

M61508FP

The Electric Volume of Built-in Non Fader Volume with Tone Control

REJ03F0203-0201 Rev.2.01 Mar 31, 2008

Application

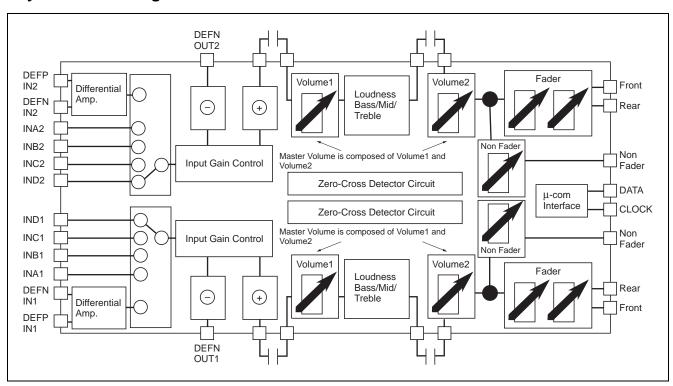
- This IC can be used Analog Signal processing of Power Amp. front stage
- This IC can be used Car Audio System, Home Audio System and TV.

Features

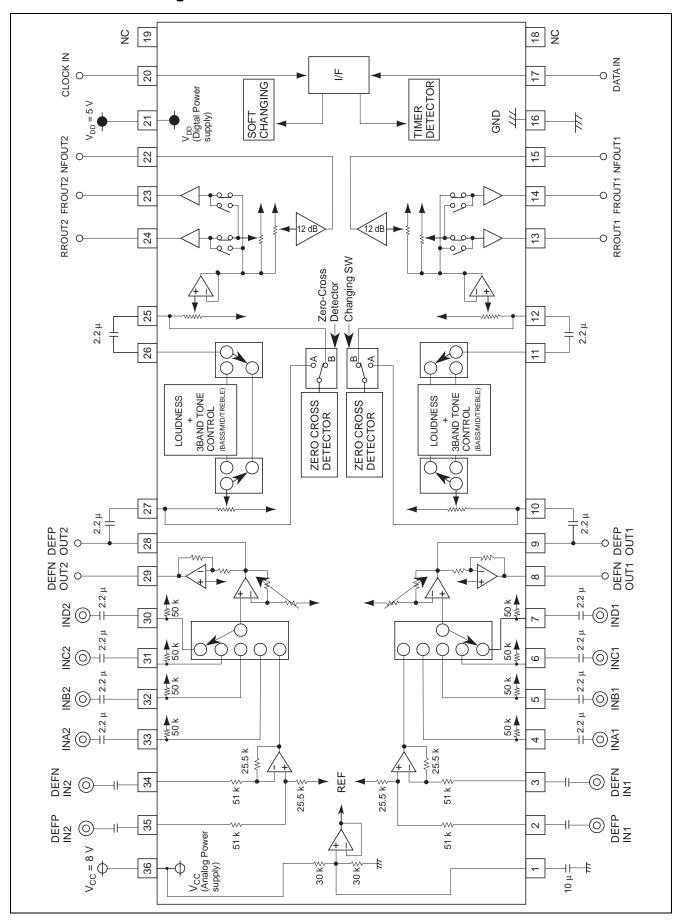
• This IC is unnecessary for outside putting CR by using SCF for Loudness and Tone Control.

```
Bass: +16 dB to -12 dB/2 dBstep. f0, Q = variable. f0 = 50 Hz, 80 Hz, 120 Hz Q = 1, 1.25, 1.5, 2 Mid: +12 dB to -12 dB/2 dBstep. f0, Q = variable. f0 = 700 Hz, 1 kHz, 2 kHz, 10 kHz Q = 1.5, 2 Treble: +12 dB to -12 dB/2 dBstep. f0 = variable. f0 = 8 kHz, 12 kHz Loudness: f0 = variable. f0 = 60 Hz, 80 Hz, 100 Hz
```

- Built-in Non Fader Volume
 - $+12 \text{ dB to } -12 \text{ dB/2 dB step}, -\infty \text{ dB}$
- Built-in Zero-Crossing Detector Circuit for Changing Noise Measure.
- Built-in Differential Input and Differential Output
- Built-in Input Selector (4 input + Differential Input)
- Built-in Input Gain Control
 10.75, IP/1.25, IP
 - 0 dB to +18.75 dB/1.25 dB step
- Built-in Master Volume and Fader Volume (Front, Rear)

