

- Designed to Provide Front-end Selectivity in 345.00 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic QCC8C SMD Package

SF5402

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
Source Power	Ps	0	dBm				
DC Voltage VDC Between Any Two Pins	$V_{ m DC}$	0	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 25°C) (Center frequency between 3dB point)		f _C	NS	345.00	NS	MHz
Insertion Loss	344.60 345.60 MHz	IL	=	2.5	4.0	dB
Amplitude Ripple (p-p)	344.60 345.60 MHz	Δα	=	0.5	1.5	MHz
Relative Attenuation (relative to IL)						dB
	10.00 320.00 MHz		48	53	-	dB
	320.00 325.00 MHz		41	47	-	dB
325.00 337.00 MHz 337.00 339.00 MHz 351.00 358.00 MHz 358.00 370.00 MHz 370.00 700.00 MHz			32	39	-	dB
		$lpha_{rel}$	26	31	-	dB
			13	16	-	dB
			35	39	-	dB
			47	52	-	dB
	700.00 1000.00 MHz		40	45	-	dB
Frequency Aging	Absolute Value during the First Year	fA	=	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
Input / Output Impedance		-	-	50	-	Ω

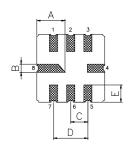
NS = Not Specified

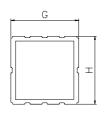
Notes:

- The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, $f_{\mathbb{C}}$. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.

Phone: +86 10 6301 4184


Fax: +86 10 6301 9167


Email: sales@vanlong.com

Web: http://www.vanlong.com

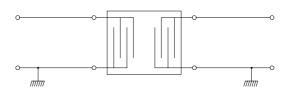
Package Dimensions (QCC8C)

Electrical Connections

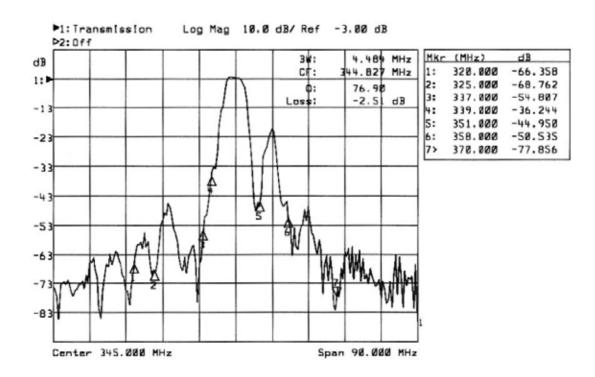
Terminals	Connection	
2	Input	
1,3	Input Ground	
6	Output	
5,7	Output Ground	
4,8	Case Ground	

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)	
Α	2.08	Е	1.20	
В	0.60	F	1.35	
С	1.27	G	5.00	
D	2.54	Н	5.00	


Marking

- 1. F5402 Part Code
- 2. Frequency (MHz) in 5 digits
- 3. Date Code:


Y: Last digit of year WW: Week No.

Test Circuit

No matching network required for operation at 50Ω

Typical Frequency Response

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com