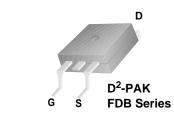
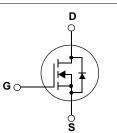


FDB035N10A N-Channel PowerTrench[®] MOSFET 100V, 214A, 3.5mΩ

Features


- $R_{DS(on)} = 3.0 m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 75A$
- · Fast Switching Speed
- · Low Gate Charge
- High Performance Trench Technology for Extremely Low $R_{\text{DS}(\text{on})}$
- · High Power and Current Handling Capability
- RoHS Compliant


Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

- DC to DC Converters
- Synchronous Rectification for Server/Telecom PSU
- Battery Charger
- · AC motor drives and Uninterruptible Power Supplies
- Off-line UPS

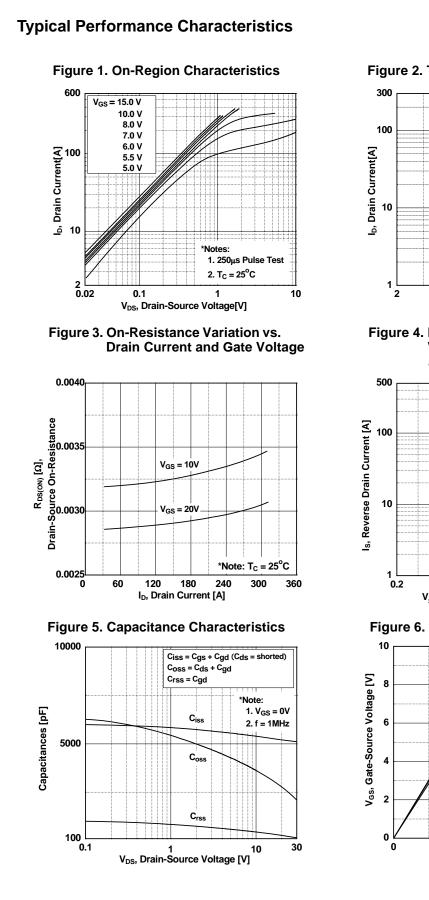
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage			100	V
V _{GSS}	Gate to Source Voltage		±20	V	
ID		- Continuous (T _C = 25°C, §	214*		
	Drain Current	- Continuous (T _C = 100 ^o C,	151*	Α	
		- Continuous (T _C = 25 ^o C, F	Package Limited)	120	
I _{DM}	Drain Current	- Pulsed	(Note 1)	856	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		(Note 2)	658	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	6.0	V/ns
P _D	Dewer Dissingtion	$(T_{\rm C} = 25^{\rm o}{\rm C})$	(T _C = 25 ^o C)		W
	Power Dissipation	- Derate above 25°C	- Derate above 25°C		
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

*Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.45	
D	Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper)	62.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient (1 in ² pad of 2 oz copper)	40	


