Preferred Device

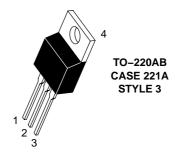
Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supply crowbar circuits.

Features

- Glass Passivated Junctions with Center Gate Fire for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Constructed for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts
- 300 A Surge Current Capability
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

SCRs 25 AMPERES RMS 50 thru 800 VOLTS

MARKING DIAGRAM

x = 4, 5, 7, 8 or 9

A = Assembly Location

Y = Year

WW = Work Week

G = Pb-Free Device

PIN ASSIGNMENT			
1	1 Cathode		
2	Anode		
3	Gate		
4	Anode		

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
*Peak Repetitive Off–State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T _J = 25 to 125°C) 2N6504 2N6505 2N6507 2N6508 2N6509	V _{DRM,} V _{RRM}	50 100 400 600 800	V
On-State Current RMS (180° Conduction Angles; T _C = 85°C)	I _{T(RMS)}	25	Α
Average On-State Current (180° Conduction Angles; T _C = 85°C)	I _{T(AV)}	16	Α
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 100°C)	I _{TSM}	250	Α
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 85°C)	P _{GM}	20	W
Forward Average Gate Power (t = 8.3 ms, T _C = 85°C)	$P_{G(AV)}$	0.5	W
Forward Peak Gate Current (Pulse Width ≤ 1.0 μs, T _C = 85°C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

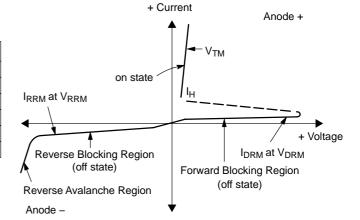
THERMAL CHARACTERISTICS

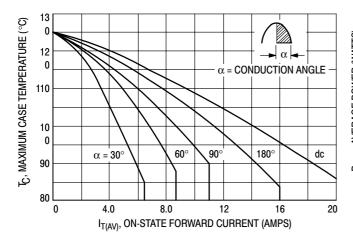
Characteristic		Max	Unit
*Thermal Resistance, Junction-to-Case		1.5	°C/W
*Maximum Lead Temperature for Soldering Purposes 1/8 in from Case for 10 Seconds	TL	260	°C

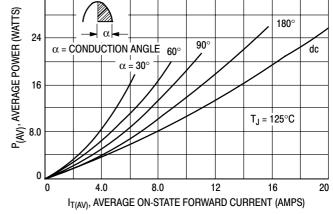
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•			
*Peak Repetitive Forward or Reverse Blocking Curr $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, \text{ Gate Open})$	ent T _J = 25°C T _J = 125°C	I _{DRM} , I _{RRM}	_ _	_ _	10 2.0	μA mA
ON CHARACTERISTICS						
*Forward On–State Voltage (Note 2) (I _{TM} = 50 A)		V_{TM}	_	_	1.8	V
*Gate Trigger Current (Continuous dc) $(V_{AK} = 12 \text{ Vdc}, R_L = 100 \Omega)$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _{GT}	_ _	9.0	30 75	mA
*Gate Trigger Voltage (Continuous dc) (V_{AK} = 12 Vdc, R_L = 100 Ω , T_C = -40°C)		V _{GT}	_	1.0	1.5	V
Gate Non-Trigger Voltage (V _{AK} = 12 Vdc, R _L = 100	Ω, T _J = 125°C)	V_{GD}	0.2	_	_	V
*Holding Current (V _{AK} = 12 Vdc, Initiating Current = 200 mA, Gate 0	$T_C = 25^{\circ}C$ Open) $T_C = -40^{\circ}C$	lH		18 -	40 80	mA
* Turn-On Time (I _{TM} = 25 A, I _{GT} = 50 mAdc)		t _{gt}	_	1.5	2.0	μs
Turn-Off Time (V_{DRM} = rated voltage) (I_{TM} = 25 A, I_{R} = 25 A) (I_{TM} = 25 A, I_{R} = 25 A, I_{J} = 125°C)		t _q	- -	15 35	-	μS
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off-State Voltage (Gate Open, F	Rated V _{DRM} , Exponential Waveform)	dv/dt	_	50	_	V/μs

^{*}Indicates JEDEC Registered Data.


V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


^{2.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.


