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This presentation discusses techniques for optimizing instruction execution in a superscalar 
microprocessor architecture such as the PowerPC™ 603e microprocessor. 

Instruction execution in a superscalar processor is enhanced by allowing the parallel execution of 
multiple instructions.  In order to enable the maximum potential of most superscalar processors, one 
needs to be aware of their instruction flow and execution mechanisms.  Optimal performance in a 
microprocessor can be attained by ensuring a continuous flow of instructions through the instruction 
pipeline.

Being aware of the dependencies and constraints of the instruction flow mechanisms allows one to 
generate code that can most effectively and optimally take advantage of all the capabilities of a 
superscalar processor such as the PowerPC 603e microprocessor.

The 603e is a low-power implementation of the PowerPC family of reduced instruction set computer 
(RISC) microprocessors. The 603e is a superscalar processor capable of issuing and retiring as many 
as three instructions per clock. Instructions can “execute” out-of-order for increased performance, but 
they “retire” in-order to ensure functional correctness and well-ordered behavior.

In this paper, we first discuss the instruction flow mechanism of the PowerPC 603e microprocessor and 
then describe dependencies and constraints that should be avoided to reduce stalls in the instruction 
pipeline and maximize performance. 

By closely examining the instruction flow mechanism of the 603e, a software developer will not only be 
able to optimize code for the 603e, but will also be able to understand some of the general principles 
behind superscalar microprocessors that can impact performance.
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Common Superscalar Characteristics 

• Multiple instruction dispatch
– ability to fetch and dispatch more than one instruction at a time

• Multiple functional units
– ability to execute in parallel more than one instruction
– out of order execution

• Multiple instruction retirement
– Multiple instruction completion of the instructions

• Multiple read/write ports to register file set
• Mechanisms to avoid false dependencies
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There are many characteristics found in common among contemporary superscalar processors.  One 
characteristic is the ability to execute multiple instructions in parallel.  To enable this, superscalar 
processors contain multiple functional units, and they allow the fetching, issuing (dispatching), and 
retiring of multiple instructions in one clock cycle.  

Superscalar processors typically contain a register set with multiple read/write ports to allow multiple 
instructions in execution to access data simultaneously.  Most superscalar processors also have 
separate floating-point and integer register sets.

The key focus of superscalar processors is to increase overall instruction throughput by keeping the 
instruction pipeline free of stalls.  Mechanisms exist to avoid false dependencies between instructions; 
instructions should be allowed to dispatch and execute until they are forced to stall due to change in 
instruction flow, lack of resources, or true data dependencies.

To allow the free flow of execution, most superscalar processors allow out-of-order execution of 
instructions.  However, a mechanism must exist for bringing the instructions back in program order 
when they complete executing.

The primary reasons the instruction flow can stall within a superscalar processor are changes in 
instruction flow, resource constraints, and data dependencies.  By understanding the flow mechanism, 
and being aware of the situations that can cause stalls, one can write code that avoids these situations 
and thereby executes faster.
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Block Diagram of the 603e
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Like most other superscalar processors, the 603e features pipelined execution flow, in which the 
processing of an instruction is split into discrete stages.  Each stage is able to handle a different 
instruction, allowing multiple instructions to be in execution at once.  For example, it may take three 
cycles for a floating-point instruction to complete (three-cycle latency), but if there are no stalls in the 
floating-point pipeline, then a series of floating-point instructions can have a throughput of one 
instruction per cycle.

The 603e processor core consists of a fetcher, a dispatcher, and five execution units: an integer unit 
(IU), a floating-point unit (FPU), a branch processing unit (BPU), a load/store unit (LSU), and a system 
register unit (SRU).  An instruction queue (IQ) holds up to six instructions that are fetched in and 
waiting for dispatch.  A completion queue (CQ) holds up to five instructions that have dispatched and 
are waiting to be finished and retired.



RISC Microprocessor DivisionPage 8

Registers and Execution Units

• Execution Units
– Integer Unit
– System Register Unit
– Floating-Point Unit
– Branch Unit
– Load/Store Unit

• Registers
– Integer Registers
– Floating Point Registers

• Execution Unit/Register Interaction
– Rename Registers
– Data Forwarding
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Execution units
• The Integer Unit accepts all integer instructions.

• The System Register Unit accepts all synchronizing, condition register, and system register 
instructions. Since these instructions appear infrequently, the SRU also accepts basic add and 
compare instructions.
• The Floating-Point Unit accepts all instructions utilizing the FP registers (other than loads and 
stores).

