REV									Π	-						F	EV	/ISI	01	IS							
PAGE REV STATUS REV									1	TR				DE	SCF	RIPT	101	V.				DA	TE	1	APP	ROV	ED
PAGE REV STATUS REV																											
PAGE REV STATUS REV																					İ						
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
PAGE REV STATUS REV																											
REV STATUS REV	REV	Т	1	-	<u> </u>	ı –	T	Т	Г	<u> </u>	Γ	1														\Box	\Box
		1					1													L					Ц	4	4
			_	_	-	Ļ	1,	12	_	5	6	7	Ω	٥	10	11	12	13	-	 	\vdash			_	H	+	+
	Supply Cen	ter	HCS				7)					Y	rli	y		Th	ils c	iraw	ing	is a	ıvaila	able	for	use	by	••	
Defense Electronics Supply Center MILITARY DRAWING This drawing is available for use by	Dayton, Oh	io					(CH	ECI	LED	B		: 6	0	0	2								cies	of	the		
Dayton, Ohio This drawing is available for use by all Departments and Agencies of the	Original da	te				ł	AP	PRO)VE	ر ار 0			<u> </u>	<i>3</i> 2	_	TI	TLE	Ξ: M	IICR	CON	RCUI VERT	TS,	LIN	IEAR	, 8-	BIT	
This drawing is available for use by all Departments and Agencies of the Department of Defense Original date APPROVED BY APPROVED BY APPROVED BY APPROVED BY APPROVED BY APPROVED BY	of drawing:	8 DE	CEN	1BE	₹				4									S	ILI			,					
This drawing is available for use by all Departments and Agencies of the Department of Defense Original date of drawing: 8 DECEMBER TITLE: MICROCIRCUITS, LINEAR, 8-BIT A/D CONVERTER, MONOLITHIC SILICON		170/							ľ°					NC). 	D'	WG	N	Ο.	5	96	52	- ;	8	76	0	0
This drawing is available for use by all Departments and Agencies of the Department of Defense Driginal date This drawing is available for use by all Departments and Agencies of the Department of Defense TITLE: MICROCIRCUITS, LINEAR, 8-BIT A/D CONVERTER, MONOLITHIC								v										PAG		1		0	_				

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited. **DESC FORM 193**

MAY 86

	lack	•	
1. SCOPE			
1.1 Scope. This drawing descri 1.2.1 of MIL-STD-883, "Provisions devices".	bes device requirement for the use of MIL-S	ents for class B micro TD-883 in conjunction	ocircuits in accordance with n with compliant non-JAN
1.2 Part number. The complete	part number shall be	e as shown in the fol	lowing example:
<u>5962-87600</u>	01	<u>*</u> !	<u>X</u>
Drawing number	Device type (1.2.1)	Case outline (1.2.2)	Lead finish per MIL-M-38510
1.2.1 <u>Device type</u> . The device	type shall identify	the circuit function	as follows:
Device type	Generic number	Circui	t function
01	TDC1048	8-bit A	/u converter
1.2.2 <u>Case outlines</u> . The case follows:	outlines shall be a	s designated in appen	dix C of MIL-M-38510, and as
Outline letter		Case outline	
X 3	D-10 (28-lea 0-4 (28-ten	nd, 1/2" x 1 1/2"), de minal, .450" x .450")	ual-in-line package , square chip carrier package
1.3 Absolute maximum ratings.			
VEE to AGNDAGND to DGND or NLINY to DGND conv, NMINV, or NLINY to DGN VIN, VRT, or VRB to AGND - VRT to VRB	in the second of	+0.5 V 0.5 V +0.5 V 0.5 V 0.5 V 1.0 m 1.0 s +300 °C +300 °C (See M	dc to +7.0 V dc dc to -7.0 V dc dc to +0.5 V dc dc to +5.5 V dc dc to +5.5 V dc dc to +2.2 V dc dc to +5.5 V dc 1/ A to +6.0 mA 2/ 3/ 4/ to +150°C
 Applied voltage must be currently forcing voltage must be limit. Current is specified as posit. Single output in high state to 	ed to specified range ive when flowing into	· .	٠.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE		DWG NO. 5962-8760	00
		REV	PAGE	2

1.4 Recommended operating conditions.

4.5 V dc to 5.5 V dc -4.9 V dc to -5.5 V dc -0.1 V dc to +0.1 V dc Analog ground voltage to D_{GND} (V_{AGND}) - - - - - - - -18 ns minimum 22 ns minimum 0.8 V dc maximum 2.0 V dc minimum 4.0 mA maximum $-400~\mu\text{A}$ maximum -0.1~V dc to $\pm0.1~\text{V}$ dc -1.9 V dc to -2.1 V dc 1.8 V dc to 2.1 V dc V_{RB} to V_{RT} -55°C to +125°C Input voltage (V_{IN}) - - - - -Case operating temperature range (T_C) - - - - - - - - -

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- $3.2\,$ Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Block diagram. The block diagram shall be as specified on figure 2.
 - 3.2.3 Truth table. The truth table small be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.

