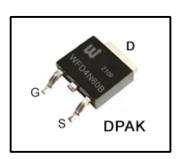


Silicon N-Channel MOSFET


Features

- $4A,600V.R_{DS(on)}(Max\ 2.4\Omega)@V_{GS}=10V$
- Ultra-low Gate Charge(Typical 16nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Isolation Voltage (VISO = 4000V AC)
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, DMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high Rugged avalanche characteristics. This devices is specially well Suited for half bridge and full bridge resonant topology line a electronic lamp ballast.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain Source Voltage	600	V
I _D	Continuous Drain Current(@Tc=25℃)	4	Α
	Continuous Drain Current(@Tc=100℃)	2.5	Α
I _{DM}	Drain Current Pulsed (Note1) 16	Α
V _{GS}	Gate to Source Voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2) 240	mJ
E _{AR}	Repetitive Avalanche Energy (Note	1) 10	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3) 4.5	V/ns
В	Total Power Dissipation(@Tc=25℃)	80	W
P _D	Derating Factor above 25℃	0.78	W/°C
T _J , T _{stg}	Junction and Storage Temperature	-55~150	$^{\circ}$ C
T∟	Channel Temperature	300	$^{\circ}$ C

Thermal Characteristics

Symbol	Parameter	Value			Linita	
	Parameter	Min	Тур	Max	Units	
R _{QJC}	Thermal Resistance, Junction-to-Case	-	-	1.56	°C/W	
R _{QJA}	Thermal Resistance, Junction-to-Ambient*			50		
R _{QJA}	Thermal Resistance, Junction-to-Ambient	-	-	110	°C/W	

^{*}When mounted on the minimum pad size recommended(PCB Mount)

Electrical Characteristics (Tc = 25° C)

Charact	teristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
Gate-source breakdown voltage		V _{(BR)GSS}	$I_G = \pm 10 \ \mu A, V_{DS} = 0 \ V$	±30	-	-	V
Drain cut-off current			V _{DS} = 600 V, V _{GS} = 0 V	ı	-	10	μΑ
		V _{DS} = 480 V, Tc = ²	V _{DS} = 480 V, Tc = 125°C	-	-	100	μΑ
Drain-source breakdown voltage		V _{(BR)DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	600	-	-	V
Gate threshold voltage		V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source ON resistance		R _{DS(ON)}	V _{GS} = 10 V, I _D =2.0A	-	1.7	2.4	Ω
Input capacitance		C _{iss}	V _{DS} = 25 V,	-	545	670	
Reverse transfer capacitance		C _{rss}	V _{GS} = 0 V,	-	7	10	pF
Output capacitance		Coss	f = 1 MHz	-	70	90	
	Rise time	tr	V _{DD} =300 V,	-	10	30	
Considerate in an Airea	Turn-on time	ton	I _D = 4.0A	-	35	80	
Switching time	Fall time	tf	R _G =25 Ω	-	45	100	ns
	Turn-off time	toff	(Note4,5)	-	20	50	
Total gate charge (gate-source		0-	V _{DD} = 480 V,	40	10	20	
plus gate-drain)		Qg	V _{GS} = 10 V,	-	16	20	~ C
Gate-source charge		Qgs	I _D =4.0A	-	3.4	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	7	-	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	I _{DR}	-	-	-	4	Α
Pulse drain reverse current	I _{DRP}	-	-	-	17.6	Α
Forward voltage (diode)	V _{DSF}	I _{DR} =4.0 A, V _{GS} = 0 V	-	-	1.4	٧
Reverse recovery time	trr	$I_{DR} = 4.0 \text{ A}, V_{GS} = 0 \text{ V},$	-	390	-	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μs	-	2.2	-	μC