Device Marking Device Pa		Package	age Reel Size Tap		Tape	Width		Quantity	/	
FDB035N10A FDB035N10A D2-P/			D2-PAK				24mm		800	
Electrica	al Char	acteristics T _c =	25°C unless c	otherwise noted						
Symbol		Parameter		Test Cor	ditions		Min.	Тур.	Max.	Units
Off Chara	cteristic	s								
BV _{DSS}	Drain to Source Breakdown Voltage			I _D = 250μA, V _{GS} = 0V, T _C = 25 ^o C					_	V
ΔBV_{DSS}	Breakdown Voltage Temperature Coefficient		0				100			-
ΔT_{J}				$I_D = 250 \mu A$, Referenced to $25^{\circ}C$				0.07	-	V/°C
1	Zoro Gato Voltago Drain Current			V _{DS} = 80V, V _{GS} = 0V			-	-	1	μA
IDSS	Zero Gate Voltage Drain Current		ent	V _{DS} = 80V, T _C = 150 ^o C				-	500	μΑ
I _{GSS}	Gate to	Body Leakage Curren	nt	$V_{GS} = \pm 20V, V_{DS} = 0V$				-	±100	nA
On Chara	cteristic	S								
V _{GS(th)}	Gate Th	nreshold Voltage		V _{GS} = V _{DS} , I _D = 25	50µA		2.0	-	4.0	V
R _{DS(on)}	Static D	rain to Source On Res	sistance	$V_{GS} = 10V, I_D = 75$			-	3.0	3.5	mΩ
9 _{FS}	Forward	d Transconductance		V _{DS} = 10V, I _D = 75			-	167	-	S
Dynamic	Characte	eristics								
C _{iss}		apacitance					-	5485	7295	pF
C _{oss}		Output Capacitance Reverse Transfer Capacitance		$V_{DS} = 25V, V_{GS} = 0V$		-	2430	3230	pF	
				f = 1MHz				210	-	pF
Cree	Reverse	e Transfer Capacitance	Э				-			
			9		5.0		-	89	116	nC
Q _{g(tot)}	Total Ga	ate Charge at 10V	9	V _{DS} = 80V, I _D = 75	5A	_	-		116 -	nC nC
Q _{g(tot)} Q _{gs}	Total Ga Gate to				5A		-	89		-
Q _{g(tot)} Q _{gs} Q _{gs2}	Total Ga Gate to Gate Cl	ate Charge at 10V Source Gate Charge harge Threshold to Pla		V _{DS} = 80V, I _D = 75	5A	(Note 4)	- - - -	89 24	-	nC
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd}	Total Ga Gate to Gate Cl Gate to	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge		V _{DS} = 80V, I _D = 75	5A	(Note 4)	- - - -	89 24 8	-	nC nC
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching	Total Ga Gate to Gate Cl Gate to Charac	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics		V _{DS} = 80V, I _D = 75 V _{GS} = 10V		(Note 4)	-	89 24 8 25	-	nC nC nC
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching	Total Ga Gate to Gate Cl Gate to Charac	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics n Delay Time		V _{DS} = 80V, I _D = 75 V _{GS} = 10V V _{DD} = 50V, I _D = 75		(Note 4)	-	89 24 8 25 22	- - - 54	nC nC nC
$\begin{array}{c} Q_{g(tot)} \\ Q_{gs} \\ Q_{gs2} \\ Q_{gd} \end{array}$ Switching $t_{d(on)} \\ t_r \end{array}$	Total Ga Gate to Gate Cl Gate to J Charac Turn-Or Turn-Or	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time		V _{DS} = 80V, I _D = 75 V _{GS} = 10V		(Note 4)	-	89 24 8 25 22 22 54	- - - 54 118	nC nC nC nS
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{d(on)} t _r t _{d(off)}	Total Ga Gate to Gate Cl Gate to J Charac Turn-Or Turn-Or Turn-Of	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time f Delay Time		V _{DS} = 80V, I _D = 75 V _{GS} = 10V V _{DD} = 50V, I _D = 75		(Note 4)		89 24 8 25 22 54 37	- - - 54 118 84	nC nC nC nS ns
$\begin{array}{c} C_{rss} \\ \hline Q_{g(tot)} \\ \hline Q_{gs} \\ \hline Q_{gs2} \\ \hline Q_{gd} \\ \hline \\ $	Total Gá Gate to Gate Cl Gate to J Charac Turn-Or Turn-Or Turn-Of Turn-Of	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time	teau	V _{DS} = 80V, I _D = 75 V _{GS} = 10V V _{DD} = 50V, I _D = 75 V _{GS} = 10V, R _{GEN} =	A = 4.7Ω	(Note 4)	-	89 24 8 25 22 22 54	- - - 54 118	nC nC nC nS
$Q_{g(tot)} = Q_{gs}$ $Q_{gs2} = Q_{gd}$ Switching $t_{d(on)}$ $t_r = t_{d(off)}$ $t_f = ESR$	Total Gá Gate to Gate Cl Gate to J Charac Turn-Or Turn-Or Turn-Of Turn-Of Equivalo	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time f Delay Time f Fall Time ent Series Resistance	(G-S)	V _{DS} = 80V, I _D = 75 V _{GS} = 10V V _{DD} = 50V, I _D = 75	A = 4.7Ω	(Note 4)		89 24 8 25 22 54 37 11	- - - 54 118 84 32	nC nC nC ns ns ns
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f ESR Drain-Sou	Total Gá Gate to Gate Cl Gate to Charac Turn-Or Turn-Of Turn-Of Equivale	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time f Delay Time f Fall Time ent Series Resistance de Characteristic	(G-S) S	$V_{DS} = 80V, I_D = 75$ $V_{GS} = 10V$ $V_{DD} = 50V, I_D = 75$ $V_{GS} = 10V, R_{GEN} =$ Drain Shorted to S	A = 4.7Ω	(Note 4)	-	89 24 8 25 22 54 37 11 1.2	- - 54 118 84 32 -	nC nC nC ns ns ns Ω
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f ESR Drain-Sou	Total Ga Gate to Gate Cl Gate to Charac Turn-Or Turn-Of Turn-Of Equivale Irce Dioc	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time f Delay Time f Fall Time ent Series Resistance de Characteristic m Continuous Drain to	teau (G-S) S Source Diode	$V_{DS} = 80V, I_D = 75$ $V_{GS} = 10V$ $V_{DD} = 50V, I_D = 75$ $V_{GS} = 10V, R_{GEN} =$ Drain Shorted to S Forward Current	A = 4.7Ω	(Note 4)		89 24 8 25 22 54 37 11	- - - 54 118 84 32 - 214	nC nC nC nS ns ns ns Ω
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f ESR Drain-Sou I _S I _{SM}	Total Ga Gate to Gate Cl Gate to J Charac Turn-Or Turn-Of Turn-Of Equivale Irce Dioo Maximu Maximu	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time f Delay Time f Delay Time f Fall Time ent Series Resistance de Characteristic m Continuous Drain to m Pulsed Drain to Sou	(G-S) S Source Diode Irce Diode Forv	$V_{DS} = 80V, I_D = 75$ $V_{GS} = 10V$ $V_{DD} = 50V, I_D = 75$ $V_{GS} = 10V, R_{GEN} = 10V, R_{$	5A = 4.7Ω ource, f =	(Note 4)	- - - -	89 24 8 25 22 54 37 11 1.2 - -	- - 54 118 84 32 - 214 856	nC nC nC ns ns ns Ω A A
Q _{g(tot)} Q _{gs} Q _{gs2} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f ESR	Total Gá Gate to Gate Cl Gate to J Charac Turn-Or Turn-Or Turn-Of Equivalo ITCE Dioc Maximu Maximu Drain to	ate Charge at 10V Source Gate Charge harge Threshold to Pla Drain "Miller" Charge teristics h Delay Time h Rise Time f Delay Time f Fall Time ent Series Resistance de Characteristic m Continuous Drain to	(G-S) S Source Diode Irce Diode Forv	$V_{DS} = 80V, I_D = 75$ $V_{GS} = 10V$ $V_{DD} = 50V, I_D = 75$ $V_{GS} = 10V, R_{GEN} =$ Drain Shorted to S Forward Current	A = 4.7Ω ource, f = A	(Note 4) 1MHz	-	89 24 8 25 22 54 37 11 1.2	- - - 54 118 84 32 - 214	nC nC nC nS ns ns ns Ω

