Single Non-Inverting Buffer with Schmitt Trigger The NL17SZ17 is a single Non-inverting Schmitt Trigger Buffer in two tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive. #### **Features** - Tiny SOT-353 and SOT-553 Packages - Source/Sink 24 mA at 3.0 Volts - Overvoltage Tolerant Inputs and Outputs - Chip Complexity: FETs = 20 - Designed for 1.65 V to 5.5 V V_{CC} Operation - These Devices are Pb-Free and are RoHS Compliant - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable Figure 1. Pinout (Top View) Figure 2. Logic Symbol # ON Semiconductor® http://onsemi.com ### **MARKING DIAGRAMS** SC-88A (SC-70-5/SOT-353) **DF SUFFIX CASE 419A** SOT-553 **XV5 SUFFIX** CASE 463B LX = Specific Device Code M = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### **PIN ASSIGNMENT** | Pin | Function | |-----|-----------------| | 1 | NC | | 2 | Α | | 3 | GND | | 4 | Y | | 5 | V _{CC} | #### **FUNCTION TABLE** | A Input | Y Output | | |---------|----------|--| | L | L | | | Н | Н | | #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. 1 #### **MAXIMUM RATINGS** | Symbol | Pa | rameter | Value | Units | | |----------------------|--|---|---------------------------|-------|--| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | | VI | DC Input Voltage | | $-0.5 \le V_1 \le +7.0$ | V | | | Vo | DC Output Voltage | t Voltage Output in High or LOW State (Note 1) | | | | | I _{IK} | DC Input Diode Current | V _I < GND | -50 | mA | | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | | Io | DC Output Sink Current | | ±50 | mA | | | I _{CC} | DC Supply Current per Supply Pin | | ±100 | mA | | | I _{GND} | DC Ground Current per Ground Pin | ±100 | mA | | | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | | | TL | Lead Temperature, 1 mm from Case fo | r 10 Seconds | 260 | °C | | | TJ | Junction Temperature under Bias | | +150 | °C | | | $\theta_{\sf JA}$ | Thermal Resistance | SOT-353 (Note 2)
SOT-553 | 350
496 | °C/W | | | P_{D} | Power Dissipation in Still Air at 85°C | SOT-353
SOT-553 | 186
135 | mW | | | MSL | Moisture Sensitivity | | Level 1 | | | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | ESD | ESD Classification | Human Body Model (Note 3)
Machine Model (Note 4)
Charged Device Model | Class 2
Class C
N/A | | | | I _{Latchup} | Latchup Performance | Above V _{CC} and Below GND at 85°C (Note 5) | ±500 | mA | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. I_O absolute maximum rating must be observed. - Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B. - 4. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A. - 5. Tested to EIA/JESD78. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | | Max | Units | |-----------------|------------------------------------|--|-------------|----------------------------------|-------| | V _{CC} | Supply Voltage | Operating
Data Retention Only | 1.65
1.5 | 5.5
5.5 | V | | VI | Input Voltage, (Note 6) | | 0 | 5.5 | V | | Vo | Output Voltage | (HIGH or LOW State) | 0 | 5.5 | V | | T _A | Operating Free-Air Temperature | | -55 | +125 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate | $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$
$V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0
0
0 | No Limit
No Limit
No Limit | ns/V | 6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level. #### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T _A = | = 25°C | | -55°C ≤ T _A ≤ | 125°C | | |------------------|--|--|--|---|--|--|---|--|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | V _T + | Positive Input
Threshold Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.6
1.0
1.2
1.3
1.9
2.2 | 1.0
1.5
1.7
1.9
2.7
3.3 | 1.4
1.8
2.0
2.2
3.1
3.6 | 0.6
1.0
1.2
1.3
1.9
2.2 | 1.4
1.8
2.0
2.2
3.1
3.6 | V | | V _T - | Negative Input
Threshold Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.2
0.4
0.5
0.6
1.0 | 0.5
0.75
0.87
1.0
1.5
1.9 | 0.8
1.15
1.4
1.5
2.0
2.3 | 0.2
0.4
0.5
0.6
1.0 | 0.8
1.15
1.4
1.5
2.0
2.3 | V | | V _H | Input Hysteresis Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.1
0.25
0.3
0.4
0.6
0.7 | 0.48
0.75
0.83
0.93
1.2
1.4 | 0.9
1.1
1.15
1.2
1.5
1.7 | 0.1
0.25
0.3
0.4
0.6
0.7 | 0.9
1.1
1.15
1.2
1.5
1.7 | V | | V _{OH} | High-Level Output Voltage V _{IN} = V _{IH} or V _{IL} | $\begin{split} I_{OH} &= -100 \ \mu A \\ I_{OH} &= -3 \ mA \\ I_{OH} &= -8 \ mA \\ I_{OH} &= -12 \ mA \\ I_{OH} &= -16 \ mA \\ I_{OH} &= -24 \ mA \\ I_{OH} &= -32 \ mA \end{split}$ | 1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5 | V _{CC} -0.1
1.29
1.9
2.2
2.4
2.3
3.8 | V _{CC}
1.52
2.1
2.4
2.7
2.5
4.0 | | V _{CC} -0.1
1.29
1.9
2.2
2.4
2.3
3.8 | | V | | V _{OL} | Low-Level Output Voltage
V _{IN} = V _{IH} or V _{IL} | $\begin{split} I_{OL} &= 100 \; \mu\text{A} \\ I_{OL} &= 4 \; \text{mA} \\ I_{OL} &= 8 \; \text{mA} \\ I_{OL} &= 12 \; \text{mA} \\ I_{OL} &= 16 \; \text{mA} \\ I_{OL} &= 24 \; \text{mA} \\ I_{OL} &= 32 \; \text{mA} \end{split}$ | 1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5 | | 0.08
0.2
0.22
0.28
0.38
0.42 | 0.1
0.24
0.3
0.4
0.4
0.55
0.55 | | 0.1
0.24
0.3
0.4
0.4
0.55
0.55 | V | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 0 to 5.5 | | | ±0.1 | | ±1.0 | μА | | I _{OFF} | Power Off
Leakage Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | | | 1.0 | | 10 | μΑ | | I _{CC} | Quiescent Supply Current | V _{IN} = 5.5 V or GND | 5.5 | | | 1.0 | | 10 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_{\text{f}} = t_{\text{f}} = 3.0 \text{ ns}$) | | | Vcc | | V_{CC} $T_{A} = 25^{\circ}C$ $-55^{\circ}C \le T_{A} \le 125^{\circ}$ | | T _A = 25°C | | _A ≤ 125°C | | |--------------------------------------|--|--|---|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | t _{PLH}
t _{PHL} | Propagation Delay
Input A to Y
(Figures 3 and 4) | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | $\begin{array}{c} 1.65 \\ 1.8 \\ 2.5 \pm 0.2 \\ 3.3 \pm 0.3 \\ 5.0 \pm 0.5 \end{array}$ | 2.0
2.0
1.0
1.0
0.5 | 9.1
7.6
5.0
3.7
3.1 | 15
12.5
9.0
6.3
5.2 | 2.0
2.0
1.0
1.0
0.5 | 15.6
13
9.5
6.5
5.5 | ns | | | | $R_L = 500 \ \Omega, \ C_L = 50 \ pF$ | 3.3 ± 0.3
5.0 ± 0.5 | 1.5
0.8 | 4.4
3.7 | 7.2
5.9 | 1.5
0.8 | 7.5
6.2 | | #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |-----------------|--|--|---------|-------| | C _{IN} | Input Capacitance | $V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | >2.5 | pF | | C _{PD} | Power Dissipation Capacitance (Note 7) | 10 MHz, V _{CC} = 3.3 V, V _I = 0 V or V _{CC}
10 MHz, V _{CC} = 5.5 V, V _I = 0 V or V _{CC} | 9
11 | pF | ^{7.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$. Figure 3. Switching Waveforms A 1 MHz square input wave is recommended for propagation delay tests. Figure 4. Test Circuit Figure 5. Typical Input Threshold, $V_{T}+$, $V_{T}-$ versus Power Supply Voltage Figure 6. Typical Schmitt-Trigger Applications # **DEVICE ORDERING INFORMATION** | Device Order
Number | Package
Type | Tape/Reel Size [†] | |------------------------|-------------------------------------|-----------------------------| | NL17SZ17DFT2G | SC-88A/SC-70-5/SOT-353
(Pb-Free) | 3000 Units / Tape & Reel | | NLV17SZ17DFT2G* | SC-88A/SC-70-5/SOT-353
(Pb-Free) | 3000 Units / Tape & Reel | | NL17SZ17XV5T2G | SOT-553
(Pb-Free) | 4000 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. # **PACKAGE DIMENSIONS** SC-88A (SC-70-5/SOT-353) **DF SUFFIX** CASE 419A-02 ISSUE K - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INC | HES | MILLIN | IETERS | | |-----|-------|-----------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | | В | 0.045 | 0.053 | 1.15 | 1.35 | | | С | 0.031 | 0.043 | 0.80 | 1.10 | | | D | 0.004 | 0.012 | 0.10 | 0.30 | | | G | 0.026 | BSC | 0.65 BSC | | | | Н | | 0.004 | | 0.10 | | | J | 0.004 | 0.010 | 0.10 | 0.25 | | | K | 0.004 | 0.012 | 0.10 | 0.30 | | | N | 0.008 | 0.008 REF | | REF | | | S | 0.079 | 0.087 | 2.00 | 2.20 | | #### PACKAGE DIMENSIONS #### SOT-553 **XV5 SUFFIX** CASE 463B **ISSUE B** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL | | MILLIMETERS | | | MILLIMETERS INCHES | | | | |-----|-------------|----------|------|--------------------|-------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 | | | b | 0.17 | 0.22 | 0.27 | 0.007 | 0.009 | 0.011 | | | С | 0.08 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | | D | 1.50 | 1.60 | 1.70 | 0.059 | 0.063 | 0.067 | | | E | 1.10 | 1.20 | 1.30 | 0.043 | 0.047 | 0.051 | | | е | | 0.50 BSC | | 0.020 BSC | | | | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | | HE | 1.50 | 1.60 | 1.70 | 0.059 | 0.063 | 0.067 | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Cer Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative