CNS7109 COAXIAL AMPLIFIED NOISE SOURCE

CNS7109 TYPICAL DATA

									Mk	r4 500	0.0 MHz
Ref	əf — 5 <u>0.8 dBm</u>			#Atten	10 dB	No			e -99	.01 dBr	n(1Hz)
Av§)										
Log											
IZ IdR.	/ {					3					ounted
l'ub/	Ĭ		, Ś				·			and a start of the	
ມດ	,										
	′"[
Start 5 MHz Stop 500 MH;											00 MHz
#Res BW 30 kHz					V	VBW 3 kHz S			p 7.118	<u>3 s (40</u>	<u>1 pts)</u>
Marke		er T	race	Type		X	Axis			Amplit	ude
				Freq		5.0 MHz			-100.2 dBm(1Hz)		
		(1)		Freq		250 0 MH-			-100.4 dBm(1H2) -100.3 dBm(1H 2)		
4			(1)	Fred		50		-99.01 dBm(1Hz)			

SPECIFICATIONS

- Frequency: 5 MHz to 500 MHz
- Noise Power Spectral Density (N₀): -103 dBm/Hz (min)
- Noise Power (N): -16 dBm
- Spectral Flatness: 3 dB (total window)
- Bias: 12 Vdc, Internally Regulated
- Current Draw: 50 mA Max
- Peak Factor: 5:1
- Operating Temp: -55 to +85 C
- Storage Temp: -55 to 125 C

5 MHz то 500 MHz

available from stock

DESCRIPTION

The CNS7109 noise module is designed for a wide range of applications. It features high noise output amplitude for uses ranging from encryption to jamming. All biasing and amplification circuitry is built-in making it easy to design into your system. It features a built-in voltage regulator for highly stable output even if your DC supply lines are not.

APPLICATIONS

Common Noise Applications

1. Built-in IF Testing:

Highly stable flat over frequency noise sources serve to provide built-in test for an IF subsystem. By injecting a stable signal reference through the IF chain, one can calibrate the gain/loss and frequency response. In addition, the noise source can be used to set up Eb/No for built-in stimulated BER testing of digital demodulation.

1. Barrage Jamming:

The noise source is fed into the tuning port of a VCO via a bias tee and a positive DC voltage. The random nature of noise makes the output of the VCO to hop around in a given frequency band randomly making an ideal jamming signal. Further circuitry can be used between the noise source and tuning port to shape the noise probability density function (PDF) for the desired jamming effect.

2. Random Number Generation for Encryption:

Noise sources being truly random (not pseudorandom) give the ultimate in secure communication because of their ability to generate a truly random number pattern. This can be used to seed an encryption key for authentication. The noise signal can be fed directly into an A/D converter for sampling or a simpler techniques might use a comparator. Further shaping of the noise is often employed whether either analog if in front of the A/D converter or afterwards using DSP.

MICRONETICS, HUDSON, NH 03051 / TEL: 603-883-2900 / FAX: 603-882-8987 / NOISESALES@MICRONETICS.COM

WWW.MICRONETICS.COM