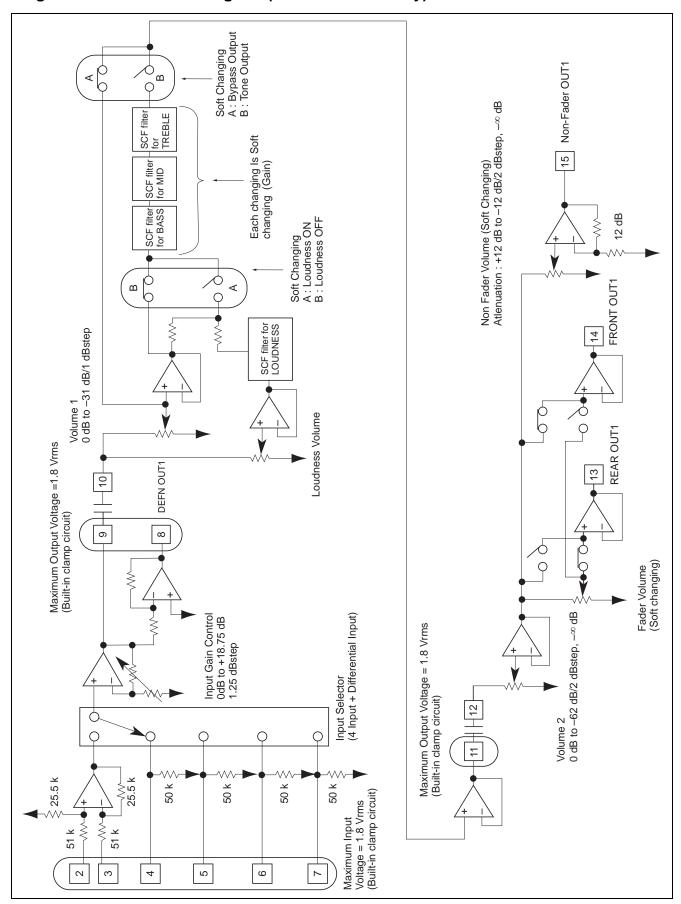

```
Volume: 0 dB to -83 dB, -\infty dB/1 dB step Fader: 0 dB, -1 dB, -2 dB, -3 dB, -4 dB, -6 dB, -8 dB, -12 dB, -16 dB, -20 dB, -30 dB, -45 dB, -60 dB, -\infty dB/16 step
```

• Serial Data Control of 2 lines formula.


Recommended Operating Conditions

```
Supply voltage range... V_{CC} = 7 \text{ V to } 9 \text{ V} V_{DD} = 4.5 \text{ V to } 5.5 \text{ V} Rated supply voltage... V_{CC} = 8 \text{ V} V_{DD} = 5 \text{ V}
```

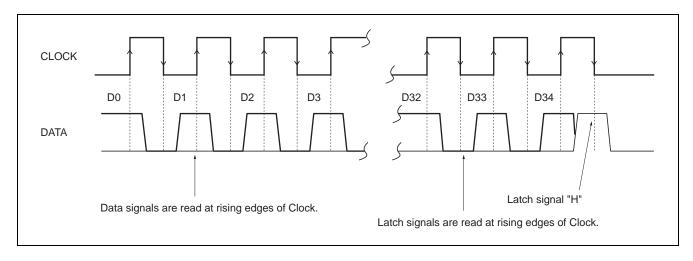
System Block Diagram


IC Internal Block Diagram

Pin Description

Pin No.	Symbol	Function
1	REF	Signal Ground of IC. Grounding about 10 μF
2	DEFP IN1	Positive Input pin of Differential Amp.
3	DEFN IN1	Negative Input pin of Differential Amp.
4	INA1	Input pin of Channel 1 for Input Selector SW
5	INB1	
6	INC1	
7	IND1	
8	DEFN OUT1	Output pin (–) of Differential Amp.
9	SEL OUT1	Output pin of Input Selector
10	VOL IN1	Input pin of Volume1
11	TONE OUT1	Output pin of Tone
12	FADER IN1	Input pin of Volume2
13	REAR OUT1	Output pin of Fader Volume (rear)
14	FRONT OUT1	Output pin of Fader Volume (front)
15	Non Fader OUT1	Output pin of Non Fader Volume
16	GND	Ground Pin
17	DATA	Input pin of Control Data.
		It synchronized at CLOCK and inputted Data
18	N.C.	N.C. Pin
19	N.C.	N.C. Pin
20	CLOCK	Clock Input pin for Serial Data Transmission
21	V_{DD}	Digital Power Supply pin
22	Non Fader OUT2	Output pin of Non Fader Volume
23	FRONT OUT2	Output pin of Fader Volume (front)
24	REAR OUT2	Output pin of Fader Volume (rear)
25	FADER IN2	Input pin of Volume2
26	TONE OUT2	Output pin of Tone
27	VOL IN2	Input pin of Volume1
28	SEL OUT2	Output pin of Input Selector
29	DEFN OUT1	Output pin (-) of Differential Amp.
30	IND2	Input pin of Channel 2 for Input Selector SW
31	INC2	
32	INB2	
33	INA2	
34	DEFN IN1	Negative Input pin of Differential Amp.
35	DEFP IN1	Positive Input pin of Differential Amp.
36	Vcc	Analog Power Supply pin

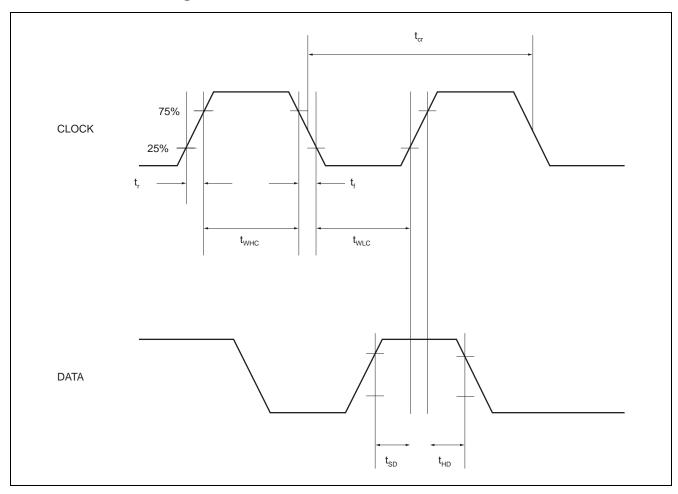
Signal Communication Diagram (Channel 1 side only)