Note 1. Repeativity rating :pulse width limited by junction temperature

- 2.L=18.5mH,I_{AS}=4.0A,V_DD=50V,R_G=0\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$
- $3.I_{SD} \le 4A, di/dt \le 200A/us, V_{DD} < BV_{DSS}, STARTING T_J = 25 ^{\circ}C$
- 4.Pulse Test: Pulse Width≤300us, Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

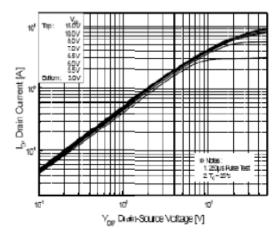


Fig.1 On-State Characteristics

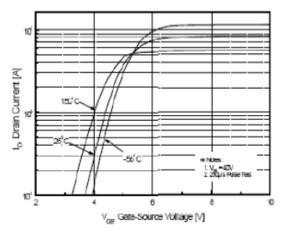


Fig.2 Transfer Current characteristics



Fig3. On Resistance Variation vs
Drain current

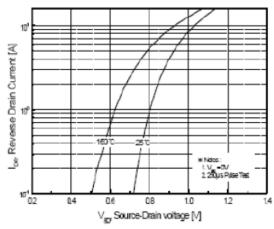


Fig.4 Body Diode Forward Voltage Variation vs Source Current and Temperature

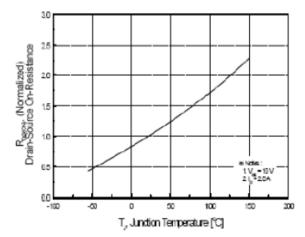


Fig.5 On-Resistance Variation vs

Junction Temperature

