TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T6M45,JT6M45-AS

T6M45, JT6M45-AS CMOS Single-Chip LSI for LCD Calculator

The T6M45, JT6M45-AS is a single-chip microcomputer for 12 -digit or 10 -digit 2 -memory calculator.

T6M45, JT6M45-AS can drive the liquid crystal display (LCD).Single power supply operation, wide operating voltage range and low-power consumption make it suitable for 1.5 V solar battery operated calculator.

Besides T6M45, JT6M45-AS can selectable with a pin-programmable to function of Power timer and Memory hold.

Features

Operational Features:

Weight: 1.20 g (typ.)

- 12 digits or 10 digits (selectable with a pin-programmable) of data, 2 digits of sign, error symbol, memory load symbol.
- Algebraic mode.
- Standard 4 functions (+,,$- \times, \div$)
- Memory and grand total (GT) memory calculation.
- Accumulating GT memory register with count up (down) item counter.
- Automatic percentage operation with add-on, discount.
- Automatic delta percentage, mark-up and mark-down operations.
- Square root.
- Constant calculation.
- Chain calculation.
- Change sign.
- Floating minus.
- Key roll over function (2 keys).
- Fixed point ("0", " 1 ", " 2 ", " 3 ", " 4 " or " 6 " places) or floating point (selectable with a switch).
- Adding point mode (selectable with a switch).
- Rounding switches (rounding up, down and off).
- Leading zero suppression.
- Trailing zero suppression.
- Punctuation on display, commas for thousands.
- Memory and GT memory contents indicator, turned on with non-zero in the memory and GT memory.
- Registration overflow, indicating that too many digits are entered (the most significant digit are protected).
- Result overflow, indicating during calculation (most function key are locked as it happened).
- Memory overflow indicating to flashing of memory load mark.

Electrical Features

- Complementary output buffer for direct driving of liquid crystal display (F.E.M LCD).
- Oscillator/clock generator internal to chip.
- Keyboard encoding internal to chip.
- Keyboard denouncing internal to chip.
- Automatic power on clear.
- Wide supply voltage range ($-1.2 \sim-2.0 \mathrm{~V}$).
- Very low power consumption (3.3 $\mu \mathrm{W}$ typ.).
- Quad in line flat package.

Pin Assignment (top view)

System Block Diagram

Battery Type

Dual Type

Solar Type

Connection of LCD

Select of 10 digits

Segment

Common

Select of 12 digits
Segment

Common

Key Connection

Touch Key

Lock Key

K_{14} : Selectable with calculated digits and memory hold status.
MH (memory hold), MK (memory kill), GTH (GT memory hold) and GTK (GT memory kill) at auto power OFF or OFF key.
K_{13} : Selectable with auto power OFF mode and total switch.
K_{12} : Rounding switches.
K_{11} : Selectable with fixed point or floating mode.

Specification of Calculator

Speed of Calculation (standard oscillating frequency $\mathrm{f} \phi=48 \mathrm{kHz}$)

Numeral		$11.8 \sim 17.7 \mathrm{~ms}$
Function	$\left\{\begin{array}{l} 1 \square \ldots \\ 1+ \\ \hline+\square \end{array}\right.$	$\begin{aligned} & 25.6 \mathrm{~ms} \\ & 95.2 \mathrm{~ms} \end{aligned}$
Addition and Subtract	$\left\{\begin{array}{lll} 1 & 2 & 3 \boxed{+} 1 \square \ldots \ldots \ldots \ldots \ldots \\ 9999999999 \boxed{-} 0.000000001 \square \end{array}\right.$	$\begin{array}{lr} \text {. . } 89.1 \mathrm{~ms} \\ \text {. } \quad 111.8 \mathrm{~ms} \end{array}$
Multiply	$\left\{\begin{array}{llll} 1 & 2 & 3 & \boxed{x} 2 \\ 1 \times & \ldots & \ldots \end{array}\right.$	$\begin{aligned} & 109.6 \mathrm{~ms} \\ & 207.7 \mathrm{~ms} \end{aligned}$
Device	$\left\{\begin{array}{lll} 1 & 2 & 3 \longdiv { \div } 3 \\ 9999999999 & \boxed{\square} & 1 \square \end{array}\right.$	$\begin{aligned} & \text {.. } 147.9 \mathrm{~ms} \\ & \text {.. } 249.0 \mathrm{~ms} \end{aligned}$
Memory calculation	$\left\{\begin{array}{l} 2 \boxed{M+} \ldots \ldots \\ 9999999999 \div \div\left(\begin{array}{l} M+ \end{array}\right. \end{array}\right.$	$\begin{aligned} & \text {.. } \quad 143.3 \mathrm{~ms} \\ & \text {.. } \quad 296.2 \mathrm{~ms} \end{aligned}$
Square root	$\left\{\begin{array}{l}9999999999 \sqrt{\sqrt{1}} \\ 2 \sqrt{\sqrt{7}} \ldots \ldots .\end{array}\right.$	$\begin{aligned} & \text {.. } \quad 167.7 \mathrm{~ms} \\ & \text {.. } \quad 125.0 \mathrm{~ms} \end{aligned}$