• The Branch Processing Unit redirects instruction fetches, performs prediction and helps control 
speculative execution, and folds appropriate branches out of the pipeline to permit an effective branch 
cycle time of zero.

• The Load/Store Unit accepts instructions accessing data cache and memory.

Registers
The 603e supports 32 general-purpose registers (GPRs) that are 32 bits wide, and 32 floating-point 
registers (FPRs) that are 64 bits wide.  These two register files are supported by rename registers 
which allow quick forwarding of data, in order to reduce stalls based on data dependencies.  There are 
five GPR rename registers and four FPR rename registers.

As an example of usage, suppose we have an integer divide instruction which is computing the value of 
a given GPR, followed by a store instruction which must store this value to memory.  When the divide is 
dispatched to the IU, the GPR is assigned a GPR rename register.  The store is then dispatched to the 
LSU and must wait for the value to become valid.  When the value is computed, the store immediately 
gets the value through the GPR rename bus, and can begin storing the value at the same time it is 
being written back to the GPR file.
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The fetcher fetches up to two instructions per clock into the IQ, where they appear in the lowest 
available slots.  The dispatcher  then dispatches up to two instructions from the IQ to the execution 
units (excluding the BPU, which scans instructions as they are brought in by the fetcher).  The 
dispatcher also performs source and destination dependency checking and determines dispatch 
serializations.  Each instruction dispatched has an entry created for it in the completion queue.

When an execution unit has finished processing an instruction, it signals the completion unit, and the 
instruction’s entry in the completion queue is marked “finished.”  Up to two finished instructions per 
clock may be retired (removed) from the completion queue. When an instruction is retired, the 
architectural registers are updated. 

Note that fetching, dispatching, and retiring of instructions is done in program order, but executing and 
finishing can be done out-of-order and in parallel.

In a pipelined architecture, anything that prevents an instruction from moving from one stage of a 
pipeline to the next is known as a stall.  Resource checks must be performed to see if stalls will occur.  
The rest of this paper discusses how and where stalls can occur in the instruction pipeline.
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The dispatcher and completion unit control the execution of instructions. Interactions between the 
dispatcher and completion unit and the various execution units can reduce potential stalls in the 
instruction pipeline.  In the next few slides, we discuss these interactions.

The dispatcher is capable of buffering up to 6 instructions (in the instruction queue).  However, 
instructions must dispatch in-order out of the dispatcher and only from the bottom two slots (an 
exception to this rule occurs with branch folding, discussed later).  If the instruction in the bottom slot is 
not capable of dispatching, then the instruction in the second slot cannot, either.  It is the job of the 
dispatcher to determine whether or not an execution unit is capable of accepting an instruction. The 
dispatcher will stall instruction dispatch when the instructions awaiting dispatch requires an execution 
unit that is unavailable, or will stall the second instruction if both instructions awaiting dispatch need the 
same execution resource.

The completion unit is capable of buffering up to 5 instructions (in the completion queue).  The 
completion unit records the proper order of dispatch to enforce in-order completion.  While instructions 
are being tracked, the completion unit also keeps a record of exceptions generated, speculation, out-of-
order finishing, etc.  All instructions except folded branches must be tracked in the completion unit.  The 
completion unit assigns rename registers (up to 5 integer and 4 floating point) to the instructions as 
they dispatch.  The completion unit will stall the dispatcher if no appropriate rename register resources 
are available.  Additionally, if there are no slots available in the completion queue, the completion unit 
will order the dispatcher to stall the dispatching of instructions.
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Branching 

Opcode Mnemonic Addressing Range

Branch Always b Relative +/- 32MB
 ba Absolute 0 +/- 32MB

Branch Conditional bc (condition field(s)) Relative +/- 32KB
bca (condition field(s)) Absolute 0 +/- 32KB

Branch Conditional bcctr (condition field(s)) count reg. 4 GB
to Count Register

Branch Conditional bclr (condition field(s)) link reg. 4 GB
to Link Register
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The PowerPC Architecture instruction set includes of two types of branches, unconditional (branch 
always) and conditional.  Conditional branches can depend on the contents of the condition register 
(CR), which can be set by compare and arithmetic instructions; on the contents of the count register 
(CTR), which is typically used when executing looping instructions; or on both the CR and the CTR.

Branch instructions can specify an absolute or relative target address, or they can branch to the link 
register (LR) or CTR.  The LR is typically used for subroutine calls, and the CTR (if specified as a 
destination address) is typically used for absolute jumps.
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When the fetcher fetches instructions into the instruction queue (IQ), it also forwards them to the 
branch processing unit (BPU), which scans these instructions for branches.  The BPU immediately 
begins address calculation for branches found and attempts to fold certain branches out of the 
instruction queue (discussed later).

