

PN Junction Silicon Photodiode Type OP900SL

Features

- · Narrow receiving angle
- Enhanced temperature range
- Ideal for direct mounting in PC boards
- Fast switching speed
- Mechanically and spectrally matched to the OP123 series emitters
- Linear response vs. irradiance

Description

The OP900SL consists of a PN junction silicon photodiode mounted in a miniature, glass lensed, hermetically sealed "Pill" package. The lensing effect allows an acceptance half angle of 18° measured from the optical axis to the half power point.

Replaces

OP900 series

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Reverse Voltage
Storage Temperature Range65° C to +150°
Operating Temperature Range65° C to +125°
Soldering Temperature (5 sec. with soldering iron)
Power Dissipation
Notoc

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 0.5 mW/° C above 25° C.
- (3) Junction temperature maintained at 25° C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

100 % 80 Relative Response 60 600 700 800 900 1000 Wavelength - nm

Typical Spectral Response

Type OP900SL

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _L	Light Current	8.0	14.0		μА	$V_R = 10 \text{ V}, E_e = 20 \text{ mW/cm}^{2(3)(4)}$
I _D	Dark Current	-		10	nA	$V_R = 10 \text{ V}, E_e = 0^{(3)}$
	Reverse Voltage Breakdown	100	150		V	I _R = 100 μA
t _r	Rise Time Fall Time		100 100		ns ns	$V_R = 50 \text{ V}, I_L = 8 \mu\text{A}$ $R_L = 1 \text{ k}\Omega$, See Test Circuit

Typical Performance Curves

Switching Time

Test Circuit