Electrical Characteristics

 $(Ta = 25 \, ^{\circ}\text{C}, \, V_{CC} = 8 \, \text{V}, \, V_{DD} = 5 \, \text{V}, \, Input \, Gain/Volume/Tone/fader} = 0 \, dB, \, Loudness = OFF, \, unless \, otherwise \, noted.)$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Circuit current	Icc	_	_	40	mA	No signal setting
Pass gain	Gv	-2	0	+2	dB	
Volume maximum	A _{TT} (VOL)	_	-90	-80	dB	Vi = 1 Vrms, f = 1 kHz
Attenuation quantity						ATT (VOL) = $-\infty$ dB
Crosstalk between Channels	ΔA _{TT} (VOL)	-2	0	+2	dB	ATT (VOL) = 0 dB
Maximum input voltage	V _{IM}	_		1.8	Vrms	f = 1 kHz, DIN-AUDIO
						THD = 1%
Boost quantity (Bass)	G (Bass) B	13	16	19	dB	f = 100 Hz
Cut quantity (Bass)	G (Bass) C	-15	-12	-9	dB	f = 100 Hz
Boost quantity (Mid)	G (MID) B	9	12	15	dB	f = 1 kHz
Cut quantity (Mid)	G (MID) C	-15	-12	-9	dB	f = 1 kHz
Boost quantity (Treble)	G (Tre) B	9	12	15	dB	f = 10 kHz
Cut quantity (Treble)	G (Tre) C	-15	-12	-9	dB	f = 10 kHz
Fader maximum attenuation	A _{TT} (FED)	_	-90	-80	dB	Vi = 1 Vrms, f = 1 kHz, DIN-AUDIO
quantity						ATT (FED) = $-\infty$ dB
Maximum input voltage	V _{OM}	1.8	_	_	Vrms	f = 1 kHz, DIN-AUDIO
						THD = 1%
Output noise voltage	Vno 1	_	12	_	μVrms	Rg = 0, DIN-AUDIO
	Vno 2	_	5	_		Bypass setting
						Rg = 0, DIN-AUDIO
	Vno 3	_	3.5	_		ATT (VOL) = $-\infty$ dB
						Rg = 0, DIN-AUDIO
Total harmonic distortion	THD	_	0.01	0.05	%	$f = 1 \text{ kHz}, V_0 = 0.5 \text{ Vrms}$
						BW: 400 Hz to 30 kHz
Channel separation	CS	_	-90	- 75	dB	f = 1 kHz, DIN-AUDIO
Input selector crosstalk	CT	_	- 75	-60	dB	f = 1 kHz, DIN-AUDIO
Loudness voltage gain	Gv (LOUD)	10	13	16	dB	Loudness ON, f = 100 Hz
						VOL1 = -30 dB, VOL2 = 0 dB
						$LOUD_VOL = -20 dB$
Input gain control	Gv (GAIN)	15.75	18.75	21.75	dB	Gv (GAIN) = +18.75 dB
Common mode rejection	CMRR	_	50	_	dB	2, 3 pin/34, 35 pin
ratio						Common mode signal input setting


Connection of Data and Clock

Digital Block Direct Current Characteristic

		Limits					
Item	Symbol	Min	Тур	Max	Unit	Test C	onditions
"L" Level Input Voltage	V_{IL}	0	2	1.0	V	$V_{DD} = 5 \text{ V}$	setting
"H" Level Input Voltage	V _{IH}	4.0	5	5.0		DATA, CL	OCK Pin
"L" Level Input Electric Current	I _{IL}	-10	_	10	μΑ	V = 0 V	DATA,
"H" Level Input Electric Current	I _{IH}		_	10		V = 5 V	CLOCK Pin

Clock and Data Timing

Digital Block Alternating Current Characteristic

			Limits		
Item	Symbol	Min	Тур	Max	Unit
CLOCK Cycle Time	t _{cr}	4	_	_	μS
CLOCK Pulse Width ("H" level)	t _{WHC}	1.6	_	_	
CLOCK Pulse Width ("L" level)	t _{WLC}	1.6	_	_	
CLOCK Rise Time	t _r	_	_	0.4	
CLOCK Hall Time	t _f	_	_	0.4	
DATA Setup Time	t _{SD}	0.8	_	_	
DATA Hold Time	t _{HD}	0.8	_	_	

Data Input Format

Loudness ON/OFF 0: OFF 1: ON D9 D10D11 D12D13D14D15D16D17D18D19D20D21D22D23D24D25D26D27D28D29D30D31D32D34D34D35D34D34D35D34D34D32D33D34 0 0 Zero-cross Detector Changing Saw 0: Front Step Detector (9 pin, 28 pin) 1: Back Step Detector (11 pin, 26 pin) 0 0 ~ Loudness 0/1 f0 Control 0 0 0 0 0 0 0 0 Non Fader (ATT) 0 0 0/1 Fader Output Front/Rear changing 0: Front 1: Rear Timer Setting 0 0/1 0 0 LOUDNESS 0 Bypass 0: Bypass Output 1: Tone Output 0 Fader 0 0/1 0 Treble f0 Control 0/1 Input Gain Control 0 0 TREBLE 0 0 Input Selector Mid Q Control 0 6 0 Mid f0 Control 0 0 Volume 2 (CH2) Volume 1 (CH2) ₽ M D8 Bass Q Control D7 D6 Bass f0 Control D2 7 Volume 1 (CH1) Volume 2 (CH1) D3 D2 Bass 5

Note: Data transmission (Rewriting) of D33 = 1, D34 = 0 setting, put 100 ms interval and data transmission

Data Transmission Direction

8

DATA SELECT (D33, D34)
00: Volume 1/Input Selector/Input Gain Control/Loudness Gain
01: Volume 2
10: Fader/Non Fader/Bass/Mid/Treble/Loudness ON/OFF

Volume 1 Code

	CH1	D0	D1	D2	D3	D4
ATTVA1	CH2	D7	D8	D9	D10	D11
0 d	В	0	0	0	0	1
–1 d	В	1	1	1	1	0
–2 d	В	0	1	1	1	0
−3 d	В	1	0	1	1	0
–4 d	В	0	0	1	1	0
−5 d	В	1	1	0	1	0
−6 d	В	0	1	0	1	0
–7 d	В	1	0	0	1	0
–8 d	В	0	0	0	1	0
–9 d	В	1	1	1	0	0
–10 d	В	0	1	1	0	0
–11 d	В	1	0	1	0	0
–12 d	В	0	0	1	0	0
–16 d	В	1	1	0	0	0
–20 d	В	0	1	0	0	0
–24 d	В	1	0	0	0	0
–28 d	В	0	0	0	0	0

	CH1	D5	D6
ATTVA2	CH2	D12	D13
0 dB		1	1
−1 dB		0	1
−2 dB		1	0
−3 dB		0	0

ATTVA2 fixed to 0 dB when 0 dB to -12 dB setting.

Volume 2 Code

	CH1	D0	D1	D2	D3
ATTVB1	CH2	D6	D7	D8	D9
0 dl	В	0	1	1	1
-2 dl	В	1	0	1	1
–4 dl	В	0	0	1	1
−6 dl	В	1	1	0	1
–8 dl	В	0	1	0	1
–10 dl	В	1	0	0	1
-12 dl	В	0	0	0	1
–14 dl	В	1	1	1	0
–16 dl	В	0	1	1	0
–24 dl	В	1	0	1	0
-32 dl	В	0	0	1	0
-40 dl	В	1	1	0	0
–48 dl	В	0	1	0	0
–56 dl	В	1	0	0	0
–∞ dl	В	0	0	0	0

	CH1	D4	D5
ATTVB2	CH2	D10	D11
0 0	0 dB		1
−2 dB		0	1
−4 dB		1	0
−6 dB		0	0

ATTVB2 fixed to 0 dB when 0 dB to -16 dB setting.

Timer Setting Code

Timer	D25	D26
5 ms	1	1
10 ms	0	1
15 ms	1	0
20 ms	0	0

Tone Code

Mid	D8	D9	D10	D11
Treble	D15	D16	D17	D18
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0/1
–2 dB	1	0	0	1
–4 dB	0	1	0	1
−6 dB	1	1	0	1
–8 dB	0	0	1	1
–10 dB	1	0	1	1
–12 dB	0	1	1	1

Bass	D0	D1	D2	D3
16 dB	0	0	0	1
14 dB	1	1	1	0
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0
–2 dB	1	0	0	1
–4 dB	0	1	0	1
−6 dB	1	1	0	1
–8 dB	0	0	1	1
–10 dB	1	0	1	1
-12 dB	0	1	1	1

Loudness Volume Code

Loudness	D21	D22	D23	D24
−2 dB	1	1	1	1
−4 dB	0	1	1	1
−6 dB	1	0	1	1
−8 dB	0	0	1	1
–10 dB	1	1	0	1
–12 dB	0	1	0	1
–14 dB	1	0	0	1
–16 dB	0	0	0	1
–18 dB	1	1	1	0
–20 dB	0	1	1	0
−22 dB	1	0	1	0
–24 dB	0	0	1	0
–26 dB	1	1	0	0
–28 dB	0	1	0	0
-30 dB	1	0	0	0
–∞ dB	0	0	0	0

Please refer to 21, 22 page for Loudness gain setting.

