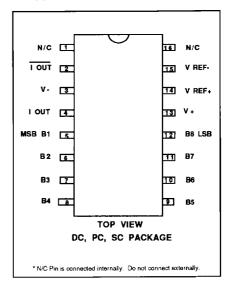


8 BIT MICROPOWER MULTIPLYING D/A CONVERTER

GENERAL DESCRIPTION

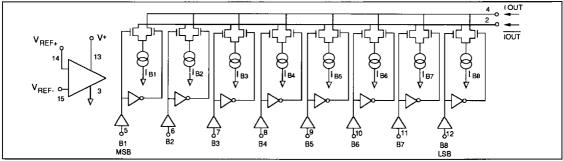
The ALD 1801 is an 8-bit monolithic current output digital to analog converter designed to provide low power, low operating voltage and simple operation. It offers industry pin configuration of DAC-08 types, and is intended for a wide range of digital to analog conversion and control applications in +5V single power supply and \pm 5V dual power supply systems, as well as +3V to +12V battery operated systems. All device characteristics are specified for +5V single supply or \pm 2.5V dual supply systems.

The ALD 1801 is manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process and has been designed to be also used as a linear cell element in Advanced Linear Devices' "Function-Specific" ASIC, as it is fully compatible in design, operation, and manufacture with all other linear elements in Advanced Linear Devices' product family.


The ALD 1801 is designed with matching between reference and full scale currents. Digital inputs are standard CMOS logic inputs to provide ease of interface. Output currents can be directly converted to a voltage output by using a pair of resistors. When used with ALD's rail to rail output operational amplifiers such as the ALD 1702, full scale output of 0 to +5V can be easily achieved with single +5V power supply.

ORDERING INFORMATION

	Operating Temperature Range										
	-55°C to +125°C	0°C to +70°C	0°C to +70°C								
	16-Pin	16-Pin	16-Pin								
Nonlinearity	CERDIP	Small Outline	Plastic Dip								
	Package	Package (SOIC)	Package								
±0.1%	1801A DC	1801A SC	1801A PC								
±0.19%	1801B DC	1801B SC	1801B PC								
±0.39%	1801 DC	1801 SC	1801 PC								


BLOCK DIAGRAM

PIN CONFIGURATION

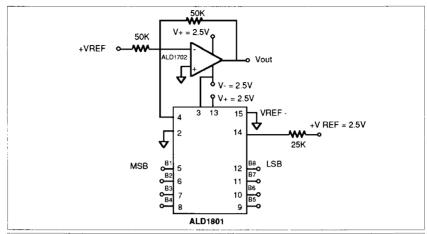
FEATURES

- Low voltage 3V to 12V operation
- Low power 1.2mW max @ 3V
- Single supply operation (5V)
- Direct CMOS logic interface
- · Complementary current outputs
- Nonlinearity to 0.1% max over
- temperature rangeHigh input impedance
- Low full scale current
- · High output impedance

Advanced Linear Devices, Inc. cannot assume liability for use of circuits described and reserves the right to change any circuitry and specifications without notice at any time. No circuit patent licenses are implied Liability of circuits it manufactures is limited as covered under its standard product warranty policy. No life support applications are authorized © 1991.

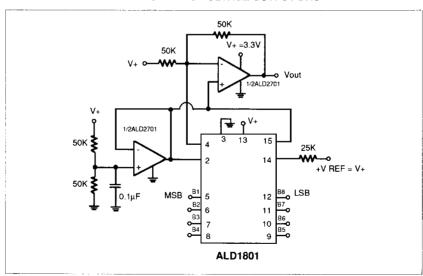
Tel: (408) 720-8737

Fax: (408) 720-8297



DC AND OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ $V_{S22} + 2.5V$ or $V_{S22} + 5.0V$ unless otherwise specified

		1801A				1801B		1801				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Supply ¹ Voltage	Vε	±1.5		±6.0	±1.5		±6.0	±1.5		±6.0	V	Single supply Dual supply
Resolution		8			8			8			Bits	
Monotenieity		8			8			8			Bits	
Nonlinearity	Nt.			±0 1			±0 19			±0.39	% of full scale	
Settling Time	ts		2.5	50		2.5	5.0		2.5	5.0	μs	to1/2 LSB with all bits turned on/off
Propagation			15	25		1.5	2.5		1.5	2.5	μs	each bit
Delay	td		15	2.5		1.5	2.5		1.5	2.5	μs	all bits
Full Scale Tempco	Тс		±10	±£0		±10	±50		±10	±50	ppm/°C	
Output	Voc	Vss		Vdd	Vss		Vdd	Vss		Vdd	V	
Compliance	ĺ	+1.5		+0.2	+1.5	!	+0.2	+1.5		+0.2		
Output Impedance		50			50			50			МΩ	output within compliance limits
Full Scale Current Bange	les		100			100			100		μА	Rout=Rout =50ks Vref= 2.5V; Rrel= 25ks)
Full Scale Symmetry	Irss			±2.5			±2.5			±2.5	μА	
Zero Scale Current	Izs			10			10			10	nA	
Logic Input Level ² Logic "0" Logic "1"	Vil. Vih	2.1		-1.1	21		-1.1	2 1		-1.1	v	Supply = ±2.5V
Logic Swing Logic Threshold Range	Vis	-2 8 -1.5		2.8 1.5	-2.8 -1.5		2.8 1.5	-2.8 -1.5		2.8 1.5	V	Supply = ±2.5V Supply = ±2.5V
Reference Bias Current	lae			01			0.1			0.1	n A	
Power Supply Current	loc -loc		500 700	800 1000		50 0 7 0 0	800 1000		500 700	800 1000	μА	Full scale output = 100µA
Power Dissipation	Po			4.5			4.5			4.5	mW	Supply = ±2.5V
Compensation									 			Not required


Notes: 1 Contact ALD for ±1 0V/±1 25V operation 2. Logic levels of Vii. 0 4V and Viii 4.6V for single supply applications

DUAL SUPPLY ±2.5V RATIOMETRIC VOLTAGE OUTPUT DAC

	B1	B2	В3	B4	B5	B6	B7	B8	Vout
Zero Scale	0	0	0	0	0	0	0	0	-2.500
LSB	0	0	0	0	0	0	0	1	-2.480
Half Scale -LSB	0	1	1	1	1	1	1	1	-0.019
Half Scale	1	0	0	0	0	0	0	0	0.000
Half Scale +LSB	1	0	0	0	0	0	0	1	0.019
Full Scale	1	1	1	1	1	1	1	1	2.480

SINGLE SUPPLY 3.3V RATIOMETRIC VOLTAGE OUTPUT DAC

	B1	B2	B3	B4	B5	B6	B7	B8	Vout
Zero Scale	0	0	0	0	0	0	0	0	0.000
Half Scale	1	0	0	0	0	0	0	0	1.650
Full Scale	1	1	1	1	1	1	1	1	3.287

DC AND OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25$ °C $V_S = \pm 1.65$ V or $V_S = 3.3$ V unless otherwise specified

Parameter S			1801A	801A		1801B			1801		┧	
	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution		8	1		8			8			Bits	
Monotonicity		8		,	8			8			Bits	
Nonlinearity	N∟			±0.1		_	±0.19			±0.39	% of full scale	-
Settling Time	ts		4.0	10.0		4.0	10.0		4.0	10.0	μs	to 1/2 LSB with all bits turned on/off
Propagation Delay	td		1.5 1.5	4.0 4.0		1.5 1.5	4.0 4.0		1.5 1.5	4.0 4.0	μs μs	each bit all bits
Full Scale Tempco	Тс		±10	±50		±10	±50		±10	±50	ppm/°C	
Output Compliance	Voc	Vss +1.5		Vdd +0.2	Vss +1.5		Vdd +0.2	Vss +1.5		Vdd +0.2	v	
Output Impedance		50			50			50			MΩ	output within compliance limits
Full Scale Current Range	lFs		50			50			50		μА	Rout=Rout =100kΩ Vref= 2.5V, Rref= 50kΩ
Full Scale Symmetry	IFSS			±2.5			±2.5			±2.5	μА	
Zero Scale Current	Izs			10			10			10	nA	
Reference Bias Current	las			0.1			0.1			0.1	nA	
Power Supply Current	dal+ aal-		350 450	500 600		350 450	500 600		350 450	500 600	μА	Full scale output = 50μΑ
Power Dissipation	Po			1.8			1.8			1.8	mW	

Notes. 1. Contact ALD for $\pm 1.0V/\pm 1.25V$ operation 2. Logic levels of V_{II}. 0.4V and V_{II}. 4.6V for single supply applications

APPLICATIONS NOTES:

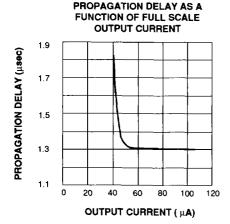
The ALD1801 is an 8 bit multiplying D/A converter. It has been designed to operate with standard single or split power supplies of 5 V or ± 5 V. Functionality extends down to 3 V or ± 1.5 V power supply, making it ideal for lithium battery or rechargeable battery operated systems where power efficiency and performance are important design parameters.

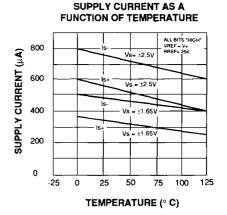
The ALD1801 features ultra low quiescent bias current which depends on the operating current in the internal current steering circuit. A high gain internal operational amplifier is fully compensated for stable operation without any need for external capacitor compensation. The operational amplifier is placed in a negative feedback loop to generate the reference current for ratio matched transistors. It is trimmed to provide nonlinearity as specified. In some applications this feature can be used along with the multiplying nature of the ALD1801 to obtain 9 or 10 bit digital to analog conversion with external switches.

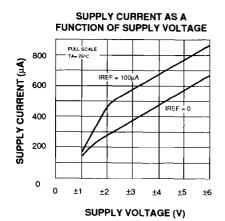
The ALD1801 is a multiplying D/A converter in which the output is a current that is a function of an 8 bit digital input word multiplied by the reference current. The reference current may be a fixed reference current or a varying input current. If a fixed reference voltage or a varying low impedance voltage output source is used, a fixed value resistor (referred to as Rref) can be used to convert the voltage into a reference current for most applications.

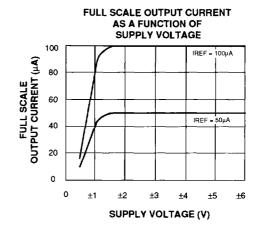
Rref is a precision fixed resistor without trimming. Trimming can be accomplished by adjusting Rref through either connecting a potentiometer in series with a fixed resistor or by substituting the fixed resistor with a multi-turn potentiometer. The recommended nominal value of Rref is $25k\Omega$.

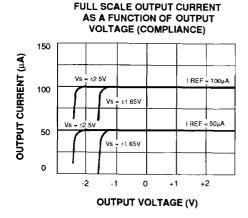
The ALD1801 can operate from single power supply or dual supplies up to ±6.6 V. Symmetrical supplies are not required in the case of dual supply operation. However, Vref-input voltage must be set at 1 V or higher above the V-voltage. Due to the internal operational amplifier feedback, Vref+input terminal would be set at the same potential as Vref-input terminal, with the input reference current determined by: Input reference current lref = { (Vref+)- (Vref-) } / Rref

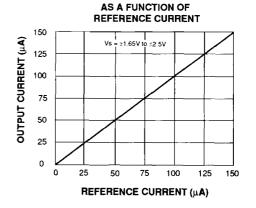

The ALD1801 is fabricated in CMOS technology and provides direct logic interface to all CMOS logic families including logic levels of the CD4000 and 74C logic families operating at logic voltage levels other than 5 V. It is primarily designed to operate in a power supply environment where interface takes place between digital logic circuitry and analog circuitry. Both types of circuitry operate with the same power supplies.


The nonlinearity and monotonicity of the ALD1801 applies over the full rated operating temperature. The device has been developed with minimal temperature drift, typically at $\pm 10 ppm/^{\circ}$ C. A single array of matched and tracked resistor networks of nominal $50 k\Omega$ can be used for all the resistors required for the D/A converter. As an example, Rref can be set to $25 k\Omega$ by connecting two $50 k\Omega$ resistors in parallel where output resistors are set at $50 k\Omega$.


Due to the very low quiescent and reference currents used, layout of the circuit board to minimize any parasitic capacitance is important in getting high frequency operation, as the settling time is due in large part to the output currents charging and discharging the node capacitances at the output. As the internal bias current levels is adaptive to the reference current, the switching speed of the device depends on the reference current selected. Characterization of the settling time has been performed at full scale current set at $100\mu\text{A}$ and device operation at single 5 V supply. Faster operation can be obtained by using short leads, minimizing output capacitance, load resistor values, and by adequate bypass capacitors placed on the board at the supply and reference nodes.


Both lo and \overline{lo} outputs can be used simultaneously. If one of the outputs is not used, then it must be connected to ground or a potential where the sum of \overline{lo} can maintain a constant value. Due to internal leakage currents that vary with temperature, it is recommended that IFs of 50 μ A to 100 μ A be used so that 1/2 LSB bit current is set at as high a level as possible. The temperature coefficient of the reference resistor RREF and output resistors ROUT and ROUT should match to minimize temperature drift.


TYPICAL PERFORMANCE CHARACTERISTICS



FULL SCALE OUTPUT CURRENT