Because branch instructions can change the instruction flow, they can potentially cause stalls in the 
instruction pipeline when new instructions must be fetched from the target address.  The 603e includes 
two mechanisms for reducing the impact of branch instructions:  branch folding and branch prediction.
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The branch processing unit (BPU) can fold certain branches out of the instruction queue.  They are 
removed from the IQ before being dispatched, allowing the dispatcher to handle other instructions, and 
freeing space in the instruction queue and completion queue for other instructions.  Frequently, 
instruction flow can continue as if the branch had not occurred.

The BPU can fold all unconditional branches, as well as conditional branches that do not involve the 
CTR or LR.  Conditional branches that do involve these registers cannot be folded because the CTR 
and LR have corresponding rename registers which can only be tracked if branches using them get 
recorded in the completion queue by being dispatched.

Consider the left two columns of diagrams.  We start with four instructions in the instruction queue.  
Instruction C is a branch.  In the second column, we see that instructions A and B have been 
dispatched and have entries in the completion queue, and that instruction C has been folded out by the 
BPU.  Instructions E and F have also been fetched in.

Because superscalar processors feature multiple units that are attempting to flow instructions through 
their pipelines as quickly as possible, race conditions between various resources can occasionally 
arise.  One race condition occurs in the instruction queue:  if the dispatcher can tag a branch for 
dispatch before the BPU can fold it out of the instruction queue, then the branch will not be folded; it will 
be dispatched and an entry created for it in the completion queue.  This situation typically occurs if the 
IQ is empty or near-empty and the foldable branch is fetched directly into one of the bottom two slots 
(i.e. the slots from which instructions are dispatched).  However, the performance impact of this race 
condition is negligible.

The right two columns illustrate the branch race condition.  Instructions A and B have just been fetched 
into the instruction queue, with A being a branch.  In this case, the dispatcher grabs A before it can be 
folded, and we see it in the completion queue in the next cycle. 



RISC Microprocessor DivisionPage 20

Branch Code Stall Example

FOR...NEXT w/ bdnz FOR...NEXT w/ subi./bgt

li r13,COUNT li r13,COUNT 
mtspr CTR,r13

LOOP: LOOP: subi. r13,0x0001
;Do some ;Do some
;useful work ;useful work
bdnz LOOP bgt LOOP
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In this slide, we depict a potential stall that can occur with branches.  The code fragments demonstrate 
how, in some cases, one can use branches that are foldable to attain better performance than using 
non-foldable branches.

The two loops repeat for COUNT iterations.  The first code fragment initializes the CTR and uses only 
one instruction to control the looping, bdnz .  (bdnz  is a simplified mnemonic for a conditional branch 
which decrements the CTR and branches if CTR is not zero.)  This branch cannot be folded and must 
be dispatched. Since branches that dispatch are required to retire from the last stage of the completion 
unit, any loop involving a branch that dispatches may need an extra clock (in addition to the loop body 
time) to complete execution.

It is possible to avoid the additional latency by using a foldable branch instead of the bdnz .  The bgt  
and the subi. instructions in the second code fragment can be used to obtain the same functionality 
as the bdnz .  The subi.  instruction is a single cycle instruction that can retire paired with almost any 
other instruction; thus in most loops, subi.  adds no time to the execution of that loop.  The bgt  is also 
capable of being folded out of the pipeline and not dispatching at all.  Therefore, code that uses the 
subi. /bgt  combination will likely be a clock faster each time through the loop then bdnz .  However, 
the exact timing difference, if any, would depend on the actual composition of the loop body.



RISC Microprocessor DivisionPage 22

Instruction
Queue

0

1

2

3

4

5

Branch Prediction and
Speculative Execution

A

B

C

D

0

1

2

3

4

5

B

D

E

F

0

1

2

3

4

Completion
Queue

0

1

2

3

4

A

0

1

2

3

4

5

E

F

0

1

2

3

4

A

B

D

G

H

0

1

2

3

4

5

0

1

2

3

4

A

B



RISC Microprocessor DivisionPage 23

Each conditional branch instruction includes a prediction bit, which is set by the compiler or an 
assembly language programmer.  This bit helps specify whether the branch is predicted to be taken or 
not taken.  This is known as static prediction because the prediction behavior is encoded in the 
instruction.  While the branch condition is waiting to be resolved, execution continues down the 
predicted path, and these subsequent instructions are marked as speculative instructions .  
(Speculative instructions are not allowed to change the programming model, such as update register 
files or memory, and may stall until the branch is resolved and they become non-speculative.)

When the branch condition is resolved, if the prediction was correct, then the speculative instructions 
are marked non-speculative, and no penalty is assessed.  If the prediction was incorrect, then the 
speculative instructions are flushed  (removed from the instruction pipeline) and execution resumes 
along the correct execution path.

The 603e has one level of prediction, meaning that a conditional branch encountered along a 
speculative path cannot itself be executed speculatively.  Instead, it will stall in the pipeline until the 
previous branch is resolved.

In the leftmost diagram, we have instructions A, B, C, and D in the instruction queue.  Instruction C is a 
branch.  In the next diagram (next cycle), instruction A was dispatched and C folded out by the BPU.  
However, assume that branch C cannot be resolved (perhaps it is dependent on the results of 
instruction A).  All subsequent instructions are then marked speculative:  D and the newly fetched 
instructions E and F.

In the next diagram, we see that B and D were dispatched to the CQ and G and H fetched into the IQ.  
In our example, branch C is now resolved and it turns out the branch was mispredicted.  In the final 
diagram, the speculative instructions are flushed, and the fetcher is ready to fetch instructions from the 
correct input stream.  If branch C had been correctly predicted, the speculative instructions would 
simply be marked non-speculative and no stall would occur.
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Performance Impact o f 
Branch Prediction

• Speculative execution allows instruction flow to 
proceed before branch conditionals have been 
resolved

• Correct predictions incur no performance penalty

• Incorrect predictions only incur significant performance 
penalties when mispredicted paths result in instruction 
cache misses

• Incorrect predictions may be avoided by separating 
the instruction that sets a branch condition from the 
branch that uses it
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Speculative execution allows the fetcher to fetch instructions without stalling while the branch is being 
resolved. Prediction does not cause any pipeline stalls unless the prediction is deemed to be incorrect.  
If the prediction is incorrect, it is the function of the BPU to perform the necessary tasks to recover from 
speculation.

Branch prediction of the type used by the 603e is correct approximately 86% of the time.  Due to the 
603e’s ability to invert the normal prediction mechanism, a smart programmer or compiler can attain 
greater prediction accuracy.

Mispredicted branches, which occur infrequently even using only the default speculation mechanism, 
only incur significant performance penalties when speculative branches also result in cache misses on 
the mispredicted path.

Since incorrect predictions can potentially cause many stalls, it is possible to improve performance by 
avoiding prediction in some code fragments. By separating the instruction that is setting the branch 
condition from the branch that uses it, it is possible to prevent the processor from executing 
speculatively altogether.

In the 603e, we can calculate the approximate separation distance by using worst case analysis for a 
conditional branch dependent on the CR register. Assuming that the processor dispatches 3 
instructions per clock (2 instructions and a unconditional branch or nop), and assuming a worst case 
conditional register update time of 3 clocks, we calculate that by separating the branch condition from 
the condition register update instruction by 9 instructions, we will avoid speculative execution. For most 
code fragments, the 603e can dispatch instructions at a peak rate of 2 instructions.  Additionally, most 
instructions (such as the COMPARE instruction) take only 1 clock to update the Condition Register.  
Under these conditions, one can prevent speculative execution by separating the branch condition from 
the condition register update instruction by only 3 instructions.
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Integer Unit and
System Register Unit

• Integer Unit
– No stalls caused by single-cycle instructions
– Multi-cycle instructions keep the integer unit busy
– Possible stalls due to dependencies minimized by allowing 

access to operands as soon as the source data is valid

• System Register Unit
– Handles access to system registers
– Assists the Integer unit by handling some integer unit operations
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Integer Unit
Most integer instructions only take one cycle to execute; thus the integer unit does not usually stall.  
The only times that the integer unit stalls is if it is executing multiple-clock integer instructions such as 
trap, multiply, and divide, or if the instruction cannot execute because it is dependent on the results of 
another operation.  The internal bus structure of the 603e allows an integer instruction to immediately 
access any operand as soon as it becomes valid.