Loudness f0 Control

Loudness f0 Control	D30	D31
f0 = 60 Hz	1	1
f0 = 80 Hz	0	1
f0 = 100 Hz	1	0

Tone f0, Q Control Code

Bass f0 Control	D4	D5
f0 = 50 Hz	1	1
f0 = 80 Hz	0	1
f0 = 120 Hz	1	0

Bass Q Control	D6	D7
Q = 2	1	1
Q = 1.5	0	1
Q = 1.25	1	0
Q = 1	0	0

Mid f0 Control	D12	D13
f0 = 700 Hz	1	1
f0 = 1 kHz	0	1
f0 = 2 kHz	1	0
f0 = 10 kHz	0	0

Mid Q Control	D14
Q = 1.5	1
Q = 2	0

Selector Code

Selector	D14	D15	D16
INA	0	0	1
INB	1	1	0
INC	0	1	0
IND	1	0	0
Differential Input	0	0	0

Non Fader Code

ATT	D26	D27	D28	D29
+12 dB	1	0	1	1
+10 dB	0	0	1	1
+8 dB	1	1	0	1
+6 dB	0	1	0	1
+4 dB	1	0	0	1
+2 dB	0	0	0	1
0 dB	1	1	1	0
−2 dB	0	1	1	0
−4 dB	1	0	1	0
−6 dB	0	0	1	0
–8 dB	1	1	0	0
–10 dB	0	1	0	0
–12 dB	1	0	0	0
–∞ dB	0	0	0	0

Input Gain Control Code

Input Gain Control	D17	D18	D19	D20
0 dB	1	1	1	1
1.25 dB	0	1	1	1
2.50 dB	1	0	1	1
3.75 dB	0	0	1	1
5.00 dB	1	1	0	1
6.25 dB	0	1	0	1
7.50 dB	1	0	0	1
8.75 dB	0	0	0	1
10.00 dB	1	1	1	0
11.25 dB	0	1	1	0
12.50 dB	1	0	1	0
13.75 dB	0	0	1	0
15.00 dB	1	1	0	0
16.25 dB	0	1	0	0
17.50 dB	1	0	0	0
18.75 dB	0	0	0	0

Fader Code

Fader	D21	D22	D23	D24
0 dB	1	1	1	1
-1 dB	0	1	1	1
−2 dB	1	0	1	1
–3 dB	0	0	1	1
–4 dB	1	1	0	1
−6 dB	0	1	0	1
–8 dB	1	0	0	1
-10 dB	0	0	0	1
–12 dB	1	1	1	0
–14 dB	0	1	1	0
–16 dB	1	0	1	0
–20 dB	0	0	1	0
-30 dB	1	1	0	0
–45 dB	0	1	0	0
-60 dB	1	0	0	0
–∞ dB	0	0	0	0

Loudness, Tone Control Frequency Characteristic

Figure 1 Loudness Frequency Characteristic

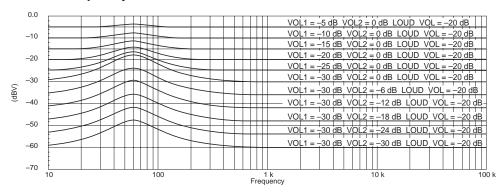


Figure 2 Loudness Frequency Characteristic (VOL = -30 dB, Loudness = -20 dB, f0 = Variable)

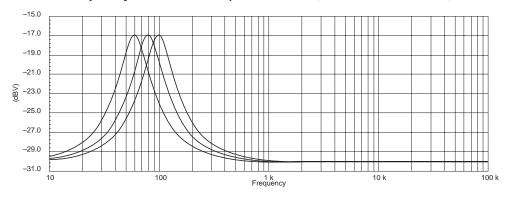


Figure 3 Bass Frequency Characteristic (f0 = 50 Hz, Q = 2, Gv = Variable)

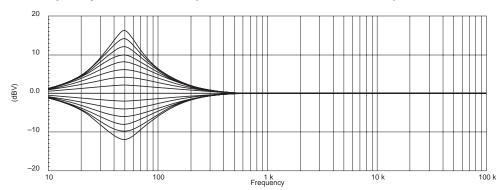


Figure 4 Bass Frequency Characteristic (Gv = +16 dB, f0 = Variable, Q = 2)

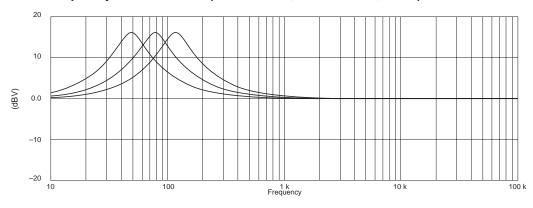


Figure 5 Bass Frequency Characteristic (Gv = +16 dB, Q = Variable, f0 = 50 Hz)

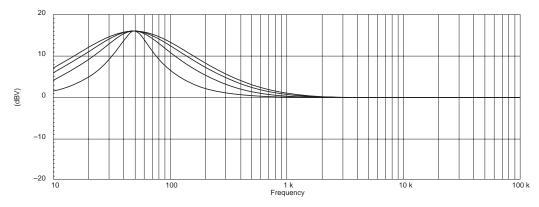


Figure 6 Mid Frequency Characteristic (f0 = 1 kHz, Q = 2, Gv = Variable)

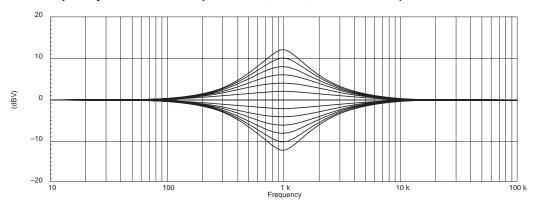


Figure 7 Mid Frequency Characteristic (Gv = +12 dB, Q = 2, f0 = Variable)

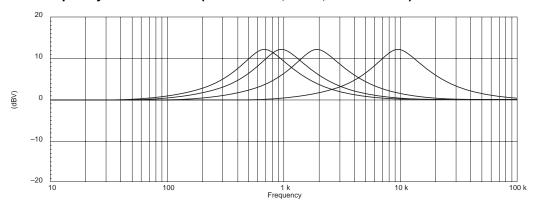


Figure 8 Mid Frequency Characteristic (Gv = +12 dB, f0 = 1 kHz, Q = Variable)

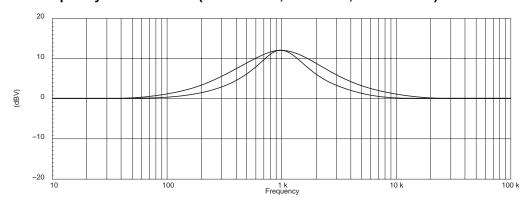
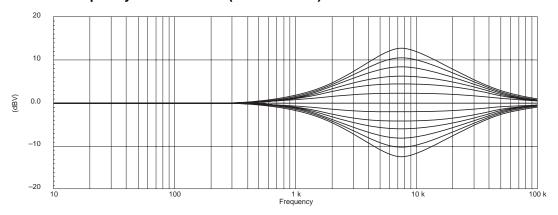
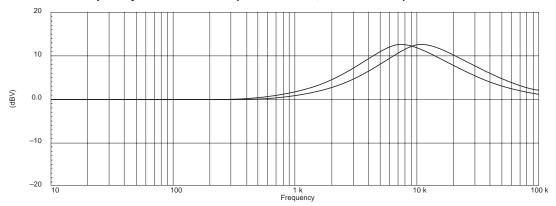
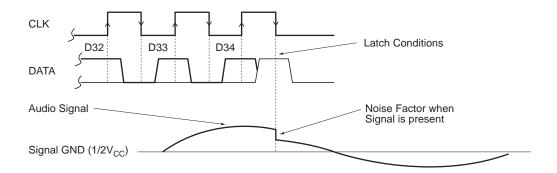
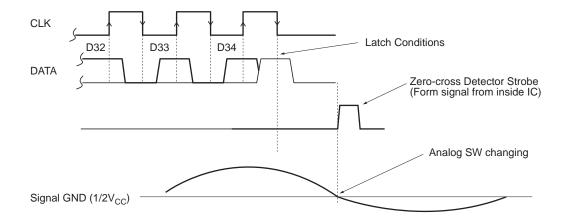


Figure 9 Treble Frequency Characteristic (Gv = Variable)

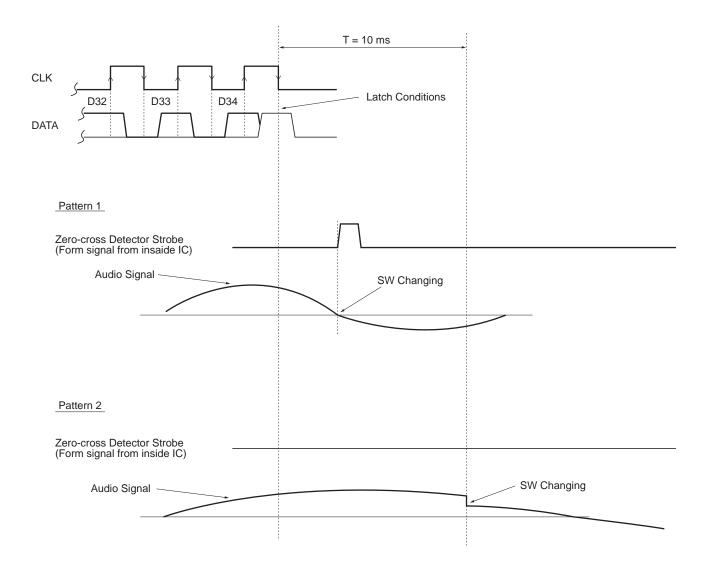

Figure 10 Treble Frequency Characteristic (Gv = +12 dB, f0 = Variable)


Zero-Crossing Detection Circuit

1. Meaning of Zero-Crossing Detection Circuit

In the conventional Serial Data Control Type Volume, Analog SW inside switches over simultaneously with Latch Condition Detector. And the operation completes.

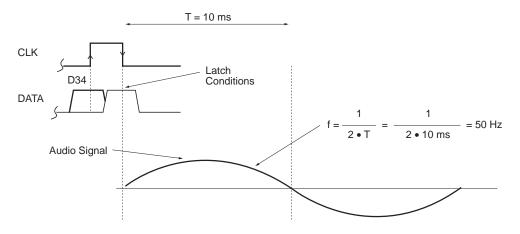
In this case the changing noise occurs at the time of Latch Condition Detector, the Analog SW switches over (Zerocross Detector Strobe occurs) in the moment that the Analog Signal cross Signal Ground ($1/2V_{CC}$).


