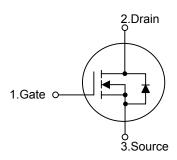


UNISONIC TECHNOLOGIES CO., LTD

11N50 **Preliminary Power MOSFET**

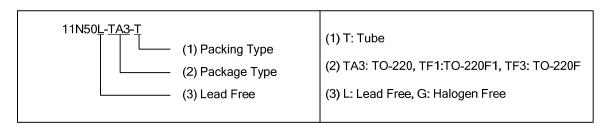
11A, 500V N-CHANNEL POWER MOSFET

DESCRIPTION


The UTC 11N50 is an N-channel enhancement mode power MOSFET. It uses UTC advanced planar stripe, DMOS technology to provide customers perfect switching performance, minimal on-state resistance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC 11N50 is universally applied in electronic lamp ballasts based on half bridge topology, high efficiency switched mode power supplies, active power factor correction, etc.

FEATURES


- * $R_{DS(ON)}$ =0.55 Ω @ V_{GS} =10V
- * Fast Switching
- * With 100% Avalanche Tested

SYMBOL

ORDERING INFORMATION

Ordering Number		Dooksara	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
11N50L-TA3-T	11N50G-TA3-T	TO-220	G	D	S	Tube	
11N50L-TF1-T	11N50G-TF1-T	TO-220F1	G	D	S	Tube	
11N50L-TF3-T	11N50G-TF3-T	TO-220F	G	D	S	Tube	

www.unisonic.com.tw 1 of 6

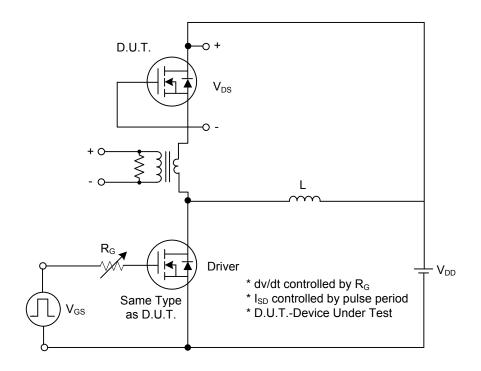
■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT		
Drain to Source Voltage		V_{DSS}	500	٧		
Gate to Source Voltage		V_{GSS}	±30	V		
Continuous Drain Current $T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$			11 (Note 2)	Α		
		T _C =100°C	l _D	7 (Note 2)	Α	
Pulsed Drain Current (Note 3)		I _{DM}	44 (Note 2)	Α		
Single Pulsed Avalanche Energy(Note 4)		E _{AS}	670	mJ		
Peak Diode Recovery dv/dt (Note 5)		dv/dt	4.5	V/ns		
	T _C =25°C	TO-220	P _D	195	W	
		TO-220F1		48		
		TO-220F		147		
	Derate above 25°C	TO-220		1.56		
		TO-220F1		0.39	W/°C	
		TO-220F		1.18		
Junction Temperature		TJ	+150	°C		
Storage Temperature		T _{STG}	-55 ~ +150	°C		

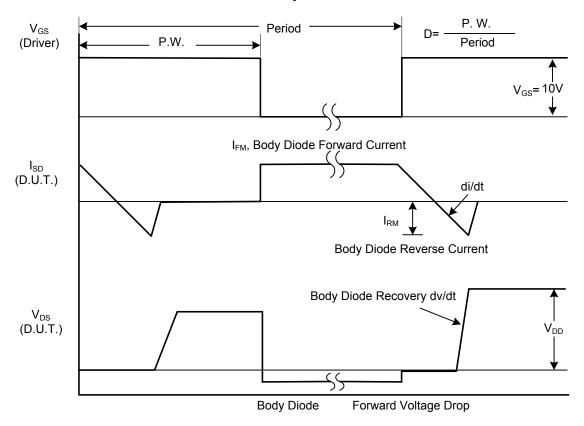
- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Drain current limited by maximum junction temperature
 - 3. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 4. L=10mH, I_{AS} =11A, V_{DD} = 50V, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C
 - 5. I_{SD} ≤11A, di/dt ≤200A/μs, V_{DD} ≤BV_{DSS}, Starting T_J=25°C

