

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	500			
$R_{DS(on)}\left(\Omega\right)$	V _{GS} = 10 V	3.0		
Q _g (Max.) (nC)	17			
Q _{gs} (nC)	4.3			
Q _{gd} (nC)	8.5			
Configuration	Single			

N-Channel MOSFET

FEATURES

• Low Gate Charge Q_g Results in Simple Drive Requirement

 Improved Gate, Avalanche and Dynamic dV/dt RoHS Ruggedness

- Fully Characterized Capacitance and Avalanche Voltage and current
- Effective C_{oss} Specified
- Lead (Pb)-free Available

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- · High Speed Power Switching

TYPICAL SMPS TOPOLOGIES

- Two Transistor Forward
- · Half bridge
- Full bridge

ORDERING INFORMATION	
Package	TO-220
Lead (Pb)-free	IRF820APbF
	SiHF820A-E3
SnPb	IRF820A
	SiHF820A

ABSOLUTE MAXIMUM RATINGS T	_C = 25 °C, unless otherw	rise noted			
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V_{DS}	500	V	
Gate-Source Voltage	V_{GS}	± 30			
Continuous Drain Current	V_{GS} at 10 V $\frac{T_C = 25 ^{\circ}\text{C}}{T_C = 100 ^{\circ}\text{C}}$	I-	2.5	А	
Continuous Diam Current	$T_C = 100 ^{\circ}C$	I _D	1.6		
Pulsed Drain Current ^a	I _{DM}	10			
Linear Derating Factor			0.40	W/°C	
Single Pulse Avalanche Energy ^b	E _{AS}	140	mJ		
Repetitive Avalanche Currenta	I _{AR}	2.5	Α		
Repetitive Avalanche Energy ^a	E _{AR}	5.0	mJ		
Maximum Power Dissipation	T _C = 25 °C	P_{D}	50	W	
Peak Diode Recovery dV/dtc	dV/dt	3.4	V/ns		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)	for 10 s	, and the second	300 ^d		
Mounting Torque	6-32 or M3 screw		10	lbf ⋅ in	
	6-32 OF IVIS SCIEW		1.1	N · m	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting T_J = 25 °C, L = 45 mH, R_G = 25 Ω , I_{AS} = 2.5 A (see fig. 12). c. I_{SD} \leq 2.5 A, dI/dt \leq 270 A/µs, V_{DD} \leq V_{DS}, T_J \leq 150 °C.

- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRF820A, SiHF820A

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	R _{thJA}	-	62	
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W
Maximum Junction-to-Case (Drain)	R _{thJC}	-	2.5	

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static				•	•	•	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$) V, I _D = 250 μA	500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	to 25 °C, I _D = 1 mA	-	0.60	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V$	' _{GS} , I _D = 250 μA	2.0	-	4.5	V
Gate-Source Leakage	I _{GSS}	V _G	V _{GS} = ± 30 V		-	± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 5	V _{DS} = 500 V, V _{GS} = 0 V		-	25	
		V _{DS} = 400 V, V	V _{DS} = 400 V, V _{GS} = 0 V, T _J = 125 °C		-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.5 A ^b	-	-	3.0	Ω
Forward Transconductance	9 _{fs}	V _{DS} = 5	50 V, I _D = 1.5 A ^b	1.4	-	-	S
Dynamic				•	•	•	
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$ $f = 1.0 \text{ MHz, see fig. 5}$ $V_{GS} = 0 \text{ V}; V_{DS} = 1.0 \text{ V}, f = 1.0 \text{ MHz}$		-	340	-	
Output Capacitance	C _{oss}			-	53	-	
Reverse Transfer Capacitance	C _{rss}			-	2.7	-	pF
Output Capacitance	C _{oss}				490		
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}; V_{DS}$	_S = 400 V, f = 1.0 MHz		15		1
Effective Output Capacitance	Coss eff.	V _{GS} = 0 V; V _{DS} = 0 V to 400 V ^c			28		
Total Gate Charge	Qg		V _{GS} = 10 V	-	-	17	nC
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V		-	-	4.3	
Gate-Drain Charge	Q _{gd}	1	occ ng. o and ro	-	-	8.5	
Turn-On Delay Time	t _{d(on)}				8.1	-	<u> </u>
Rise Time	t _r	\\ 2	50 V I 2 5 A	-	12	-	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 250 \text{ V}, I_{D} = 2.5 \text{ A},$ $R_{G} = 21 \Omega, R_{D} = 97 \Omega, \text{ see fig. } 10^{\text{b}}$		-	16	-	- ns
Fall Time	t _f			-	13	-	
Drain-Source Body Diode Characteristic	s			•	•	•	
Continuous Source-Drain Diode Current	Is	MOSFET symbo	MOSFET symbol showing the		-	2.5	- A
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	10	A
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 2.5 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$		-	-	1.6	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 2.5 A, dl/dt = 100 A/μs ^b		-	330	500	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	760	1140	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)				L _D)	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 μ s; duty cycle \leq 2 %. c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80 % V_{DS} .