Other, In the case of Audio Signal isn't inputted (No signal), even if only Zero-cross Detector Circuit detects Latch Condition, Analog SW doesn't switch over for the Audio Signal never cuts Signal Ground ($1/2V_{CC}$).

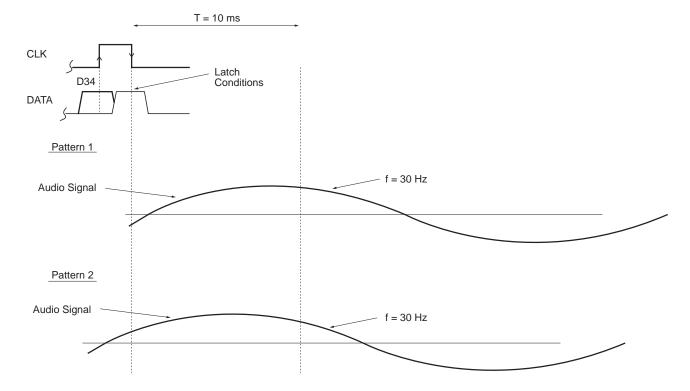
The Time Function switches the Analog SW after some time T.

The Timer Time can setting with the Serial Data of 5 ms, 10 ms, 15 ms, 20 ms.

2. Connection of Zero-Crossing Detector and Timer Setting

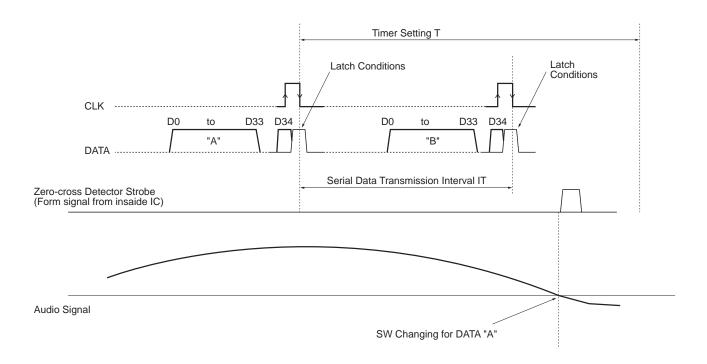

"OR" of [Zero-cross Detector Strobe] or [Compulsion SW of Timer Circuit] moves Internal Analog SW. When for example, suppose that it set to T=10 ms.

In case of Pattern 1, the Zero-cross Detector Strobe occurs with the Zero-cross Detector Function, and SW is switched. But in case of Pattern 2, the Timer Function switches the Analog SW after T=10 ms, for the Audio Input Signal didn't cut the Signal Ground after T=10 ms which were set with the timer.


Timer Setting Time setting for Frequency band of Input Audio Signal.

3. Timer Setting System

In case of Timer Setting Time/T = 10 ms setting


Audio Signal	Zero-cross Detector	
50 Hz <	100%	Upper fig.
50 Hz \	100%	Pattern 1
50 Hz >	0%	Pattern 2

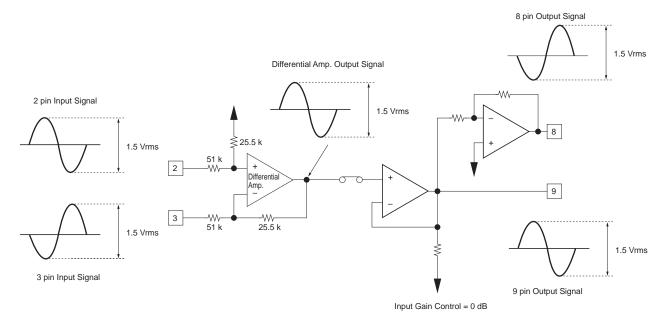
The Timer Setting Time T makes T = 20 ms (Zero-cross detect of 25 Hz is 100%) maximum and it is setting by it.

4. Connection of Data Transmission and Timer Setting

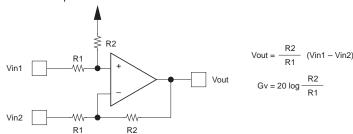
M61508FP has the function to make the Serial Data invalid until it generation the Zero-cross Detector Strobe in IC, after the Latch Condition detected.

^{*} In case of upper figurative. The order of DATA "B" is invalid.

In to make the Serial Data Transmission Interval IT from MCU (microcomputer) to M61508FP

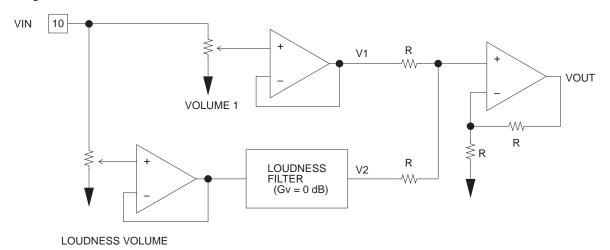

the reading error of the data doesn't occur.

* Serial Data Transmission Interval IT = Interval of between Latch Condition and Latch Condition


The Others

1. Differential Amp.

The lower fig. is Equalizing Circuit, Output Signal/Output Voltage of each point.



Differential Amp. Gain Calculation Formula

2. Loudness Gain Setting

Lower Figure is Structure of Loudness Circuit.

Output Voltage (VOUT) of Setting Structure of Upper Figure

It is noted as Volume 1 Output Voltage = V1, Loudness Filter Output Voltage = V2, VOUT and Gv (Boost quantity) is given at the lower formula

$$Gv = 20 log \frac{(V1 + V2)}{VIN} - (Volume 1 attenuation quantity) (dB)$$

ex.) VIN = 1 Vrms/60 Hz, Volume1 = -30 dB, Output Volutage and Boost Quantity of 60 Hz of Loudness Volume = -20 dB setting

From: Volume1, Loudness Volume attenuation quantity Become: V1 = 31.6 mVrms V2 = 100 mVrms

If the sub situdes the equation for the upper formula, the following equation is given,

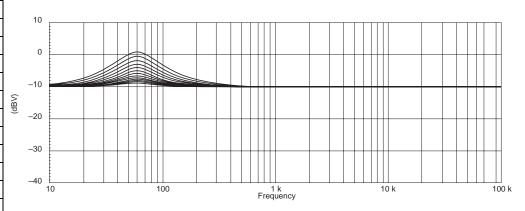
Gain (dB)

Gv

Frequency (Hz)

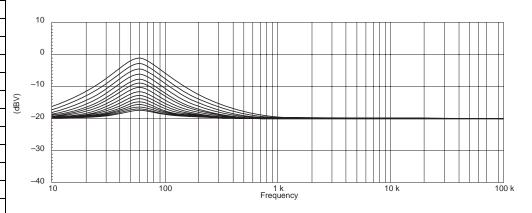
Volume 1 = -30 dB

$$Gv = 20 \log \frac{(31.6 \text{ m} + 100 \text{ m})}{1} - (-30 \text{ dB})$$

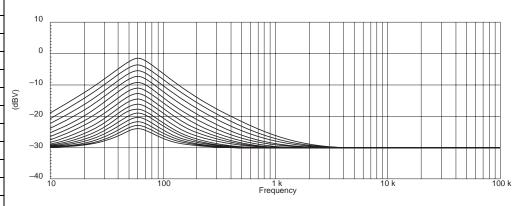

=12.4 dB is obtained

In the item, the Loudness Gain Setting example is shown, when Volume 1 fixation and doing the Loudness Volume variably. Please refer to Plan.

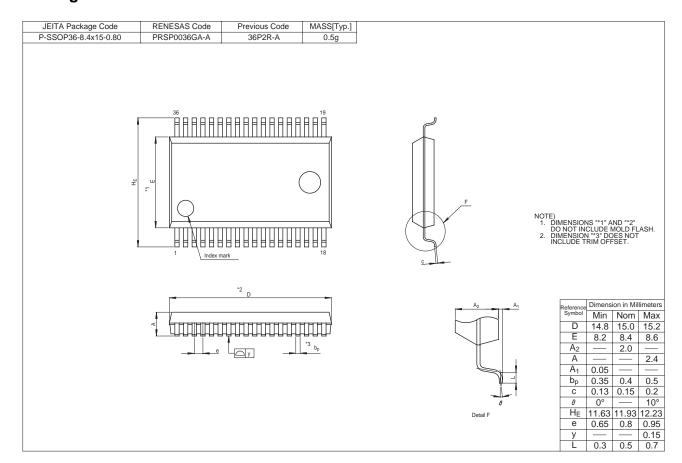
Loudness Gain Setting Example


1. Volume 1 = -10 dB

Loudness	Loudness
Volume	Gain
−2 dB	10.9 dB
−4 dB	9.5 dB
−6 dB	8.2 dB
–8 dB	7.1 dB
–10 dB	6.0 dB
–12 dB	5.1 dB
–14 dB	4.2 dB
–16 dB	3.5 dB
–18 dB	2.9 dB
–20 dB	2.4 dB
–22 dB	1.9 dB
–24 dB	1.6 dB
–26 dB	1.3 dB
–28 dB	1.0 dB
-30 dB	0.8 dB
–∞ dB	0 dB


2. Volume 1 = -20 dB

Loudness	Loudnes
Volume	s Gain
−2 dB	19.0 dB
−4 dB	17.3 dB
−6 dB	15.6 dB
−8 dB	13.9 dB
–10 dB	12.4 dB
–12 dB	10.9 dB
–14 dB	9.5 dB
–16 dB	8.2 dB
–18 dB	7.1 dB
–20 dB	6.0 dB
–22 dB	5.1 dB
–24 dB	4.2 dB
–26 dB	3.5 dB
–28 dB	2.9 dB
-30 dB	2.4 dB
–∞ dB	0 dB



3. Volume 1 = -30dB

Loudness	Loudness	
Volume	Gain	
−2 dB	28.3 dB	
−4 dB	26.4 dB	
−6 dB	24.5 dB	
−8 dB	22.7 dB	
–10 dB	20.8 dB	
–12 dB	19.0 dB	
–14 dB	17.3 dB	
–16 dB	15.6 dB	
–18 dB	13.9 dB	
–20 dB	12.4 dB	
–22 dB	10.9 dB	
–24 dB	9.5 dB	
–26 dB	8.2 dB	
–28 dB	7.1 dB	
-30 dB	6.0 dB	
–∞dB	0 dB	

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510