Keys for Calculator

$0 \quad 0,0 \sim 9 \quad$: Number
\square
$+/-$: Changer Sign
$\square \square \boxed{\square} \div$: Function\# v \% $\Delta \%$

$\xrightarrow{\text { IC] }}$: Shift
		: Item Counter
(CE) ${ }_{\text {ce }}^{\text {CE/C }}$	(\%) ${ }^{\mathrm{C}}$)	: Clear
	OFF	: OFF
	AC	: SYSTEM RESET

Operation Example

1. Fixed Point Calculation

(1) Key	Display	Fixed Point Place	(2) Key	Display	Fixed Point Place
C	0.	$D P=3(5 / 4)$	C	0.	$D P=0(1)$
2	2.		1	1.	
\div	2.		\square	1.	
3	3.		2	1.2	
\#	0.667		3	1.23	
2	2.		\pm	1.23	
\square	2.		1	1.	
3	2.3		$\cdot \cdot$	1.	
\pm	2.3		1	1.1	
4	4.		\square	3.	
M +	6.300		9	9.	
1	1.		v	3.	
\square	1.		区	3.	
2	1.2		1	1.	
M +	1.200		\square	1.	
			1	1.1	$D P=F$
MR	7.5		=	3.3	

2. Adding Point Mode Calculation

Key	Display	Key	Display	Key	Display
C	0.	M +	0.02M	\square	33.27M -
1	1.	3	3.M	2	2.M
23	123.	\square	3.M	\pm	0.02M
\pm	1.23	123	3.123M	9	9.M
3	3.	M +	3.12 M	\square	9.M
\square	1.26	MR	3.14M	\checkmark	3.M
3	3.	C	0.M	\square	3.02 M
2	32.	1	1.M		
-	32.	23	123.M		
3	3.	\square	1.23 M		
\square	3.	3	3.M		
000	3.000	4	34.M		
\square	96.00	\square	34.M		
2	2.	5	34.5M		

3. Constant Calculation

(1) Multiplication

Key Display
k k
区 k
$\begin{array}{cc}a & a \\ = & \mathrm{k} \cdot \mathrm{a}\end{array}$
b b
$\Rightarrow \quad k \cdot b$
(3) Addition
$\begin{array}{cc}a & a \\ \square & a\end{array}$
$\begin{array}{ll}k & k \\ \square & a+k\end{array}$
b b
$\Rightarrow \quad b+k$
(5) Percentage
$\begin{array}{cc}k & k \\ \times & k\end{array}$
a a
\% k-a/ 100
$b \quad b$
(\%) k•b/100
(7) Add-on

k	k	
\square	k	
a	a	
\%	$k \cdot(1+a / 100)$	$k+$
b	b	$k+$
\square	$k \cdot(1+b / 100)$	$k+$

(2) Division

Key Display Constant

a	a	
\div	a	
k	k	
\square	a / k	$\div k$
b	b	$\div k$
\square	b / k	$\div k$

(4) Subtraction
$\begin{array}{ll}a & a \\ - & a\end{array}$
k k

\square	$a-k$	$-k$
b	b	$-k$
\square	$b-k$	$-k$

(6) Percentage

a	a	
\div	a	
k	k	
$\%$	$100 \cdot a / k$	$+k$
b	b	$\div k$
$\%$	$100 \cdot b / k$	$\div k$

(8) Discount
k k

- k
a a
$\% \quad k \cdot(1-a / 100) \quad k-$
b b
$\% \quad k \cdot(1-b / 100) \quad k-$

4．$\Delta \%$ Calculation
（1）Key Display
a a
$+a$
b b
$\Delta \% \quad 100 \cdot(\mathrm{a}+\mathrm{b}) / \mathrm{b}$
（2）Key Display
a a
$-\quad a$
b b
$\Delta \% \quad 100 \cdot(\mathrm{a}-\mathrm{b}) / \mathrm{b}$

5．Mark－Up，Mark－Down Calculation

（1）Mark－up
Key Display
a a
$\div \quad a$
b b
$\Delta \% \quad a /(1-b / 100)$
$\Delta \% \quad|a /(1-b / 100)-a|$
（2）Mark－down
Key Display
a a
a
b b
$+1-b$
$\Delta \% \quad a /(1+b / 100)$
$\Delta \% \quad|a /(1+b / 100)-a|$

6．Add－On，Discount Calculation

Add－on		Discount	
$\begin{gathered} \text { Key } \\ \text { (1) } \end{gathered}$	$\begin{aligned} & \text { Display } \\ & \mathbf{a} \end{aligned}$	$\begin{gathered} \text { Key } \\ \text { (2) } \end{gathered}$	$\begin{aligned} & \text { Display } \\ & \text { a } \end{aligned}$
区	a	区	a
b	b	b	b
\％	$\mathrm{a} \cdot \mathrm{b} / 100$	\％	ab $/ 100$
\pm	ab／ 100	\square	ab／ 100
\square	$a(1+b / 100)$	θ	$\mathrm{a}(1-\mathrm{b} / 100)$
（3） \mathbf{a}	a	（4）	a
\pm	a	\square	a
b	b	b	b
\％	$a(1+b / 100)$	\％	$a(1-b / 100)$
（5）	a	（6）	a
区	a	区	a
b	b	b	b
		＋1－	－b
－\％	$a(1+b / 100)$	4\％	$a(1-b / 100)$

7. Average Operation Use of the Item Counter

Key	Display	Item Counter	Key	Display	Item Counter
A	A	0	\square	$A+B+C+D$	2
+	A	1	D	D	2
B	B	1	\pm	$A+B+C$	3
$+$	$A+B$	2	E	E	3
C	C	2	$=$	$A+B+C+E$	4
$+$	$A+B+C$	3	\div	$A+B+C+E$	4
D	D	3	IC]	4	4
$+$	$+B+C+D$	4		$(A+B+C+E) / 4$	5

Maximum Ratings

Characteristics	Rymbol	Rating	Unit
Supply voltage	V_{G}	$+0.3 \sim-2.0$	V
Input voltage	V_{IN}	$+0.3 \sim \mathrm{~V}_{\mathrm{G}}-0.3$	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$0 \sim 40$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{G}}=-1.5 \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 2}=-3.0 \pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuit	Pin Name	Test Condition	Min	Typ.	Max	Unit
Operating voltage		V_{G}	-	-	-	-1.2	-1.5	-2.0	V
"1" input voltage		$\mathrm{V}_{\mathrm{IH} \text { (1) }}$	-	$\begin{aligned} & \mathrm{K}_{3} \sim \mathrm{~K}_{10} \\ & \text { RESET } \end{aligned}$	-	$\begin{gathered} V_{G} \\ +0.4 \end{gathered}$	-	V_{G}	V
"1" input voltage		$\mathrm{V}_{\mathrm{IH}(2)}$	-	$\mathrm{K}_{11} \sim \mathrm{~K}_{14}$	-	$\begin{aligned} & V_{\mathrm{SS} 2} \\ & +0.4 \end{aligned}$	-	VSS2	V
"0" input voltage		VIL	-	$\begin{aligned} & \mathrm{K}_{3} \sim \mathrm{~K}_{14} \\ & \text { RESET } \end{aligned}$	-	0	-	-0.4	V
"1" output voltage		VOH (1)	-	SEGMENT COM1~3	-	$\begin{aligned} & V_{S S 2} \\ & +0.2 \end{aligned}$	-	$\mathrm{V}_{\text {SS2 }}$	V
"0" output voltage		VOL (1)	-	SEGMENT COM1~3	-	0	-	-0.2	V
"M" output voltage		VOM	-	COM1~3	-	$\begin{gathered} V_{G} \\ +0.2 \end{gathered}$	-	$\begin{gathered} V_{G} \\ -0.2 \end{gathered}$	V
"1" output voltage		V_{OH} (2)	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{10}$	-	$\begin{gathered} V_{G} \\ +0.2 \end{gathered}$	-	V_{G}	V
"0" output voltage		$\mathrm{V}_{\mathrm{OL}}(2)$	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{14}$	-	0	-	-0.2	V
"1" output resistance		ROH	-	SEGMENT COM1~3	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS2 }}+0.5 \mathrm{~V}$	-	-	70	k Ω
"0" output resistance		Rol	-	SEGMENT COM1~3	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	-	-	70	k Ω
Key pull up resistance		RKEYH (1)	-	RESET	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	156	-	364	k Ω
		RKEYH (2)	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{10}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	240	-	560	
Key read pull up resistance		RKEYH (3)	-	$\mathrm{K}_{1} \sim \mathrm{~K}_{10}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	30	-	600	k Ω
Key pull down resistance		RKEYL (1)	-	$\begin{aligned} & \text { RESET } \\ & \mathrm{K}_{1} \sim \mathrm{~K}_{10} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V}$	-	-	10	k Ω
		RKEYH (2)	-	$\mathrm{K}_{11} \sim \mathrm{~K}_{14}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS2 }}$	120	-	800	
Oscillating frequency	(WAIT)	f $¢$ WAIT	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	5.4	9.0	12.6	kHz
	(OPERATE)	f¢OP	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	28.8	48	67.2	
Frame frequency		f_{F}	-	SEGMENT COM1~3	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	56.3	93.8	131	Hz
Supplycurrent	1 (WAIT)	IDDWAIT	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	-	2.2	3.4	$\mu \mathrm{A}$
	2 (OPERATE)	IDDOP	-	-	$\mathrm{V}_{\mathrm{G}}=-1.2 \mathrm{~V}$	-	7.0	11.0	
	3 (OFF)	IDDOFF	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	-	-	2.0	
Power off timer times		T	-	-	$\mathrm{V}_{\mathrm{G}}=-1.5 \mathrm{~V}$	429	600	1001	s

Waveforms for Display

Note 1: At $\mathrm{f} \phi=9 \mathrm{kHz}$

Pad Location Table

Name	X Point	Y Point
$\mathrm{V}_{\text {SS1 }}$	971	-1469
$\mathrm{V}_{\text {SS2 }}$	775	-1469
V_{B}	609	-1469
V_{A}	424	-1469
TS3	252	-1469
S_{3}	100	-1469
$V_{\text {DD }}$	-52	-1469
S_{2}	-203	-1469
S_{1}	-355	-1469
C_{12}	-507	-1469
B_{12}	-659	-1469
A_{12}	-810	-1469
C_{11}	-980	-1469
B_{11}	-1162	-1469
A_{11}	-1358	-1469
C_{10}	-1408	-1193
B_{10}	-1408	-1042
A_{10}	-1408	-890
C9	-1408	-738
B9	-1408	-586
A9	-1408	-435
C_{8}	-1408	-283
B_{8}	-1408	-131
A_{8}	-1408	20
C_{7}	-1408	172
B_{7}	-1408	324
A_{7}	-1408	475
C_{6}	-1408	627
B_{6}	-1408	779
A_{6}	-1408	936
C_{5}	-1408	1119
B_{5}	-1358	1469
A_{5}	-1169	1469

Name	X Point	Y Point
C4	-999	1469
B4	-847	1469
A_{4}	-696	1469
C_{3}	-544	1469
B3	-392	1469
A_{3}	-240	1469
C_{2}	-89	1469
(TS4)	89	1469
B_{2}	241	1469
A_{2}	392	1469
C_{1}	544	1469
B_{1}	696	1469
A_{1}	847	1469
COM3	999	1469
COM2	1166	1469
COM1	1358	1469
K_{14}	1408	1175
K_{13}	1408	1023
K_{12}	1408	871
K_{11}	1408	720
K_{10}	1408	503
K9	1408	352
K_{8}	1408	200
K_{7}	1408	48
K_{6}	1408	-104
K_{5}	1408	-255
K4	1408	-407
K_{3}	1408	-559
K_{2}	1408	-710
K_{1}	1408	-862
RESET	1408	-1023
(TS2)	1408	-1175
(TS1)	1367	-1469
V_{G}	1160	-1469

Note 2: () Do not connect.

Chip Layout

Pad Layout

Active Element

Package Dimensions

Weight: 1.20 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

