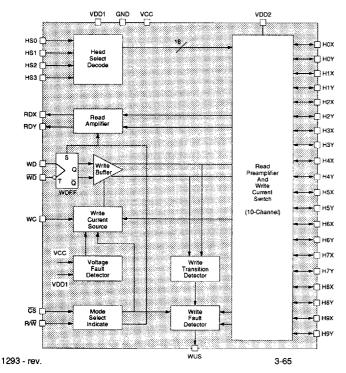
SILCON SYSTEMS® A TDK Group Company

SSI 32R2011R 10-Channel Thin Film Read/Write Device

Advance Information

December 1993

DESCRIPTION


The SSI 32R2011R is an integrated read/write circuit designed for use with two terminal heads in disk drive systems. The device contains up to ten channels of read amplifiers and write drivers and also has an internal write current source. An internal 300Ω damping resistor is supplied in Write mode, which is switched to 1 k Ω in Read mode.

The circuit operates on +5V and +12V power supplies and is available in a 10-channel, 36-pin SO package.

FEATURES

- High performance
 - Read Mode Gain = 150 Typ V/V
 - Input Noise = 0.58 nV/√Hz typ.
 - Input Capacitance = 15 pF typ.
 - Write Current Range = 10 mA to 25 mA
 - Write Current Rise Time = 4 ns
 - Head Voltage Swing = 7 Vpp min
- Write unsafe detection
- · Differential, ECL-like write data input
- Open collector read data output
- Switch from 300 Ω damping resistor to 1 k Ω read input resistance
- · Power supply fault protection
- +5V, +12V power supplies ±10%

BLOCK DIAGRAM

PIN DIAGRAM

			_
нох [1	36	GND
HOY [2	35	⊒ нѕз
н1х [3	34	j cs
H1Y [4	33] R/₩
H2X [5	32	wc
H2Y	6	31	RDY
нзх 🛚	7	30	RDX
нзү [8	29] HS0
H4X [9	28] HS1
H4Y [10	27] HS2
н5х 🛚	11	26] vcc
H5Y [12	25] WD
нех [13	24] WD
H6Y [14	23] wus
H7X [15	22	VDD1
H7Y [16	21	VDD2
нвх [17	20] H9Y
нву [18	19] нэх
t			l

36-Lead SOM

CAUTION: Use handling procedures necessary for a static sensitive component.

FUNCTIONAL DESCRIPTION

The SSI 32R2011R addresses up to 10 channels with logic control inputs which are TTL compatible. Head selection is accomplished as shown in Table 1. Mode selection is accomplished as shown in Table 2. The mode select inputs have internal pull up circuits so that if an input is open it will rise to the upper logic level and force the device into a non-writing condition.

WRITE MODE

In Write Mode (R/ \overline{W} and \overline{CS} low) the circuit functions as a current switch. The Head Select Inputs HS0, HS1, HS2 and HS3 determine the selected head. The write data inputs (WD, \overline{WD}) determine the polarity of the head current. Write current is toggled between the X and Y direction of the selected head on each low to high transition of WD (see Figure 1). A preceding read operation initializes the Write Data Flip Flop (WDFF) to pass write current in the X-direction of the head (i.e., into the X-port).

The write current magnitude is adjusted by an external resistor, Rwc, from WC to GND, and is given by:

lw = Vwc/Rwc

Note that actual head current, Ihd, is:

Ihd =
$$lw/(1 + \frac{Rh}{Rd}) + loffset$$

where Rh is head resistance, Rd is write damping resistance and loffset is a constant DC offset current.

WRITE MODE FAULT DETECT CIRCUIT

Several circuits are dedicated to detecting fault conditions associated with the Write mode. A logical high (off) level will be present at the Write Unsafe (WUS) terminal if any of the following write fault conditions are present:

- Open head circuit (lw ≥ 20 mA)
- · Head shorted to ground
- Write current transition frequency too low
- · Write mode not logically selected

After the fault condition is removed, two transitions of the write data input lines are required to clear WUS. The Write Unsafe output is open-collector and is usually terminated by an external resistor connected to VCC.

Additionally, power voltage monitoring circuits are used to detect VCC and VDD1 voltage levels. If either is too low to permit valid data recording, write current is inhibited.

READ MODE

In Read Mode, (R/ \overline{W} high and \overline{CS} low), the circuit functions as a low noise differential amplifier. The read amplifier input terminals are determined by the Head Select inputs. The read amplifier outputs (RDX, RDY) are open collector, requiring external load resistors (100 Ω) connected to VCC. The amplifier gain polarity is non-inverting between HnX, HnY inputs and RDX, RDY outputs.

The switch from Write to Read modes also changes the resistance across HnX and HnY from its write damping value of 300Ω to its read mode input value of 1 k Ω .

IDLE MODE

Taking \overline{CS} high selects the Idle mode which switches the RDX and RDY outputs into a high impedance state and deactivates the internal write current source. This facilitates multi device installations by allowing the read outputs to be wired OR'ed and the write current programming resistor to be common to all devices.

TABLE 1: Head Select

Head Selected	HS3	HS2	HS1	HS0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

TABLE 2: Mode Select

cs	R/W	Mode
0	0	Write
0	1	Read
1	0	Idle
1	1	Idle

PIN DESCRIPTION

CONTROL INPUT PINS

NAME	TYPE	DESCRIPTION
<u>CS</u>	1	Chip Select Input. A logical low level enables the circuit for a read or write operation. Has internal pull up.
R/W	1	Read/write select. A logical low level enables the write mode (when $\overline{\text{CS}}$ is low). Has internal pull up.
HS0, HS1, HS2, HS3	I	Head select inputs. Logical combinations select one of sixteen heads. See Table 1. Has internal pull down resistors.

HEAD TERMINAL PINS

_			
	H0X-H9X, H0Y-H9Y	I/O	X, Y Head connections: Current in the X-direction flows into the X-port.

DATA INPUT/OUTPUT PINS

WD, WD	I	Differential write data input.
RDX, RDY		Differential Read Data output. These open collector outputs are normally terminated in 100Ω resistors to VCC.

EXTERNAL COMPONENT CONNECTION PINS

WC I/O Resistor connected to GND to provide desired value of write current.	_,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	WC	1/0	Resistor connected to GND to provide desired value of write current.

CIRCUIT MONITOR PINS

wus	Write Unsafe is an open-collector output with the off-state indicating that	
	conditions are not proper for a write operation.	

POWER, GROUND PINS

TOWER, GITO	0710 7 7710		
vcc	ı	+5V Logic circuit supply.	
VDD1	1	+12V power supply.	
VDD2	ī	+12V power supply for write current drivers.	
GND	1	Power supply common.	

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Operation above maximum ratings may permanently damage the device.

PARAMETER	RATING	
Positive Supply Voltage, VCC	6 VDC	
Supply Voltage, VDD1, 2	13.5 VDC	
Operating Junction Temperature	+130°C	
Storage Temperature	-65 to +130°C	
Package Temperature (20 sec. reflow)	215°C	

INPUT VOLTAGES

HS0, HS1, HS2, HS3, CS, R/W	-0.2 to VCC + 0.2 VDC
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

OUTPUTS

Read Data (RDX, RDY)	VCC -2.5 to VCC + 0.3 VDC
Write Unsafe (WUS)	-0.2V to VCC + 0.2V
Current Reference (WC)	-80 mA to 1.0 mA
Head Outputs (Write Mode)	-80 mA to 1.0 mA

POWER SUPPLY

Unless otherwise specified, $4.5V \le VCC \le 5.5V$, $10.8V \le VDD1$, $2 \le 13.2V$, $0^{\circ}C \le T$ (ambient) $\le 70^{\circ}C$.