System Register Unit
The SRU handles all of the special purpose register instructions, context synchronizing instructions,  
and certain integer add/compare operations.  Some special purpose register instructions are also 
inherently context synchronizing.  Context synchronization will always cause some instruction stall, but 
this is almost always critical to guarantee correct operation.  Integer operations in the SRU take only 
one cycle to execute, thereby causing no stalls.
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The Floating-Point Unit consists of four stages:  Multiplier, Adder, Normalizer, and Exception, which are 
organized conceptually as shown.  The Multiplier stage is a single precision multiplier that every FP 
instruction must pass through.  No instruction can enter the FP unit if the Multiplier is occupied.  Double 
precision operations will cause the Multiplier to be occupied for two consecutive clocks. The Adder 
always takes a single clock.  Typically, instructions will flow through these stages without stalling unless 
a stall in the Normalize or Exception stage blocks the instruction pipeline flow.  The FP register file only 
supports a single write-back port from the rename registers.

The Normalizer stage can cause delays of up to several clocks.  The number of clocks that 
normalization takes is data-dependent.  When the normalizer stalls, it prevents instructions in the 
Multiplier or Adder stages from stepping through.

To prevent potential speed path problems, an additional stage exists after the normalization stage. This 
stage is simply a holding stage and floating-point instructions use up one clock cycle to pass through it.
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As previously mentioned, the Normalizer stage can take multiple cycles, thereby stalling the flow of 
instructions within the FPU. When FP instructions occupy the Normalizer, Multiplier, and Adder stages 
at the same time, a signal will be sent to the dispatcher, halting dispatch of instructions to the floating-
point unit.  Even if normalization doesn’t stall the pipeline, the distance between the Normalizer and 
dispatcher prevents the FPU from informing the dispatcher to resume dispatching until after it is too late 
to dispatch an instruction on that clock.  This causes a stall after every third consecutive single cycle 
FP instruction.

The wait stage that exists after the normalization stage also contributes to potential stalls.  The 
additional wait stage causes FPR rename registers to be released one cycle after the FP operation is 
complete. This causes a stall if a series of single-cycle FP instructions are executing in the FPU. After 
every fourth single cycle FP instruction, a stall will occur due to lack of FPR rename registers.

These two stall scenarios cause a series of single-cycle FP instructions to dispatch in clocks 1, 2, 3, 5, 
7, 8, 9, 11, 13, 14, 15, etc.  The next slide depicts the stall scenarios described above.

Finally, if exception checking is enabled in the FPU, the instruction may have to wait in the Normalizer 
while exceptions are checked. One can enhance performance by pre-qualifying data prior to running it 
and polling for possible exceptions at the last reasonable instant.
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Series of single-cycle FP instructions

Clock 0 :  First two instructions (A and B) are brought into the instruction queue (IQ).  A is marked for 
dispatch.

Clock 1 :  A is dispatched to the Multiplier stage of the FPU and is allocated FP rename register 0.  B is 
marked for dispatch. C and D are brought into the IQ.

Clock 2 :  A steps to the Adder stage in the FPU.  B is dispatched to the Multiplier stage and is 
allocated FP rename register 1.  C is marked for dispatch. E is brought into the IQ.  (Anything after E is 
ignored for this discussion.)

Clock 3 :  A steps to the Normalizer stage in the FPU.  B steps to the Adder stage. C is dispatched to 
the Multiplier stage and is allocated FP rename register 2.  At this point, a signal is sent to the 
dispatcher indicating that no instruction may be dispatched to the FPU until a stage has been freed up.  
This signal is negated as soon as the Normalizer stage is finished, but this will be too late to actually 
permit an instruction to dispatch on the next clock. D, therefore, stalls in the IQ (is not marked for 
dispatch).

Clock 4 :  A steps to a wait stage in the FPU.  A signal has been sent to the completion unit indicating 
that A is finished and, since it is the oldest instruction in the completion queue, it is permitted to retire.  
B steps to the Normalizer stage.  C steps to the Adder stage.  D is given permission to dispatch on the 
next clock.

Continued on next slide
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Clock 5 :  A is gone from the completion queue, but a delay on FP rename register deallocation 
prevents FP rename register 0 from being re-allocated.  B is finished and permitted to retire.  C steps to 
the Normalizer stage. D is dispatched to the FP Multiplier stage and is allocated FP rename register 3. 
At this point, all four FP rename registers are in use, which means E cannot be marked for dispatch this 
cycle.  E stalls in the IQ.

Clock 6 : FP rename register 0 is deallocated.  B is gone, but its FP rename register deallocation is 
delayed for one clock.  C is finished and permitted to retire.  D moves to the Adder stage.  E is marked 
for dispatch.

Clock 7 :  FP rename register 1 is deallocated.  C steps the FP wait stage.  D steps to the Normalizer 
stage.  E is dispatched to the Multiplier stage and is allocated FP rename register 0.  At this point, the 
pattern of stalls repeats.

