

Silicon Power Transistors


The MJL21195 and MJL21196 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

- Total Harmonic Distortion Characterized
- High DC Current Gain hFE = 25 Min @ IC = 8 Adc
- Excellent Gain Linearity
- High SOA: 2.50 A, 80 V, 1 Second

PNP MJL21195* NPN MJL21196*

*ON Semiconductor Preferred Device

16 AMPERE
COMPLEMENTARY
SILICON POWER
TRANSISTORS
250 VOLTS
200 WATTS

MAXIMUM RATINGS

Rating	Symbo I	Value	Unit
Collector–Emitter Voltage	VCEO	250	Vdc
Collector–Base Voltage	VCBO	400	Vdc
Emitter–Base Voltage	VEBO	5	Vdc
Collector–Emitter Voltage – 1.5 V	VCEX	400	Vdc
Collector Current — Continuous Peak (1)	IC	16 30	Adc
Base Current – Continuous	ΙΒ	5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	PD	200 1.43	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Sym- bol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.7	°C/W

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc, I _B = 0)	VCEO(sus)	250	_	_	Vdc
Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0)	ICEO	_	_	100	μAdc

⁽¹⁾ Pulse Test: Pulse Width = 5.0 μ s, Duty Cycle \leq 10%.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Typical	Max	Unit		
OFF CHARACTERISTICS								
Emitter Cutoff Current (VCE = 5 Vdc, IC = 0)		IEBO	_	_	100	μAdc		
Collector Cutoff Current (VCE = 250 Vdc, VBE(off) = 1.5 Vdc)				ICEX	_	_	100	μAdc
SECOND BREAKDOWN				•		•		
Second Breakdown Collector Current with Base Forward Biased (VCE = 50 Vdc, t = 1 s (non-repetitive) (VCE = 80 Vdc, t = 1 s (non-repetitive)		I _{S/b}	4.0 2.25	_ _	_ _	Adc		
ON CHARACTERISTICS								
DC Current Gain (I _C = 8 Adc, V _{CE} = 5 Vdc) (I _C = 16 Adc, I _B = 5 Adc)		h _{FE}	25 8	_ _	100 —			
Base–Emitter On Voltage (IC = 8 Adc, VCE = 5 Vdc)		VBE(on)	_	_	2.2	Vdc		
Collector–Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc) (I _C = 16 Adc, I _B = 3.2 Adc)		VCE(sat)	_	_	1.4 4	Vdc		
DYNAMIC CHARACTERISTICS								
Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS}	h _{FE}	T _{HD}				%		
(Matched pair h _{FE} = 50 @ 5 A/5 V)	unmatched h _{FE} matched		_	0.8	_			
Current Gain Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)		fT	4	_	_	MHz		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	_	_	500	pF		

⁽²⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2%

PNP MJL21195 6.5 F_T , CURRENT BANDWIDTH PRODUCT (MHz) 6.0 V_{CE} = 10 V 5.5 5.0 V_{CE} = 5 V 4.5 4.0 3.5 T_J = 25°C 3.0 f_{test} = 1 MHz 2.5 2.0 0.1 1.0 IC, COLLECTOR CURRENT (AMPS)

Figure 1. Typical Current Gain Bandwidth Product

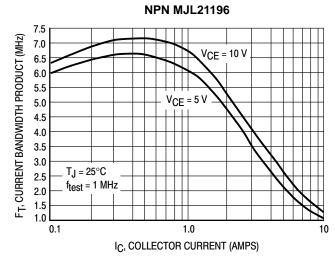


Figure 2. Typical Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

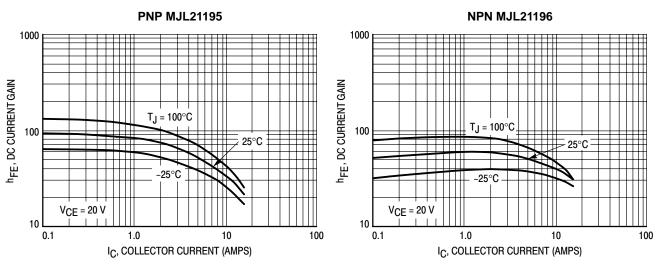


Figure 3. DC Current Gain, $V_{CE} = 20 \text{ V}$

Figure 4. DC Current Gain, V_{CE} = 20 V

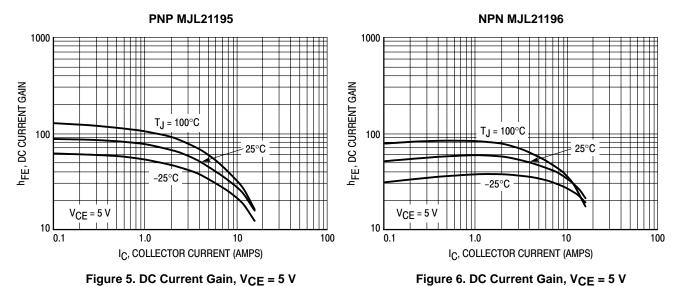


Figure 5. DC Current Gain, VCE = 5 V

PNP MJL21195 NPN MJL21196 30 30 2.0 A 2.0 A 1.5 A 25 25 I_C, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 1.5 A 1.0 A 1.0 A 20 20 $I_B = 0.5 A$ $I_B = 0.5 A$ 15 15 10 10 5.0 5.0 $T_J = 25^{\circ}C$ $T_J=25^{\circ}C$ 0 0 10 15 25 15 0 25 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 7. Typical Output Characteristics

