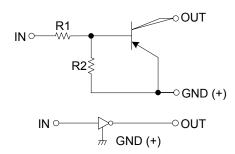

DTA115E

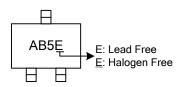
PNP EPITAXIAL SILICON TRANSISTOR


PNP DIGITAL TRANSISTOR (BUILT-IN RESISTORS)

■ FEATURES

- * Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see the equivalent circuit).
- * The bias resistors consist of thin-film resistors with complete isolation to allow positive biasing of the input They also have the advantage of almost completely eliminating parasitic effects.
- * Only the on / off conditions need to be set for operation, making device design easy.

EQUIVALENT CIRCUIT



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
DTA115EL-AE3-R	DTA115EG-AE3-R	SOT-23	G	I	0	Tape Reel	
DTA115EL-AL3-R	DTA115EG-AL3-R	SOT-323	G	I	0	Tape Reel	

Note: Pin Assignment: G: GND I: IN O: OUT

MARKING

www.unisonic.com.tw 1 of 2 QW-R220-016,Ba

■ ABSOLUATE MAXIUM RATINGS (T_A= 25°C, unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V _{CC}	-50	V	
Input Voltage	V _{IN}	-40~+10	V	
0. 1. 1. 0	I _{OUT}	-20	mA	
Output Current	I _{C(MAX)}	-100		
Power Dissipation	P_D	200	mW	
Junction Temperature	TJ	150	$^{\circ}\mathbb{C}$	
Storage Temperature	T _{STG}	-40 ~ +150	$^{\circ}\!\mathbb{C}$	

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A= 25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage	V _{IN(OFF)}	V _{CC} = -5V, I _{OUT} =-100μA			-0.5	V	
	V _{IN(ON)}	V_{OUT} = -0.3 V_{IOUT} = -1mA	-3			V	
Output Voltage	V _{OUT(ON)}	I _{OUT} = -5mA, I _{IN} = -0.25mA		-0.1	-0.3	V	
Input Current	I _{IN}	V _{IN} = -5V			-0.15	mA	
Output Current	I _{OUT(OFF)}	V _{CC} = -50V , V _{IN} =0V			-0.5	μΑ	
DC Current Gain	Gı	V_{OUT} = -5V, I_{OUT} = -5mA	82				
Input Resistance	R ₁		70	100	130	kΩ	
Resistance Ratio	R ₂ /R ₁		8.0	1	1.2		
Transition Frequency	f_T	V _{CE} = -10 V, I _E = 5mA, f=100MHz (Note)		250		MHz	

Note: Transition frequency of the device

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.