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient		θ_{JA}	62.5	°C/W	
Junction to Case	TO-220		0.64	°C/W	
	TO-220F1	θ_{JC}	2.58		
	TO-220F		0.85		

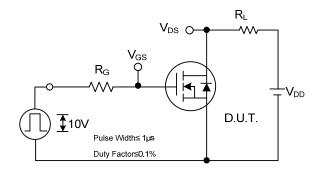

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

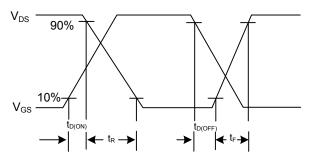
	1	1						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =250 μ A	500			V		
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250μA,Referenced to 25°C		0.5		V/°C		
Drain Course Leakage Current		V _{DS} =500V, V _{GS} =0V			10	μΑ		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =500V, T _J =125°C			100	μΑ		
Gate-Source Leakage Current	I_{GSS}	V_{DS} =0V , V_{GS} =±30V			±100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	V_{DS} = V_{GS} , I_D =250 μ A	2.0		4.0	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5.5A		0.48	0.55	Ω		
DYNAMIC PARAMETERS								
Input Capacitance	C _{ISS}			1515	2055	pF		
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V,f=1.0MHz		185	235	pF		
Reverse Transfer Capacitance	C _{RSS}			25	30	pF		
SWITCHING PARAMETERS								
Total Gate Charge	Q_G	\\ -400\\ \\ -10\\ -140		43	55	nC		
Gate-Source Charge	Q_{GS}	V _{DS} =400V, V _{GS} =10V, I _D =11A (Note 1, 2)		8		nC		
Gate-Drain Charge	Q_{GD}	(Note 1, 2)		19		nC		
Turn-ON Delay Time	t _{D(ON)}			24	57	ns		
Turn-ON Rise Time	t_R	V_{DD} =250V, I_{D} =11A, R_{G} =3 Ω		70	150	ns		
Turn-OFF Delay Time	t _{D(OFF)}	(Note 1, 2)		120	250	ns		
Turn-OFF Fall Time	t_{F}			75	160	ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current	Is				11	Α		
Maximum Body-Diode Pulsed Current	I _{SM}				44	Α		
Drain-Source Diode Forward Voltage	V_{SD}	I _S =11A, V _{GS} =0V			1.4	V		
Body Diode Reverse Recovery Time	t _{rr}	V _{GS} =0V, I _S =11A,		90		ns		
Body Diode Reverse Recovery Charge	Q_{RR}	dI _F /dt=100A/μs (Note 1)		1.5		μC		


Note: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%

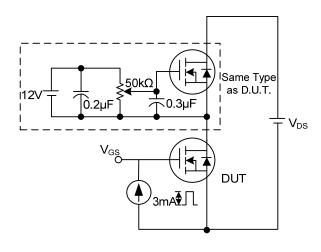
^{2.} Essentially independent of operating temperature

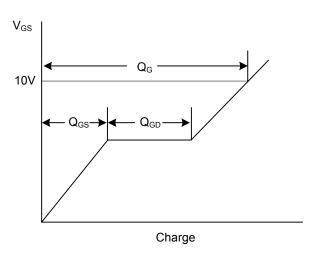
■ TEST CIRCUITS AND WAVEFORMS



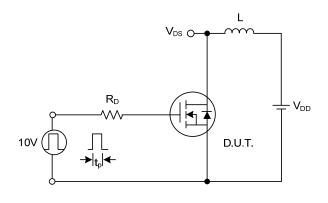

Peak Diode Recovery dv/dt Test Circuit

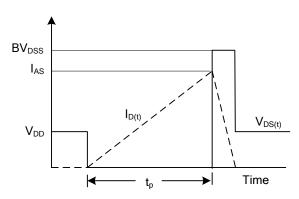
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