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

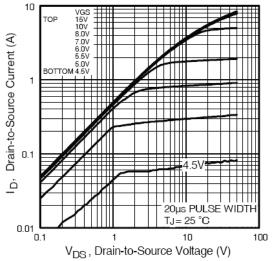
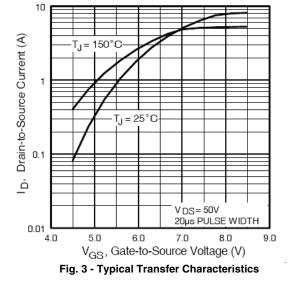



Fig. 1 - Typical Output Characteristics, T_C = 25 °C

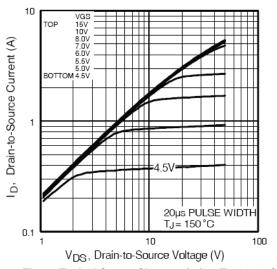


Fig. 2 - Typical Output Characteristics, T_{C} = 150 $^{\circ}$ C

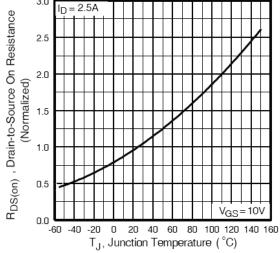


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

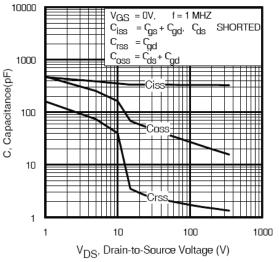


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

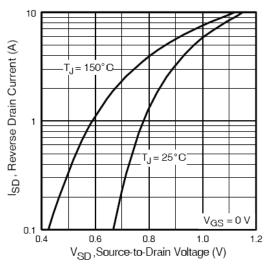


Fig. 7 - Typical Source-Drain Diode Forward Voltage

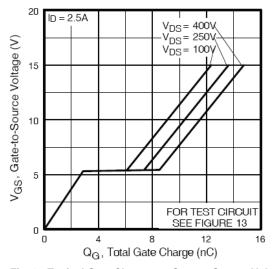


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

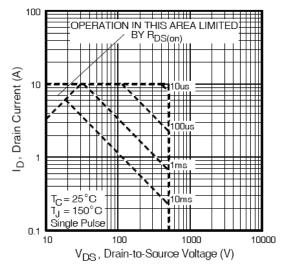


Fig. 8 - Maximum Safe Operating Area

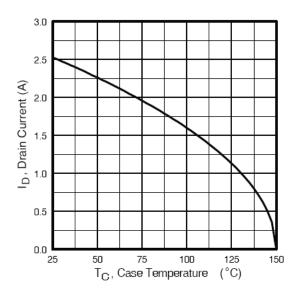


Fig. 9 - Maximum Drain Current vs. Case Temperature

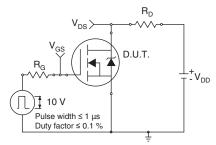


Fig. 10a - Switching Time Test Circuit

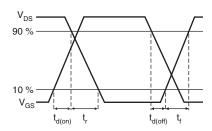


Fig. 10b - Switching Time Waveforms

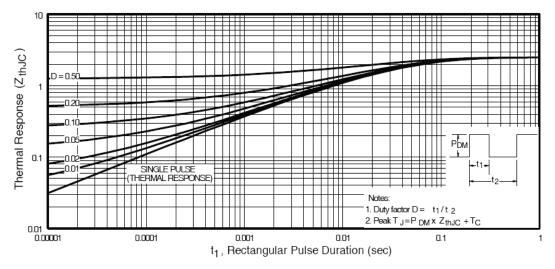


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

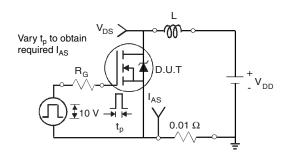


Fig. 12a - Unclamped Inductive Test Circuit

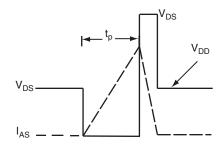


Fig. 12b - Unclamped Inductive Waveforms

Vishay Siliconix

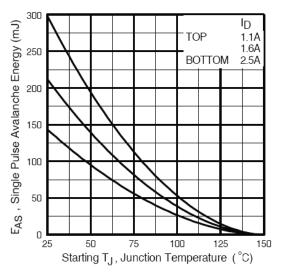


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

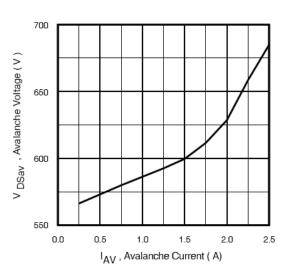


Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current

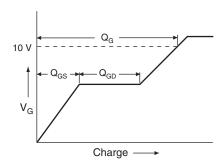


Fig. 13a - Basic Gate Charge Waveform

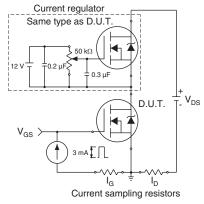
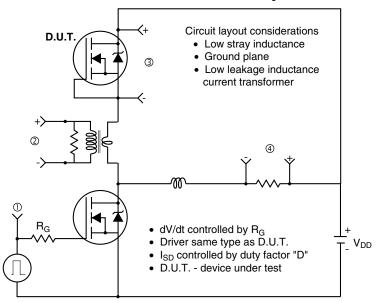
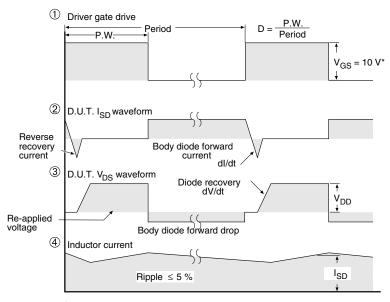




Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

* $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91057.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com