Figure 8. Typical Output Characteristics

TYPICAL CHARACTERISTICS

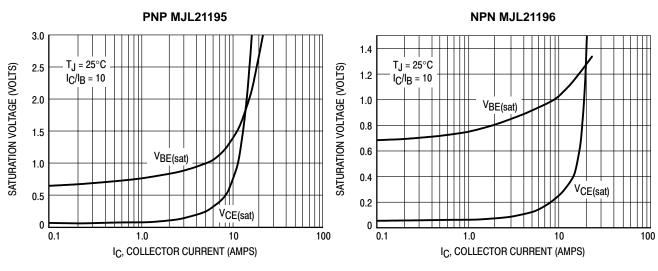


Figure 9. Typical Saturation Voltages

Figure 10. Typical Saturation Voltages

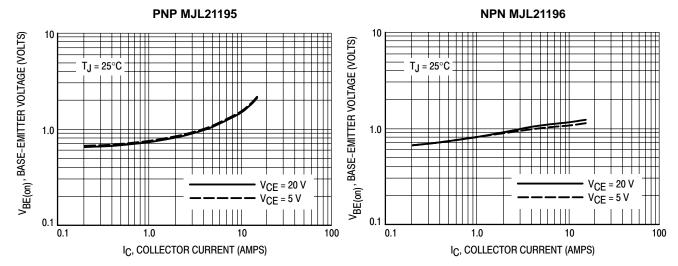


Figure 11. Typical Base-Emitter Voltage

Figure 12. Typical Base-Emitter Voltage

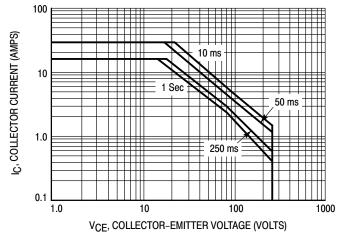


Figure 13. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

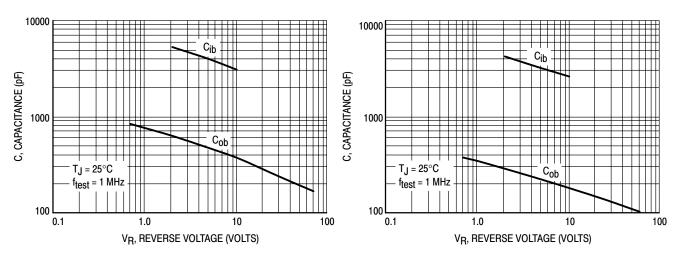
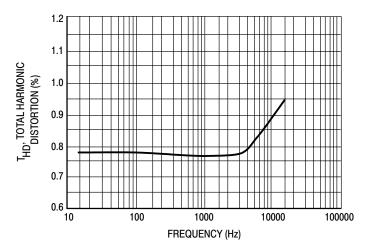
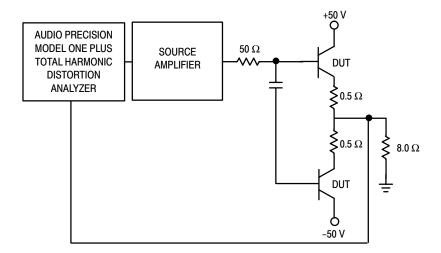




Figure 14. MJL21195 Typical Capacitance

Figure 15. MJL21196 Typical Capacitance

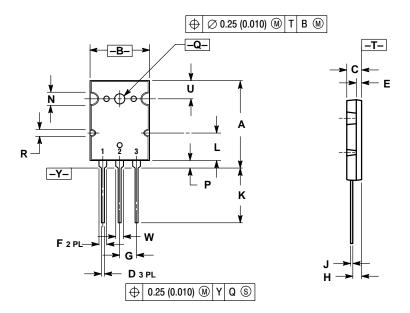

Figure 16. Typical Total Harmonic Distortion

Figure 17. Total Harmonic Distortion Test Circuit

PACKAGE DIMENSIONS

TO-3PBL (TO-264) CASE 340G-02 **ISSUE H**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	28.0	29.0	1.102	1.142
В	19.3	20.3	0.760	0.800
С	4.7	5.3	0.185	0.209
D	0.93	1.48	0.037	0.058
E	1.9	2.1	0.075	0.083
F	2.2	2.4	0.087	0.102
G	5.45	5.45 BSC		BSC
Н	2.6	3.0	0.102	0.118
J	0.43	0.78	0.017	0.031
K	17.6	18.8	0.693	0.740
L	11.0	11.4	0.433	0.449
N	3.95	4.75	0.156	0.187
P	2.2	2.6	0.087	0.102
Q	3.1	3.5	0.122	0.137
R	2.15	2.35	0.085	0.093
U	6.1	6.5	0.240	0.256
W	2.8	3.2	0.110	0.125

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.