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
Power Dissipation (Does not	Idle mode		195	295	mW
include power dissipation through	Read mode		440	775	mW
RDX, RDY load resistors)	Write mode		350 + 10 lw	530 + 11.2 lw	mW
Positive Supply Current ICC	Idle Mode		13	20	mA
(Includes RDX, RDY currents)	Read Mode		27	35	mA
	Write Mode		22	26	mA
Positive Supply Current IDD1	ldle Mode		10	14	mA
	Read Mode		32	49	mA
	Write Mode		23	28	mA
Positive Supply Current IDD2	Idle Mode		0.5	2	mA
ĺ	Read Mode		1	1.5	mA
	Write Mode		1 + iw	2 + lw	mA

DC CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	МОМ	MAX	UNIT
High-level Input Voltage VIH (CS, R/W, HS0, HS1, HS2, HS3)		2.0			V
Low-level Input Voltage VIL (CS, R/W, HS0, HS1, HS2, HS3)				0.8	٧
High-level Input Current IIH (CS, R/W, HS0, HS1, HS2, HS3)	VIH = 2.7V			100	μ A
Low-level Input Current IIL (CS, R/W, HS0, HS1, HS2, HS3)	VIL = 0.4V			-400	μA
High-level Input Voltage VIHI (WD, WD)		Vcc - 1.0		Vcc - 0.72	V
Low-level Input Voltage VILI (WD, WD)		Vcc - 1.87		Vcc - 1.625	V
WUS, Low Level Voltage	ILUS = 4 mA (denotes safe condition)			0.5	V
WUS, High Level Current	VHUS = 5.0V (denotes unsafe condition)			100	μΑ

WRITE MODE

Test Conditions (Unless otherwise specified). VCC = 4.5 to 5.5V, Ta = 0 to $+70^{\circ}$ C, VDD = 10.8 to 13.2V, Lh = 470 nH, Rh = 25Ω , WD Tr, Tf < 2 ns, lw = 20 mA.

Current Range, lw		10		25	mA
Write Current Voltage, Vwc	And the the terror with the same control to	1.95	2.05	2.15	V
Differential Head voltage Swing	The second secon	7.0	7.6		Vpp
loffset	Addition to the second of the		0.5		mA
Unselected Head Transient Current	Non adjacent heads tested to minimize external coupling effects			1	mA(pk)
Head Damping Resistance		240	300	360	Ω
Differential Output Capacitance	17			20	pF

ELECTRICAL SPECIFICATIONS (continued)

FAULT DETECTION CHARACTERISTICS

Test conditions same as Write Mode above (unless otherwise specified.)

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
VCC Value for Write Current Turn off	lh < 1 mA	3.7	4.0	4.3	V
VDD Value for Write Current Turn off	lh < 1 mA	8.8	9.5	10.2	٧
WD, WD Transition Frequency	WUS = Low (Guaranteed safe)	2.0			MHz

READ MODE

Tests performed with 100 Ω load resistors from RDX and RDY to VCC. Test conditions same as Write mode (unless otherwise specified.)

Differential Voltage Gain		Vin = 1 mVpp, f = 300 kHz	120	150	180	V/V
Voltage Bandwidth -3 dB		$Zs < 5\Omega$, $Vin = 1 \text{ mVpp}$	50	65		MHz
-	-1 dB	Zs < 5Ω , Vin = 1 mVpp	20	35		MHz
Input Noise Voltage		$Zs = 0\Omega$, $Vin = 0V$, Power Bandwidth = 20 MHz		0.58	0.75	nV/√Hz
Differential Input Capac	citance	Vin = 0V, f = 5 MHz		15	20	pF
Differential Input Resist	ance	Vin = 0V, f = 5 MHz	400		1500	Ω
Dynamic Range @ 5 MHz		Input voltage where AC gain falls to 90% of the gain	4			mVpp
Common Mode Rejection Ratio		Vin = 100 mVpp, 0V DC f = 5 MHz	60	90		dB
Power Supply Rejection Ratio		VCC or VDD = 100 mVpp f = 5 MHz	55	75		dB
Channel Separation		Unselected channels are driven with Vin = 20 mVpp @ 5 MHz	60	90		dB
Output Offset Voltage		Rh = 0, Lh = 0	-250		250	m۷
Output Leakage Current		Idle Mode	<u> </u>		20	μА
Output Common Mode Voltage		Rh = 0, Lh = 0	VCC - 0.9	VCC - 0.5	VCC - 0.3	V
Output Voltage Compliance		Adjust RDX, Y load voltage source for <5% THD of either output.	VCC - 1.6		vcc	V

SWITCHING CHARACTERISTICS

Test conditions same as Write Mode plus RDX, Y connected VCC through 100 Ω resistors, WUS with 1 k Ω to VCC.

PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
Idle to Read/Write Transition Time	Delay to 90% of Read Output or Write Current		75	150	ns
Read/Write to Idle Transition Time	Delay to 10% of Read Output or Write Current		85	150	ns
Read to Write Transition Time	VLCS = 0.8V, Delay to 90% of lw		85	150	ns
Write to Read Transition Time	VLCS = 0.8V, Delay to 90% of 10 MHz Read Signal, 100 mV envelope		350	600	ns
Head Select Switching Delay	Read or Write Mode			500	ns
Head Current Rise and Fall Times 10% to 90%	lw = 25 mA, Lh = 0 nH Rh = 0Ω		2.5	4.0	ns
	lw = 15 mA, Lh = 1 μH Rh = 45Ω		6		ns
Head Current Rise and Fall Difference				0.5	ns
Head Current Switching Delay Difference (Asymmetry)	WD, WD transitions 2 ns, switching time asymmetry 0.2 ns			0.5	ns
Head Current TD3 Propogation Delay	50% WD to 50% lw		8	15	ns
Unsafe to Safe Delay WUS After Write Data Begins TD2	f(data) = 5 MHz Write Mode (After 2 transitions of WD)			200	ns
Unsafe to Safe Delay WUS After Write Mode Selected				0.5 +Tw*	μs
Safe to Unsafe Delay WUS TD1	After Write Mode fault condition occurs			1.5	μs
Safe to Unsafe Delay WUS	After exiting Write Mode		<u> </u>	0.5	μs

^{*}Tw is the period of the write data input.

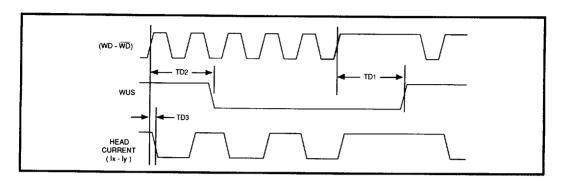


FIGURE 1: Write Mode Timing Diagram

PACKAGE PIN DESIGNATIONS

(Top View)

нох [1	36	GND
ноч [2	35	∃нsз
H1X [3	34] cs
H1Y [4	33] R/W
н2Х 🛚	5	32	wc
H2Y [6	31	RDY
нзх [7	30	RDX
нзү [8	29	HS0
H4X [9	28] HS1
H4Y	10	27] HS2
ньх [11	26	vcc
нъч [12	25] WD
нех [13	24	
неч [14	23	wus
H7X [15	22	VDD1
нтү [16	21	VDD2
нвх [17	20	H9Y
нвү [18	19] нэх
ι			

36-Lead SOM

CAUTION: Use handling procedures necessary for a static sensitive component.

THERMAL CHARACTERISTICS: θjA

36-Lead SOM	75°C/W

Advance Information: Indicates a product still in the design cycle, and any specifications are based on design goals only. Do not use for final design.

No responsibility is assumed by Silicon Systems for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Silicon Systems. Silicon Systems reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that the data sheet is current before placing orders.

Silicon Systems, Inc., 14351 Myford Road, Tustin, CA 92680-7022, (714) 573-6000, FAX: (714) 573-6914