition Code (cccc)	Conditional Expression	Description
V	0000	OV = 1	Overflow
NV	1000	OV = 0	No overflow
C/L	0001	CY = 1	Carry Lower (Less than)
NC/NL	1001	CY = 0	No carry No lower (Greater than or equal)
Z/E	0010	Z = 1	Zero Equal
NZ/NE	1010	Z = 0	Not zero Not equal
NH	0011	(CY OR Z) = 1	Not higher (Less than or equal)
н	1011	(CY OR Z) = 0	Higher (Greater than)
Ν	0100	S = 1	Negative
Р	1100	S = 0	Positive
Т	0101	_	Always (unconditional)
SA	1101	SAT = 1	Saturated
LT	0110	(S XOR OV) = 1	Less than signed
GE	1110	(S XOR OV) = 0	Greater than or equal signed
LE	0111	((S XOR OV) OR Z) = 1	Less than or equal signed
GT	1111	((S XOR OV) OR Z) = 0	Greater than signed

Instruction Set (alphabetical order) (1/4)

Mnemonic	Operand	Code	Operation		Execution Clock		tion k	Flag					
					i	r	Ι	CY	ov	s	Ζ	SAT	
ADD	reg1, reg2	rrrrr001110RRRRR	GR[reg2]<-GR[reg2]+GR[reg1]		1	1	1	x	x	х	х		
	imm5, reg2	rrrrr010010iiiii	GR[reg2]<-GR[reg2]+sign-extend(ir	mm5)	1	1	1	x	x	x	х		
ADDI	imm16, reg1, reg2	rrrrr110000RRRRR	GR[reg2]<-GR[reg1]+sign-extend(ir	mm16)	1	1	1	x	x	x	х		
AND	reg1, reg2	rrrrr001010RRRRR	GR[reg2]<-GR[reg2]AND GR[reg1]		1	1	1		0	x	х		
ANDI	imm16, reg1, reg2	rrrr110110RRRRR	GR[reg2]<-GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	0	х		
		11111111111111111											
Bcond	disp9	ddddd1011dddcccc	if conditions are satisfied	When condition satisfied	3	3	3						
		Note 1	then PC<-PC+sign-extned(disp9)	When condition not satisfied	1	1	1						
CLR1	bit#3, disp16[reg1]	10bbb111110RRRRR	adr<-GR[reg1]+sign-extend(disp16))	4	4	4				х		
		dddddddddddddd	Z flag<-Not(Load-memory-bit(adr, t	oit#3))									
			Store-memory-bit(adr, bit#3.0)										
CMP	reg1, reg2	rrrr001111RRRRR	result<-GR[reg2]–GR[reg1]		1	1	1	x	x	x	х		
	imm5, reg2	rrrr010011iiiii	result<-GR[reg2]-sign-extend(imm	5)	1	1	1	х	х	х	х		
DI		0000011111100000	PSW.ID<-1		1	1	1						
		000000101100000	(Maskable interrupt disabled)										
DIVH	reg1, reg2	rrrr000010RRRRR	GR [reg2]<-GR [reg2]÷GR [reg1]Note2		36	36	36		х	х	х		
			(signed division)										
EI		1000011111100000	PSW.ID<-0		1	1	1						
		000000101100000	(Maskable interrupt enabled)										
HALT		0000011111100000	Stops		1	1	1						
		000000100100000											
JARL	disp22, reg2	rrrrr11110ddddd	GR[reg2]<-PC+4		3	3	3						
		dddddddddddddd	PC<-PC+sign-extend(disp22)										
		Note 3											
JMP	[reg1]	00000000011RRRRR	PC<-GR[reg1]		3	3	3						
JR	disp22	0000011110ddddd	PC<-PC+sign-extend(disp22)		3	3	3						
		dddddddddddddd											
		Note 3											
LD.B	disp16[reg1], reg2	rrrr111000RRRRR	adr<-GR[reg1]+sign-extend(disp16)		1	1	2						
		ddddddddddddd	GR[reg2]<-sign-extend(Load-memory(adr, Byte))										
LD.H	disp16[reg1], reg2	rrrrr111001RRRRR	adr<-GR[reg1]+sign-extend(disp16)		1	1	2						
		ddddddddddddd	GR[reg2]sign-extend(Load-memory(adr, Halfword))										
		Note 4											
LD.W	disp16p[reg1], reg2	rrrr111001RRRRR	adr<-GR[reg1]+sign-extend(disp16))	1	1	2						
		dddddddddddddd	GR[reg2]<-Load-memory(adr, Word)										
		Note 4											