32

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
I _H	Holding Current

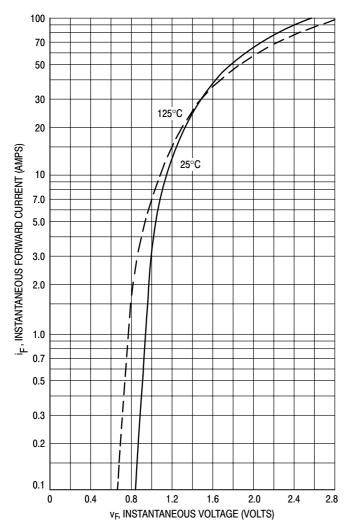


Figure 1. Average Current Derating

Figure 2. Maximum On-State Power Dissipation

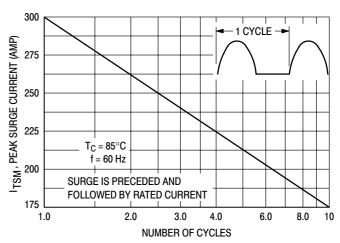


Figure 3. Typical On-State Characteristics

Figure 4. Maximum Non-Repetitive Surge Current

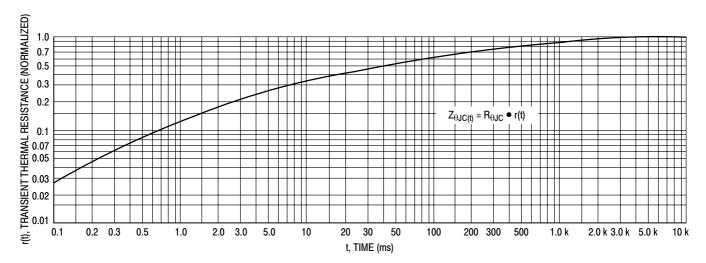


Figure 5. Thermal Response

TYPICAL TRIGGER CHARACTERISTICS

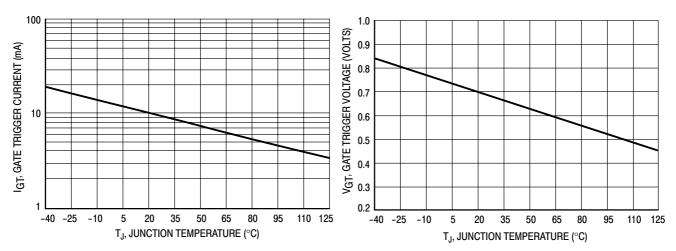


Figure 6. Typical Gate Trigger Current versus Junction Temperature

Figure 7. Typical Gate Trigger Voltage versus Junction Temperature

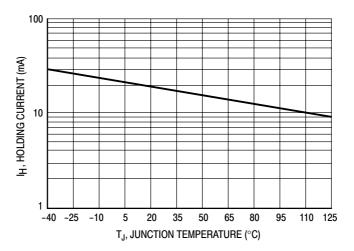
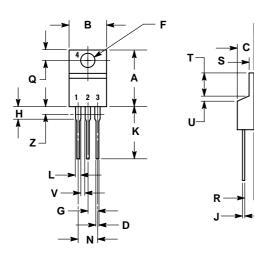


Figure 8. Typical Holding Current versus Junction Temperature


ORDERING INFORMATION

Device	Package	Shipping
2N6504	TO-220AB	
2N6504G	TO-220AB (Pb-Free)	
2N6505	TO-220AB	
2N6505G	TO-220AB (Pb-Free)	
2N6505T	TO-220AB	
2N6505TG	TO-220AB (Pb-Free)	
2N6507	TO-220AB	
2N6507G	TO-220AB (Pb-Free)	FOOLING / Page
2N6507T	TO-220AB	500 Units / Box
2N6507TG	TO-220AB (Pb-Free)	
2N6508	TO-220AB	
2N6508G	TO-220AB (Pb-Free)	
2N6509	TO-220AB	
2N6509G	TO-220AB (Pb-Free)	
2N6509T	TO-220AB	
2N6509TG	TO-220AB (Pb-Free)	

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 ISSUE AA

-T- SEATING

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 3:

PIN 1. CATHODE

ANODE
 GATE

ANODE

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and ware registered trademarks of semiconductor components into this controlled to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative