

P-Channel 50-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm qd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 70537
 www.vishay.com

 05-Nov-99
 1

SPICE Device Model Si9407AEY

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Condition	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.82	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	61	Α
Drain-Source On-State Resistance ^a	_	$V_{GS} = -10 \text{ V}, I_D = -3.5 \text{ A}$	0.08	Ω
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -3.1 \text{ A}$	0.10	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -3.5 \text{A}$	7.2	S
Diode Forward Voltage ^a	V _{SD}	$I_S = -2.5A$, $V_{GS} = 0 \text{ V}$	-0.82	V
Dynamic ^b				
Total Gate Charge ^b	Q_g	$V_{DS} = -30V$, $V_{GS} = -10V$, $I_D = -3.5A$	17	nC
Gate-Source Charge ^b	Q _{gs}		5	
Gate-Drain Charge ^b	Q _{gd}		2	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = -30V, R_L = 30\Omega$ $I_D \cong -1 \text{ A, } V_{GEN} = -10 \text{ V, } R_G = 6\Omega$ $I_F = -2.5 \text{ A, } di/dt = 100 \text{ A/}\mu\text{s}$	4	ns
Rise Time ^b	t _r		4.1	
Turn-Off Delay Time ^b	t _{d(off)}		23	
Fall Time ^b	t _f		14	
Source-Drain Reverse Recovery Time	t _{rr}		68	

Notes

www.vishay.com Document Number: 70537

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by desing, not subject to production testing.

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

Document Number: 70537 www.vishay.com 05-Nov-99 3