Notes 1. dddddddd is the higher 8 bits of disp9.

- 2. Only the lower half-word is valid.
- 3. dddddddddddddddd is the higher 21 bits of disp22.
- 4. dddddddddddd is the higher 15 bits of disp16.

Instruction Set (alphabetical order) (2/4)

Mnemonic	Operand	Code	Op	eration	Execution Clock Flag)					
WITEHIOTIC	Operand	Couc		i r l C				CY	ov	S	Ζ	SAT	
LDSR	reg2, regID	rrrr111111RRRRR	SR[regID]<-GR[reg2]	regID = EIPC, FEPC	1	1	3						
		0000000000100000		regID = EIPSW, FEPSW			1						
		Note 1		regID = PSW			1	x	x	x	х	х	
MOV	reg1, reg2	rrrr000000RRRRR	GR[reg2]<-GR[reg1]		1	1	1						
	imm5, reg2	rrrrr010000iiiii	GR[reg2]<-sign-extend(i	mm5)	1	1	1						
MOVEA	imm16, reg1, reg2	rrrr110001RRRRR	GR[reg2]<-GR[reg1]+sig	gn-extend(imm16)	1	1	1						
MOVHI	imm16, reg1, reg2	rrrr110010RRRRR	GR[reg2]<-GR[reg1]+(in	1m16 0 ¹⁶)	1	1	1						
MULH	reg1, reg2	rrrr000111RRRRR	GR[reg2]<-GR[reg2] ^{Note}	² xGR[reg1] ^{Note2}	1	1	2						
				(Signed multiplication)									
	imm5, reg2	rrrrr010111iiiii	GR[reg2]<-GR[reg2] ^{Note}	2 xsign-extend(imm5)	1	1	2						
				(Signed multiplication)									
MULHI	imm16, reg1, reg2	rrrr110111RRRRR	GR[reg2]<-GR[reg1] ^{Note}	² ximm16	1	1	2						
				(Signed multiplication)									
NOP		000000000000000000000000000000000000000	Uses 1 clock cycle with	out doing anything	1	1	1						
NOT	reg1, reg2	rrrr000001RRRRR	GR[reg2]<-NOT(GR[reg	1])	1	1	1		0	x	х		
NOT1	bit#3, disp16[reg1]	01bbb111110RRRRR	adr<-GR[reg1]+sign-exte	end(disp16)	4	4	4				х		
		dddddddddddddd	Z flag<-Not(Load-memo	ry-bit(adr, bit#3))									
			Store-memory-bit(adr, b	it#3, Z flag)									
OR	reg1, reg2	rrrr001000RRRRR	GR[reg2]<-GR[reg2]OR	GR[reg1]	1	1	1		0	х	х		
ORI	imm16, reg1, reg2	rrrr110100RRRRR	GR[reg2]<-GR[reg1]OR	zero-extend(imm16)	1	1	1		0	x	х		
		1111111111111111111											
RETI		0000011111100000	if PSW.EP = 1		4	4	4	R	R	R	R	R	
		000000101000000	then PC <-EIPC										
			PSW <-EIPSW										
			else if PSW.NP = 1										
			then PC <-FEPC										
			PSW <-FEPS	SW									
			else PC <-EIPC										
			PSW <-EIPS	W									
SAR	reg1, reg2	rrrr111111RRRRR	GR[reg2]<-GR[reg2]arith	nmetically shift right	1	1	1	x	0	x	х		
		0000000010100000		by GR[reg1]									
	imm5, reg2	rrrrr010101iiiii	GR[reg2]<-GR[reg2]arith	nmetically shift right	1	1	1	x	0	x	х		
			by zero-extend(imm5)										