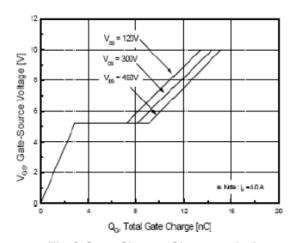


Fig.6 Gate Charge Characteristics

w

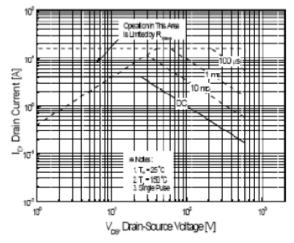


Fig.7 Maximum Safe Operation Area

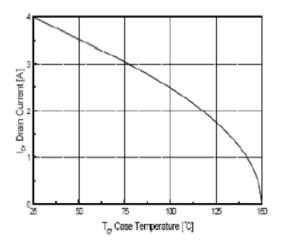


Fig.8 Maximum Drain Current vs Case Temperature

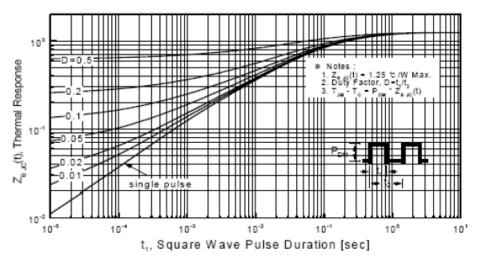


Fig.9 Transient Thermal Response curve

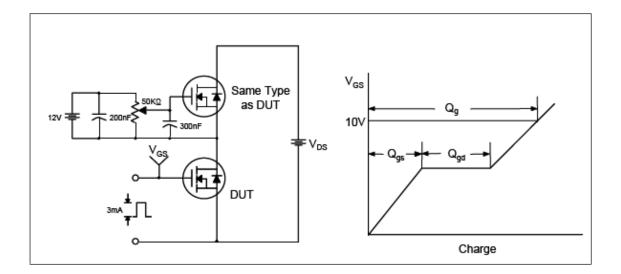


Fig.10 Gate Test Circuit & Waveform

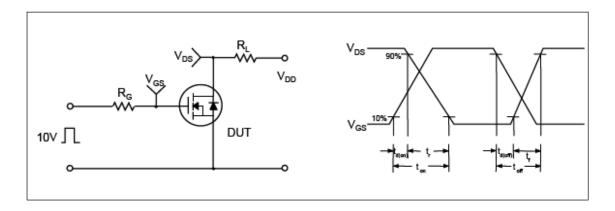


Fig.11 Resistive Switching Test Circuit & Waveform

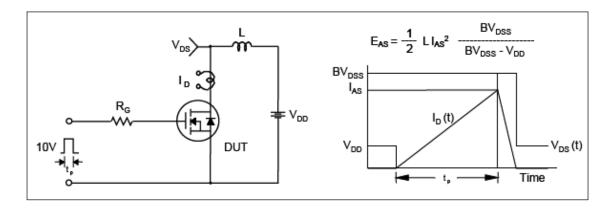


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

uî.

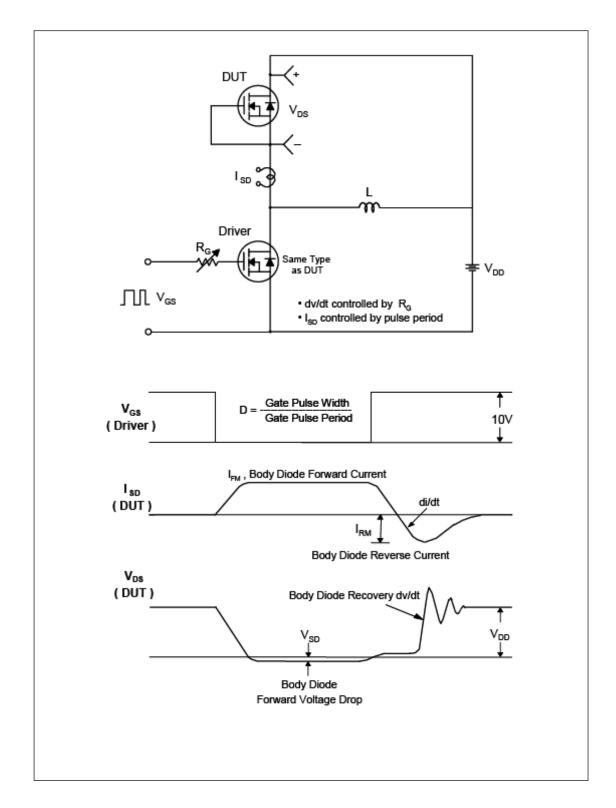
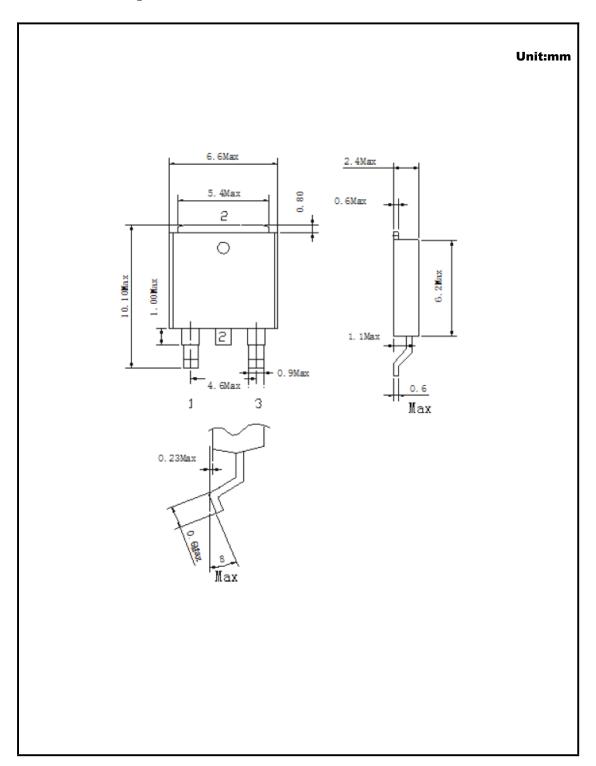



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

П

TO-252 Package Dimension