Again, note the dispatch stall during clock 3.  This is caused by all of M/A/N stages being in use.

Also note the dispatch stall during clock 5.  This is caused by all of the rename registers being tied up 
(a rename register must be deallocated for one clock before it can be reused).
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FPU and Completion Unit

loop: lfsu f22,4(r20)        ; A

fmadd f15,f16,f13,f28   ; B

lfsu f23,4(r21)        ; C

fmadd f18,f19,f14,f29   ; D

lfsu f13,4(r20)        ; E

fmadd f25,f24,f22,f30   ; F

lfsu f14,4(r21)        ; G

bdnz loop              ; H

cycles

Completion
Queue

1 2 3 4

F G

D E F

B C D E

A B C D
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Completion of  floating-point unit instructions is a potential source of stalls. Due to the single write-back 
port on the floating point register file, multiple instructions trying to write back floating-point results will 
have to do so in a sequential manner.  This will typically happen in matrix math where math operations 
occur in parallel with loads that initialize registers for subsequent math operations.

The code segment above depicts such a scenario.  Adjacent load and fmadd instructions have no 
register dependencies nor do they require the same execution unit.  Therefore, each pair can dispatch 
together, execute in parallel, and even finish (update rename registers) in parallel.  However, due to the 
single write back port, this code has an effective throughput of only a single instruction per clock.  If this 
code is part of a larger code segment that includes integer instructions, then it is possible to achieve a  
greater instruction throughput by intermixing integer instructions (from elsewhere in the code sequence) 
with these floating-point instructions.  This will allow the integer execution and write-back to overlap 
with the floating-point write-back, thereby improving the overall instruction throughput on the entire 
code segment.
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The load/store hierarchy within the PowerPC chip consists of the load/store unit (LSU), data cache 
(DC), and the bus interface unit (BIU).  The LSU stages consist of a two-element EIB, to receive 
dispatched instructions and calculate effective addresses, and a two-element store queue, to hold 
stores waiting for the data cache.  The data cache stages consist of slots for a load miss and a store 
miss.  Only one miss can be handled at a time.  The BIU stages consist of a number of one-element 
queues, such as the data load and store queues.  Each queue can hold a separate instruction waiting 
for access to memory. 

Instructions are first dispatched from the instruction queue (IQ) to the LSU EIB, which has two slots:  
the “reservation station” slot (LSU RS) and an “effective address calculation” slot (LSU EA).  An 
instruction is held in the LSU EA slot until its address operand is available.

Normally if the LSU is available for dispatch (see below), then the instruction is dispatched directly to 
the LSU EA slot, if both slots are empty.  If the LSU EA slot is occupied, then the instruction is 
dispatched to the LSU RS slot.

Once the instruction’s effective address has been calculated, its progress through the pipeline depends 
on whether it is a load or a store.  A load would then access the data cache (DC), as described later.  
The load’s entry in the completion queue (CQ) is marked “finished” when the data for the load returns.

A store would pass to the first LSU store queue slot, and its entry in the CQ would be marked 
“finished.”  Thus, a store can be considered finished and even retired from the completion queue long 
before its data is actually written to cache or to memory.  On the next clock cycle, the store passes to 
the second LSU store queue slot and, on the subsequent clock, it is free to access the data cache.

Note that because a store must traverse two additional slots than a load before accessing the data 
cache, a load instruction may bypass preceding stores within the LSU.  Also, if both a load (in the LSU 
EA slot) and a store (in the second LSU store queue slot) are free to access the data cache, then the 
load will take precedence.
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Although superscalar architectures feature multiple execution paths, resource limitations can stall full 
utilization of these paths.  Data cache misses are the primary cause of stalls in the LSU.  The example 
above demonstrates how stalls can occur because the 603e data cache can only handle one miss at a 
time.

When a load or store misses in the data cache, the data cache asserts a busy signal that stalls 
subsequent instructions in the LSU, as shown in Figure 1 .  While the data cache is busy, no other 
instructions can access the data cache, and instructions are blocked from leaving the LSU EA stage.  
This prevents a store from propagating from the LSU EA stage to the LSU store queue (LSU SQ), even 
if the store queue is available.

For a load miss access, the data cache is busy until the data comes back from the BIU.  For a store 
miss access, the data cache is busy until the store is able to propagate to the BIU.

Figure 2 demonstrates store stalls.  While load B is waiting for its data to come back, store A may not 
access the data cache, and store C may not propagate to the LSU store queue.  Note that load B 
bypassed store A in the LSU.