Notes 1. The op code of this instruction uses the field of reg1 though the source register is shown as reg2 in the above table. Therefore, the meaning of register specification for mnemonic description and op code is different from that of the other instructions.

rrrrr = regID specification

RRRRR = reg2 specification

2. Only the lower half-word data is valid.

Instruction Set (alphabetical order) (3/4)

	Mnemonic	Operand	Code	Operation	Execution Clock		tion :k	Flag					
	Winemonie	oporana			i	r	I	СҮ	ov	S	Ζ	SAT	
	SATADD	reg1, reg2	rrrr000110RRRRR	GR[reg2]<-saturated(GR[reg2]+GR[reg1])	1	1	1	x	х	х	х	х	
		imm5, reg2	rrrr010001iiiii	GR[reg2]<-saturated(GR[reg2]+sign-extend(imm5))	1	1	1	х	х	х	х	х	
	SATSUB	reg1, reg2	rrrr000101RRRRR	GR[reg2]<-saturated(GR[reg2]–GR[reg1])	1	1	1	х	х	х	х	х	
*	SATSUBI	imm16, reg1, reg2	rrrr110011RRRRR	GR[reg2]<-saturated(GR[reg1]-sign-extend(imm16))	1	1	1	x	х	х	х	х	
			111111111111111111										
	SATSUBR	reg1, reg2	rrrrr000100RRRRR	GR[reg2]<-saturated(GR[reg1]–GR[reg2])	1	1	1	х	х	х	х	х	
	SETF	cccc, reg2	rrrrr1111110cccc	if conditions are satisfied	1	1	1						
			000000000000000000000000000000000000000	then GR[reg2]<-00000001H									
				else GR[reg2]<-0000000H									
	SET1	bit#3, disp16[reg1]	00bbb111110RRRRR	adr<-GR[reg1]+sign-extend(disp16)	4	4	4				х		
			dddddddddddddd	Z flag<-Not(Load-memory-bit(adr, bit#3))									
				Store-memory-bit(adr, bit#3, 1)									
	SHL	reg1, reg2	rrrr111111RRRRR	GR[reg2]<-GR[reg2] logically shift left by GR[reg1]	1	1	1	х	0	х	х		
			000000011000000										
		imm5, reg2	rrrrr010110iiiii	GR[reg2]<-GR[reg1] logically shift left by	1	1	1	x	0	х	х		
				zero-extend(imm5)									
	SHR	reg1, reg2	rrrr111111RRRRR	GR[reg2]<-GR[reg2] logically shift right by GR[reg1]	1	1	1	x	0	х	х		
			00000001000000										
		imm5, reg2	rrrrr010100iiiii	GR[reg2]<-GR[reg2] logically shift right by	1	1	1	x	0	х	х		
				zero-extend(imm5)									
	SLD.B	disp7[ep], reg2	rrrr0110dddddd	adr<-ep+zero-extend(disp7)	1	1	2						
				GR[reg2]<-sign-extend(Load-memory(adr, Byte))									
	SLD.H	disp8[ep], reg2	rrrr1000ddddddd	adr<-ep+zero-extend(disp8)	1	1	2						
			Note 1	GR[reg2]<-sign-extend(Load-memory(adr, Halfword))									
	SLD.W	disp8[ep], reg2	rrrr1010dddddd	adr<-ep+zero-extend(disp8)	1	1	2						
			Note 2	GR[reg2]<-Load-memory(adr, Word)									
	SST.B	reg2, disp7[ep]	rrrr0111dddddd	adr<-ep+zero-extend(disp7)	1	1	1						
				Store-memory(adr, GR[reg2], Byte)									
	SST.H	reg2, disp8[ep]	rrrr1001dddddd	adr<-ep+zero-extend(disp8)	1	1	1						
			Note 1	Store-memory(adr, GR[reg2], Halfword)									
	SST.W	reg2, disp8[ep]	rrrr1010ddddd1	adr<-ep+zero-extend(disp8)	1	1	1						
			Note 2	Store-memory(adr, GR[reg2], Word)									
	ST.B	reg2, disp16[reg1]	rrrr111010RRRRR	adr<-GR[reg1]+sign-extend(disp16)	1	1	1						
			dddddddddddddd	Store-memory(adr, GR[reg2], Byte)									

Notes 1. ddddddd is the higher 7 bits of disp8.

2. dddddd is the higher 6 bits of disp8.

Instruction Set (alphabetical order) (4/4)

Mnemonic	Operand	Code	le Operation		Executio Clock			Flag			
	oporana				r	Ι	CY	٥v	S	Ζ	SAT
ST.H	reg2, disp16[reg1]	rrrrr111011RRRRR	adr<-GR[reg1]+sign-extend(disp16)	1	1	1					
		ddddddddddddd	Store-memory(adr, GR[reg2], Halfword)								
		Note									
ST.W	reg2, disp16[reg1]	rrrr111011RRRRR	adr<-GR[reg1]+sign-extend(disp16)	1	1	1					
		dddddddddddddd	Store-memory(adr, GR[reg2], Word)								
		Note									
STSR	regID, reg2	rrrr111111RRRRR	GR[reg2]<-SR[regID]	1	1	1					
		0000000001000000									
SUB	reg1, reg2	rrrrr001101RRRRR	GR[reg2]<-GR[reg2]–GR[reg1]	1	1	1	x	х	х	х	
SUBR	reg1, reg2	rrrrr001100RRRRR	GR[reg2]<-GR[reg1]–GR[reg2]	1	1	1	x	х	х	х	
TRAP	vector	000001111111iiii	EIPC <-PC+4(Restored PC)	4	4	4					
		00000010000000	EIPSW <-PSW								
			ECR.EICC <-Interrupt code								
			PSW.EP <-1								
			PSW.ID <-1								
			PC <-00000040H(vector = 00H-0FH)								
			00000050H(vector = 10H-1FH)								
TST	reg1, reg2	rrrrr001011RRRRR	result<-GR[reg2] AND GR[reg1]	1	1	1		0	х	х	
TST1	bit#3, disp16[reg1]	11bbb111110RRRRR	adr<-GR[reg1]+sign-extend(disp16)	3	3	3				х	
		ddddddddddddd	Z flag<-Not(Load-memory-bit(adr, bit#3))								
XOR	reg1, reg2	rrrrr001001RRRRR	GR[reg2]<-GR[reg2] XOR GR[reg1]	1	1	1		0	x	х	
XORI	imm16, reg1, reg2	rrrr110101RRRRR	GR[reg2]<-GR[reg1] XOR zero-extend(imm16)	1	1	1		0	х	х	

Note dddddddddddd is the higher 15 bits of disp16.

[MEMO]

APPENDIX C INDEX

[A]

A0 to A16	23
A16 to A23	19
AD0 to AD7	18
AD8 to AD15	18
Address space	34, 35, 47
ALV10, ALV11	125
Application fields	3
ASIM00, ASIM01	151
ASIS0	154
Assembler reservation register	29
ASTB	20
Asynchronous serial interface	148
status register 0	154
mode register 00, 01	151

[B]

Basic operation (serial interface function) 166					
Baud rate					
generator 0, 1 173					
generator register 0, 1 176					
generator prescaler mode					
register 0, 1 176					
BCC 56					
BCn1 (n = 0 to 7)					
BCU 8					
Boundary operation condition 64					
BPRM0, BPRM1 176					
BPRm0 to BPRm2 (m = 0, 1) 176					
BRCE0, BRCE1 176					
BRG0, BRG1 176					
BRG set data 174					
Bus					
control function51					
control pin51					
control unit 8					
cycle control register 56					
hold 57, 64					
priority65					
timing 58					
Byte write mode					

[C]

Capture operation	130
Capture/compare register 10 to 13	119

CC10 to CC13 119
CE
CE1 123
CE4 124
CES10, CES11 121
CESEL 101
CG 8
CKSEL 21
CL0
CLKOUT 21
Clock
generation function
generator 8
output control 113
output inhibit
Clocked serial interface 0 to 2 162
Clocked serial interface mode register 0 to 2 164
CLSn1, CLSn0 (n = 0 to 2) 164
CM4 120
CMIC4 83
CMIF4 83
CMMK4 83
CMPR40 to CMPR42 83
CMS10 to CMS 13 122
Command register 103
Compare operation (timer 1) 132
Compare operation (timer 4) 135
Compare register 4 120
Connection of unused pins 24
Control register 101
Count clock selection (timer 1) 127
Count operation (timer 1) 127
Count operation (timer 4) 134
CPU 8
address space 34
function 27
register set 28
CRXE0 to CRXE2 164
CSI system configuration 172
CSIC0 to CSIC2 83
CSIF0 to CSIF2 83
CSIM0 to CSIM2 164
CSMK0 to CSMK2 83
CSI0 to CSI2 162
CSOT0 to CSOT2 164

CSPRn0 to CSPRn2 (n = 0 to 2)
CTXE0 to CTXE2 164
CVdd
CVss
CY
Cycle measurement 143

[D]

D0 to D7	23
Data space	65
Data wait control register	54
DCLK0, DCLK1 1	01
Direct mode	96
DSTB	20
DWC	54
Dwn0 to Dwn1 (n = 0 to 7)	54

[E] EBS0

EBS0 15	53
ECLR1 12	21
ECR	30
EICC	30
EIPC	30
EIPSW	30
Element pointer	29
ENTO10, ENTO11 12	25
EP	88
ES0n0, ES0n1 (n = 0 to 3)	84
ES1n0, ES1n1 (n = 0 to 3)	84
ESN0	73
ETI 12	23
Exception	
processing function	67
table	38
trap	88
External count clock 12	28
External expansion mode	45
External interrupt	
mode register 0	73
mode register 1	84
mode register 2 84, 12	25
External memory area	42
External wait function	55

[F]

FE0	154
FECC	. 30
FEPC	. 30

FEPSW	1
Function block configuration7	

[G]

General register	29
Global pointer	29

[H]

HALT mode	. 99,	104
HLDAK		21
HLDRQ		21

[**I**]

IC0	22
ID	31, 85
IDLE	101
Idle state insertion function	56
ILGOP	68
Illegal op code	88
IMS10 IMS13	122
Initial register values	213
Initialize	210
Input clock selection (clock generat	or) 96
Input clock selection (timer 4)	134
INTC	8
INTCM4	68
INTCSI0 to INTCSI2	68
Internal	
block diagram	7
count clock	127
peripheral I/O interface	66
RAM area	40
ROM/PROM area	38
units	8
Interrupt	
controller	8
control register	82
latency time	93
list	68
processing (service)	67
request	157
stack pointer	29
source register	30
table	38
Interval timer	137
INTM0	73
INTM1	84
INTM2	84, 125
phase-out/Discontin	ued
---------------------	-----
716A15-0000 D 500	

INTOV1	. 68
INTP00 to INTP03 17	, 68
INTP10 to INTP13	. 16
INTPn/INTCCn (n = 10 to 13)	. 68
INTSER0	. 68
INTSR0	. 68
INTST0	. 68
ISPR (in-service priority register)	. 85
ISPR0 to ISPR7	. 85

[L]

LBEN	19
Link pointer	29

[M]

Maskab	le interrupt74	, 78
	status flag	. 85
Memory	,	
	block function	. 53
	expansion mode register	. 46
	map 37	, 48
	read	. 58
	write	. 62
MM		. 46
MM0 to	MM3	. 46
MODE0	, MODE1	. 22
MOD0 t	o MOD2	164
Multiple	interrupt	. 91

[N]

NMI	17, 68
Noise elimination circuit	208
Normal operation mode4,	11, 16
Note (timer/counter function)	145
NP	31, 73
Number of access clock	52

[0]

OE	23
Operation mode	32
Ordering information	3
OST	121
Output disable mode	214
OV	31
OVE0	154
Overflow (timer 1)	128
Overflow (timer 4)	134
OVF1, OVF4	126

OVIC1	83
OVIF1	83
OVMK1	83
OVPR10 to OVPR12	83

[P]

-	
P0IC0 to P0IC3	. 83
P0IF0 to P0IF3	. 83
P0MK0 to P0MK3	. 83
P0PR00 to P0PR02	. 83
P0PR10 to P0PR12	. 83
P0PR20 to P0PR22	. 83
P0PR30 to P0PR32	. 83
P1IC0 to P1IC3	. 83
P1IF0 to P1IF3	. 83
P1MK0 to P1MK3	. 83
P1PRn0 to P1PRn2 (n = 0 to 3)	. 83
Page data latch mode	214
Page write mode	214
PC	. 29
PE0	154
Period where interrupt is not acknowledged	.93
Peripheral I/O area	. 41
Peripheral I/O register	. 49
PGM	. 23
Pin configuration	4
Pin function 11,	, 16
Pin I/O circuit	. 25
Pin status	. 15
PLL mode	. 96
PLL stabilization	. 98
PLLSEL	. 21
Port	179
Port 0 (P0)	182
block diagram of P00 and P01	183
block diagram of P02 to P07	183
P00 to P07 16,	182
Port 0 mode control register (PMC0)	185
PMC00 to PMC07	185
Port 0 mode register (PM0)	184
PM00 to PM07	184
Port 1 (P1)	186
block diagram of P10 to P17	186
P10 to P17 16,	186
Port 1 mode register (PM1)	187
PM10 to PM17	187
Port 10 (P10)	205

block diagram of P100 and P103 20	7
block diagram of P101 20	8
block diagram of P102 20	8
P100 to P103 21, 20	17
Port 10 mode control register (PMC10) 20	9
PMC100 and PMC101 20	9
Port 10 mode register (PM10) 20	19
PM100 to PM103 20	9
Port 2 (P2)	57
block diagram of P2018	8
block diagram of P21 to P24 18	8
block diagram of P25	9
block diagram of P26 18	9
block diagram of P27 19	0
P20 to P27 16, 18	87
Port 2 mode control register (PMC2) 19	2
PMC21 to PMC27 19	2
Port 2 mode register (PM2) 19)1
PM21 to PM27 19)1
Port 3 (P3) 19	2
block diagram of P30, P33, P35 19	3
block diagram of P31 and P36 19)4
block diagram of P32 and P37 19)4
block diagram of P34	95
P30 to P37 17, 19	2
Port 3 mode control register (PMC3) 19	6
PMC30 to PMC37 19	6
Port 3 mode register (PM3) 19	95
PM30 to PM37 19	95
Port 4 (P4))7
block diagram of P40 to P47 18, 19)7
P40 to P47 19)7
Port 4 mode register (PM4) 19	8
PM40 to PM47 19	8
Port 5 (P5) 19	9
block diagram of P50 to P57 19	9
P50 to P57	9
Port 5 mode register (PM5) 20	0
PM50 to PM57	0
Port 6 (P6) 20)1
block diagram of P60 to P67 20)1
P60 to P67 19 20)1
Port 6 mode register (PM6) 20)2
PM60 to PM67 20	-
Port 9 (P9)	-
block diagram of P90 to P97 20	-
P90 to P97 19 20)2
	-

Port 9 mode register (PM9)	204
PM90 to PM97	204
Power save control	99
Power save control register	101
Power save mode operation	56
PRCMD	103
PRERR	103
Priority control	91
Priority of interrupt and exception	91
PRM11	123
PRM40, PRM41	124
Program counter	29
Program inhibit mode	214
Program register set	29
Program space	36, 47, 65
Program status word (PSW) 31,	73, 85, 88
Program verify mode	214
Programmable wait function	54
PROM	8
PROM mode	213
PROM programming mode	6, 14, 23
PROM read mode	32
PROM read procedure	219
PROM write procedure	215
PRS10, PRS11	123
PRS40	124
PS00, PS01	152
PSC	101
Pulse width measurement	138
PWM output	140

[R]

r0 to r31 2	29
R/W	20
RAM	8
Read mode 21	13
Real-time pulse unit	15
Receive buffer 0, 0L 15	55
Reception completion interrupt 15	57
Receive error interrupt 15	57
REG0 to REG7 10)3
RESET 2	22
RESET 6	38
Reset function 21	1
RETI instruction operation 72, 77, 87, 9	90
RFU 3	31
ROM	8
ROM-less mode 3	32

RPU 8, 11	6
RXB00 to RXB07 15	5
RXB0, RXB0L 15	5
RXD 1	8
RXE0 15	1
RXEB0 15	5

[S]

З	31
SAT	31
SCK0	17
SCK1	17
SCK2	17
SCLS0	153
Screening of OTPROM version	222
SEIC0	83
SEIF0	83
SEMK0	83
SEPR00 to SEPR02	83
Serial I/O shift register 0 to 2	165
Serial interface	. 10, 147
SI0 to SI2	17
Single-chip mode	32
SIO	8
SIO0 to SIO2	165
SIOn0 to SIOn7 (n = 0 to 2)	165
SL0	152
SO0 to SO2	17
Software exception	86
Software STOP mode	. 99, 108
SOT0	154
Specifing oscillation stabilization time	110
SRIC0	83
SRIF0	83
SRIF0 SRMK0	83 83
SRIF0 SRMK0 SRPR00 to SRPR02	83 83 83
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1	83 83 83 20
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer	83 83 20 29
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode	83 83 20 29 214
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition	83 83 20 29 214 100
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0	83 83 20 29 214 100 83
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0 STIF0	83 83 20 29 214 100 83 83
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0 STIF0 STMK0	83 83 20 29 214 100 83 83 83
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0 STIF0 STMK0 STOR00 to STPR02	83 83 20 29 214 100 83 83 83 83
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0 STIF0 STMK0 STOR00 to STPR02 STP	83 83 20 29 214 100 83 83 83 83 83 101
SRIF0 SRMK0 SRPR00 to SRPR02 ST0, ST1 Stack pointer Standby mode Status transition STIC0 STIF0 STMK0 STOR00 to STPR02 STP SYS	

[T]

твс		112
TBCS		101
TCLR1.		16
TES10 a	and TES11	121
Text poi	inter	29
TI1		16
Time ba	ase counter	112
Timer		
	/counter function	115
	control register 1	123
	control register 4	124
	output control register 1	125
	overflow status register	126
	unit mode register 1	121
Timer 1		118
Timer 1	operation	127
Timer 4		120
Timer 4	operation	134
Timing o	of 3-wire serial I/O mode 168, 169), 171
TM1		118
	capture operation example	130
	compare operation example	132
TM4		120
TMC1		123
TMC4		124
то10, т	⁻ O11	16
TOC1		125
TOVS		126
Transmi	ission completion interrupt	157
Transmi	it shift register 0, 0L	156
TRAP0r	n, TRAP1n (n = 0 to F)	68
TUM1		121
TXD		17
TXED0.		156
TXS0, T	TXS0L	156
TXS00 t	to TXS07	156

[U]

UART 1	48
UBEN	19
UNLOCK	98

[V]

Vdd	23
Vpp	23
Vss	23

Phase-out/Discontinued

[W]

WAIT	22
Wrap-around	47
Wait function	54
Wait state inserting example	55

[X]

X1, X2	22
--------	----

[Z]

Zero register	 29
Zero register	 29

[Others]

100-pin plastic QFP 3

Facsimile Message

From:		
Name		
Company		
Tel.	FAX	

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Corporation Semiconductor Solution Engineering Division Technical Information Support Dept. Eax: 044-548-7900
South America NEC do Brasil S.A. Fax: +55-11-6465-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-719-5951	

I would like to report the following error/make the following suggestion:

Document title:

Document number:

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				