5/ $V_{
m RT}$ must be more positive than $V_{
m RB}$, and $V_{
m RT}$ - $V_{
m RB}$ must be within the specified range.

MILITARY DRAWING	SIZE A		DWG NO	962-87600	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	3

Test	Symbol	-55°C <	litions <u>1/</u> T _C < +125°C	Group A		mits Max	Unit
	!	unless other 	wise specified			!	l
ositive supply current, static	Icc	V _{EE} = -4.9 V,	V _{CC} = 5.5 V	1,2,3		40	mA
egative supply current, static	IEE	V _{EE} = -5.5 V		1,2,3		-320	mA
eference current	IREF	V _{EE} = -4.9 V, V _{RB} = -2.0 V	V _{RT} = 0 V,	1,2,3	5.0	50	mA
otal reference resistance 2/	R _{REF}	V _{RT} = 0 V, V _{RE}	s = -2.0 V	1,2,3	40	400	Ω
nput equivalent resistance <u>2</u> /	RIN	V _{RT} = 0 V, V _{RE}	3 = -2.0 V	1,2,3	10	4000	kΩ
input capacitance 2/	CIN	 V _{RT} = 0 V, V _{RE}	3 = -2.0 ¥	4,5,6		100	pF
nput constant bias current	I _{CB}	V _{EE} = -5.5 V,	V _{CC} = 5.5 V	1,2,3		550	μА
input low current	IIL	VEE = -4.9 V, VCC = 5.5 V, VI = 0.4 V	CONV	1,2,3		-400	μA
		VI = 0.4 V	NLINY, NMINY	1,2,3		-600 	μ Α
nput high current	IIH	V _{CC} = 5.5 V, V V _I = 2.4 V	/EE = -4.9 V,	1,2,3		50	μА
Input current at maximum input voltage	II	V _{CC} = 5.5 V, V	lee = -4.9 V,	1,2,3		1.0	mA
Output short-circuit current <u>3</u> /	Ios	V _{EE} = -4.9 V,	V _{CC} = 5.5 V	1,2,3		-30	mA !
Output low voltage	V _{OL}	V _{EE} = -5.5 V, I _{OL} = 4.0 mA	V _{CC} = 4.5 V,	1,2,3	 	0.5	٧
Output high voltage	V _{OH}	V _{CC} = 4.5 V,	I _{OH} = -400 μA	1,2,3	2.4	<u> </u>	٧
See footnotes at end of table.	•	•			-	-	ō
		SIZE		OWG NO.			
MILITARY DRAWIN		A		5962-87	600		
DEFENSE ELECTRONICS SUPPLY CE DAYTON, OHIO	MIEH		REV	PAG	Ę.	4	

Yet = -4.9	Unit
Naximum conversion rate FS YEE = -4.9 V, VCC = 4.5 V, FS = 20 MHz minimum per Figure 4 FIGURE FIG	
Functional tests	5 pF
Sampling time offset 2/ t_{STO} See figure 4 9,10,11 0 2 2 2 2 2 2 2 2 2	MSPS 4
Digital output delay $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Digital output hold time 2 / t_{HO} See figure 4 9,10,11 5.0 Linearity error integral, independent ELI $V_{RT} = 0 \text{ V}, V_{RB} = -2.0 $.5 ns
Linearity error integral, independent $E_{LI} = E_{LI} = V_{RT} = 0 \text{ V}, V_{RB} = -2.0 \text{ V}, V_{RS} = -2.0 $	5 ns
Independent $F_S = 100 \text{ kdz}$ $F_S = 100 $	ns
Nominal size code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.2 %
Offset error, top $2/$ E_{OT} V_{IN} = midpoint of code 0 1,2,3 4 Missing codes Q_{MISS} F_{S} = 100 kHz Offset error, bottom $2/$ E_{OB} V_{IN} = midpoint of code 255 1,2,3 Temperature coefficient of offset error $2/$ ΔE_{O} Bandwidth, full power input $2/$ ΔE_{O} ΔE_{O	.2 %
Missing codes $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 %
Offset error, bottom $\underline{2}/$ E_{0B} V_{IN} = midpoint of code 255 $1,2,3$ $-$ Temperature coefficient of offset error $\underline{2}/$ ΔE_{0} ΔT $1,2,3$ \pm Bandwidth, full power input $\underline{2}/$ BW $4,5,6$ 5.0	50 mV
Temperature coefficient of offset error $\frac{1}{2}$ / Bandwidth, full power input $\frac{1}{2}$ / BW 1,2,3 4,5,6 5.0	0 code
offset error $\frac{2}{\sqrt{\Delta T}}$ Bandwidth, full power input $\frac{2}{\sqrt{BW}}$ Bandwidth, full power input $\frac{2}{\sqrt{BW}}$	30 mV
	50 μV/°
	 MHz
see footnotes at end of table.	
SIZE DWG NO.	
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER 5962-87600	

Powered by ICminer.com Electronic-Library Service CopyRight 2003

TABLE I.	Electi	rical performa	nce characteristics	_ Continue	d.		
Test	Symbol	Con -55°C < unless othe	ditions 1/ TC < +125°C rwise specified	Group A		nits Max	Unit
Signal-to-noise ratio (20 MSPS conversion rate,	SNR	 Peak signal/ RMS noise	1 11.248 MHz input	4,5,6	53		dB
10 MHz bandwidth) 2/	 	 -	 2.438 MHz input	4,5,6	52		dB
	 	 RMS signal/ RMS noise	 1.248 MHz input 	4,5,6	44		dß
	!		2.438 MHz input	4,5,6	43		dВ
Differential phase error 2/5/	DP	F _S = 4 X NTSC		4,5,6		1.0	degree
Differential gain error 2/5/	DG	F _S = 4 X NTSC		4,5,6		2.0	%

- 1/ Unless otherwise specified, characteristics apply over the recommended operating conditions specified in 1.4 herein.
- 2/ Guaranteed if not tested.
- 3/ Output high, one pin to ground, one second duration maximum.
- 4/ Mega samples per second.
- 5/ In excess of quantization.

FEB 86

	5962-87600	
1	3302-87000	
REV	PAGE 6	
_	REV	REV PAGE 6

Powered by ICminer.com Electronic-Library Service CopyRight 2003

			Bina	ry	Offset Compl	
i Step !	R	ange	True	Inverted	True	Inverted
1 T 1	-2.0000 ¥ F _S	-2.0480 V F _S	NMINV = 1	0	0	0
İ	7.8431 mV Step	8.000 mV step	NLINV = 1	0	1	1
000	0.0000 V	0.0000 V	00000000	11111111	10000000	0111111
001	-0.0078 V	-0.0080 V	00000001	11111110	10000001	0111110
:				:	i :	:
127	-0.9961 V	-1.0160 V	01111111	10000000	11111111	00000000
128	-1.0039 V	-1.0240 V	10000000	01111111 	i 00000000 (.11111111
129	-1.0118 V	-1.0320 V	10000001	01111110 -	00000001	11111110
:			:		i : !	:
254	-1.9921 V	-2.0320 V	11111110	00000001	01111110	10000001
255	-2.0000 V	-2.0400 V	11111111	00000000	01111111	10000000

NOTES:

- NMINV and NLINV are to be considered dc controls. They may be tied to +5.0 V for a logical "1" and tied to ground for a logical "0". Voltages are code midpoints when calibrated by adjusting VRT and VRB to set the 1st and 255th thresholds to the desired voltages. Note that R₁ is greater than R (refer to block diagram on figure 2 herein), ensuring calibration with a positive voltage on RT. Assuming a 0 V to -2.0 V desired range, continuously strobe the converter with -0.0039 V (1/2 LSB from 0 V) on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -1.996 V (1/2 LSB from -2.0 V) and adjust V_{RB} for toggling between codes 254 and 255.

The degree of required adjustment is indicated by the offset error, E_{OT} and E_{OB} . Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_1 and R_2 in the block diagram shown on figure 2. Calibration will cancel all offset voltages, eliminating offset and gain errors.

This method of calibration requires that both ends of the resistor chain, RT and RB are driven by buffered operational amplifiers. Instead of adjusting V_{RT} , RT can be connected to analog ground and the 0 V end of the range calibrated with a buffer offset control. The offset error at the bottom of the resistor chain results in a slight gain error, which can be compensated for by varying the voltage applied to RB. The bottom reference is a convenient point for gain adjust that is not in the analog signal path. FIGURE 3. Truth table.

MILITARY DRAWING	SIZE			DWG NO	5962-87600		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			REV		PAGE	9	

- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 tests sufficient to verify the truth table.

	SIZE		DWG NO		
MILITARY DRAWING	A		5:	962-87600	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	11
	<u> </u>	 <u></u>			

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	1,4,7,9
Final electrical test parameters (method 5004)	1*,2,3,4,5,6, 7*,8,9,10,11
Group A test requirements (method 5005)	1,2,3,4,5,6, 7,8,9,10,11
Groups C and D end-point electrical parameters (method 5005)	1,4,7,9

^{*}PDA applies to subgroups 1 and 7.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING	SIZE A		DWG NO	962-87600	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	12

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Yendor similar part number <u>1</u> /
5962-8760001XX	59621	TDC1048J6V
5962-87600013X	59621	TDC1048C3V

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

59621

Vendor name and address

TRW/LSI Products Division 4243 Campus Point Court San Diego, CA 92126

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE DWG NO. 5962-87600 PAGE 13