Figure 3 demonstrates a load stall.  Load D may not access the data cache until store A propagates to 
the BIU.  When it does, the data cache is no longer busy, and load D will bypass stores B and C.
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To understand the flow within a superscalar architecture, one cannot ignore instruction-specific details.  
For example, consider Figure 1 , in which load C would ordinarily bypass stores A and B.  However, if 
the data address of C can potentially collide (alias ) with the data address of A or B, then C will stall in 
the LSU EA slot until the aliasing store passes out of the LSU store queue.

Address translation may occur after alias checking.  Since only the lower 12 bits remain constant 
through translation, these are the only bits that can be checked.  In addition, the addresses are 
checked with word granularity (four bytes, mask = 0xffc) if the sizes of both load and store are less than 
or equal to four bytes, or with double-word granularity (eight bytes, mask = 0xff8) otherwise.  For 
instance, 0x2000 and 0x3003 would alias to each other, but 0x2000 and 0x2020 would not.

Note that it is possible to have an alias stall even if the load and store do not actually access the same 
location, because only the lower 12 bits of the address can be compared.

In a superscalar architecture, other stalls may occur due to timing considerations.  For example, if a 
load which aliases a store has spent only one cycle in the LSU EA stage, then the LSU circuitry is not 
fast enough to prevent the load from bypassing the store in accessing the data cache.  Since this 
aliased load should not access the cache before the store, the LSU must cancel the load in the 
subsequent cycle.  Figures 2-5 depict this situation.

In Figure 2 , load B and store A have aliasing addresses.  If B has been in the LSU EA stage for more 
than one cycle (due to some other stall), then there is time to prevent it from accessing the data cache, 
and the next cycle A will access the data cache.  However, if B has only been in the LSU EA for one 
cycle, the alias check comes too late to prevent the cache access shown in Figure 3 .  A is stalled and 
cannot access the cache.

In the next cycle (Figure 4 ), the load is canceled, and in Figure 5 the store propagates to the data 
cache.  Note that in this example, the store also misses in the cache and blocks the load from 
accessing the data cache the next cycle.



RISC Microprocessor DivisionPage 43

Completion Queue Stall

LSU
SQA

DC load
miss

DC store
miss

Figure 1

LSU
SQ

A
DC load

miss
DC store

miss

Figure 2

LSU EA

LSU RS

LSU EA

LSU RS



RISC Microprocessor DivisionPage 44

Superscalar architectures frequently signal between different parts of the architecture, in order to 
coordinate various aspects of the units.  Diagrams may not always show all the signals that are shared 
between units with the system.  These interactions can also cause stalls.  We discuss a case in which 
the state of the completion queue can affect instruction flow in the LSU.

Since the 603e allows out-of-order execution, instructions will frequently dispatch to the LSU (as well as 
other execution units) before previous instructions have finished executing.  If one of these previous 
instructions generates an exception, then all subsequent instructions (including the LSU instruction) 
must be canceled from the instruction flow (flushed ).  Various parts of the processor, including the 
LSU, must be careful to stall instructions that could be canceled before they permanently change the 
processor state.  

On the 603e, if a load or store’s entry in the completion queue is not in the bottom slot, then there are 
preceding instructions that could potentially generate exceptions which may cancel the load or store.  
The instruction must be stalled before it reaches a state that cannot be canceled.

Figures 1-2 depict this situation, in which instruction A is stalled because its entry in the completion 
queue is not in the bottom slot.  In Figure 1 , store A is stalled in the second slot of the LSU store 
queue, since writing to the data cache would incur too much of a penalty to undo.

In Figure 2 , load A is stalled in the data cache miss slot if it is accessing guarded memory.  Guarded 
memory is typically used to prevent out-of-order loads to I/O devices, which may produce undesired 
results otherwise.  Note that even if load A were at the bottom of the completion queue, the 603e would 
stall the load for one cycle before making its request to the BIU.
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The fast timing requirements of superscalar processors sometimes lead to unusual types of stalls.

If a load has spent only one cycle in the LSU EA slot before accessing the data cache, then it is 
removed from the LSU after this access (assuming that the access is not canceled).  However, if a load 
spends more than one cycle in the LSU EA slot, then it will appear to remain in this slot (blocking 
subsequent LSU instructions) even after the load has accessed the data cache.  This block will remain 
until the data becomes available (and the load is marked “finished” in the completion queue).

In Figure 1 , A flows into the LSU EA slot and flows out in Figure 2 . This allows C to be dispatched to 
the LSU.  However, because B is stalled in the LSU EA slot, in Figure 3 when B accesses the data 
cache it keeps its entry in the LSU EA slot in Figure 4 .  This stalls C and stalls dispatch of any 
subsequent load/store instruction until the data for B returns from the BIU.
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Accessing misaligned addresses can result in significant performance penalties in most RISC 
superscalar microarchitectures.

On the 603e, a data address is aligned if it falls on a multiple of the access size.  Thus a word (4-byte) 
access is aligned at 0x0000 and 0x0004 but not at 0x0002; a doubleword (8-byte) access is aligned at 
0x0000 and 0x0008 but not at 0x0004.

If the data address of a load or store in the LSU EA slot is not aligned, then it is split into two aligned 
accesses.  Figure 1 shows a misaligned store.  A is first split into the aligned store A1, then on the next 
clock it is split into the aligned store A2 and the LSU EA entry removed.  In Figure 2 we have a 
misaligned load, in which A is split into aligned loads A1 and A2.  Note that because the load stayed in 
the LSU EA slot for more than one cycle, it remains in this slot until its data comes back (see LSU EA 
stall above).
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As with the other execution units, there may also be stalls due to contention for the rename registers.  
Figures 1-5 show the interaction between the IQ and CQ for a series of lwzu ’s which are fetched into 
the instruction queue two at a time.  Each lwzu  uses two general purpose register (GPR) rename 
registers, one for the address operand and one for the data operand.  The 603e has five GPR rename 
registers available (and four FPR rename registers). 

In Figure 3 , instruction C cannot dispatch because A and B have already taken four GPR rename 
registers and there is only one available.

Later, when A retires and releases its rename registers (Figure 4 ), C has the resources it needs to 
dispatch.  It dispatches the following cycle (Figure 5 ).
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Instruction Interactions 
Dependency Stall
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The mix of instructions in an instruction sequence can result in a variety of stalls.  Dependency stalls 
are the most common.  A dependency occurs if one instruction uses as its source data the results from 
another instruction.  Such a dependency will cause a stall if the two instructions are placed right next to 
each other.  The 603e reduces the impact of most of these situations through use of the rename 
registers and forwarding of results.  However, in some situations, stalls can happen as follows.

Two orderings of a code sequences are shown.   In both sequences, the add  instruction uses as its 
source the results of the lwzx  load instruction.  In the original code, the add  occurs right after the 
lwzx . In the reordered sequence, the add  is separated from the lwzx  by moving it down three 
instructions.

Analysis of original code sequence:
Assuming the lwzx  hits in the data cache, its data will return in 2 clocks.  Although both the add  and 
the lwzx  can be dispatched to the completion queue in the same clock, the add  cannot begin 
execution until the data from the lwzx  returns.  Therefore it cannot retire with the lwzx  and is stalled 
by one clock.  The lis  dispatches to the SRU, executes, and is ready to retire with the add  in cycle 3.  
In cycle 4, the stwu  and ori can also retire together. Then in cycle 5,  the cmpw retires alone.  Total 
time:  5 clocks.

Analysis of reordered code sequence:
The lwzx  (cache hit) takes 2 clocks.  Since the lis  is not dependent on the lwzx , it can retire with the 
lwzx  in clock 2.  The stwu  and ori can also retire together on the next clock (clock 3).  Finally, in 
clock 4, the add  and cmpw  retire together.  Total time:  4 clocks.

Thus by separating the generation of a result from the subsequent use of that result, we were able to 
prevent a stall.  It is normally a good practice to provide this separation; however in some cases the 
benefit gained in one place is lost in another place.
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Summary

• Scheduling code around superscalar microprocessor 
resource constraints reduces code stall conditions

• Code stalls can occur in instruction issue/completion 
control logic 

– Availability of instruction and completion buffers
– Availability of rename registers
– Number of register file write ports

• Code stalls can occur within execution units
– Aliasing between loads and stores
– Misaligned accesses

• Code stalls can occur due to instruction mixes
–  Dependencies between instructions
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By being able to process multiple instructions at the same time, superscalar microprocessors like the 
603e enable systems to attain extremely high levels of performance.  However, there are many aspects 
of a superscalar architecture that can cause code stalls in the instruction flow.  By being aware of 
constraints that cause code stall conditions, one can generate code that can will execute with minimal 
latency in a superscalar processor.  This paper has discussed the aspects of PowerPC 603e that can 
cause stalls.  Although this paper is specific to the 603e, the lessons learned can be applied to most 
contemporary superscalar microprocessors.