2. Starting $T_J = 25^{\circ}C$, L = 1mH, $I_{AS} = 36.3A$

3. $I_{SD} \le 75A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting T_J = 25°C

4. Essentially Independent of Operating Temperature Typical Characteristics

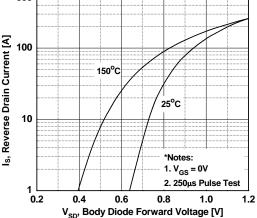
FDB035N10A N-Channel PowerTrench[®] MOSFET

Figure 2. Transfer Characteristics

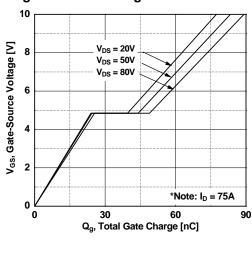
150°C

 Set
 10
 25°C

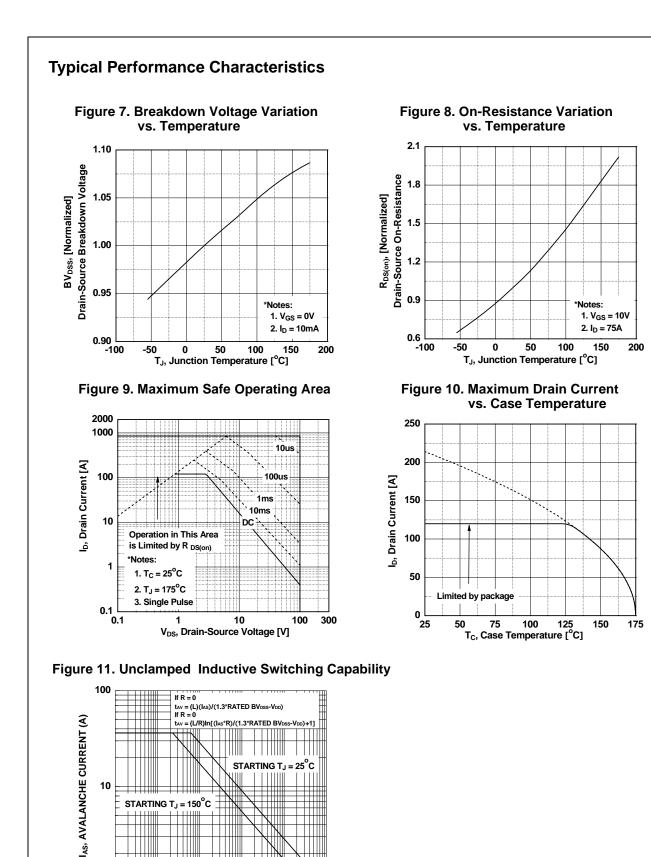
 2
 -55°C
 -55°C


 1
 -55°C
 -55°C

 1
 2
 3
 4
 5


 2
 3
 4
 5
 6

 Vos, Gate-Source Voltage[V]
 Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature
 500


 500
 100
 100
 100
 100

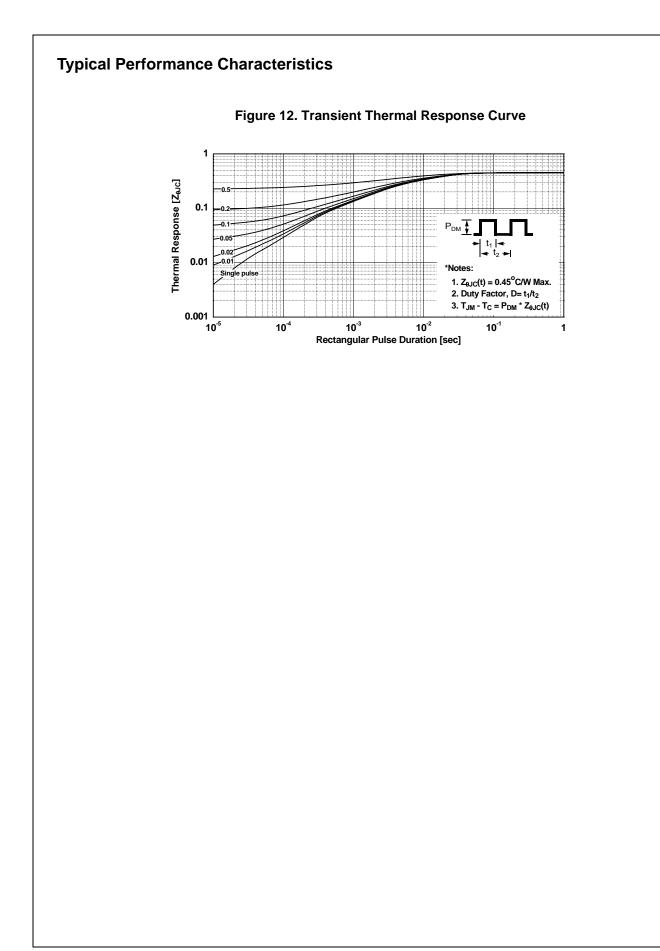
FDB035N10A N-Channel PowerTrench[®] MOSFET

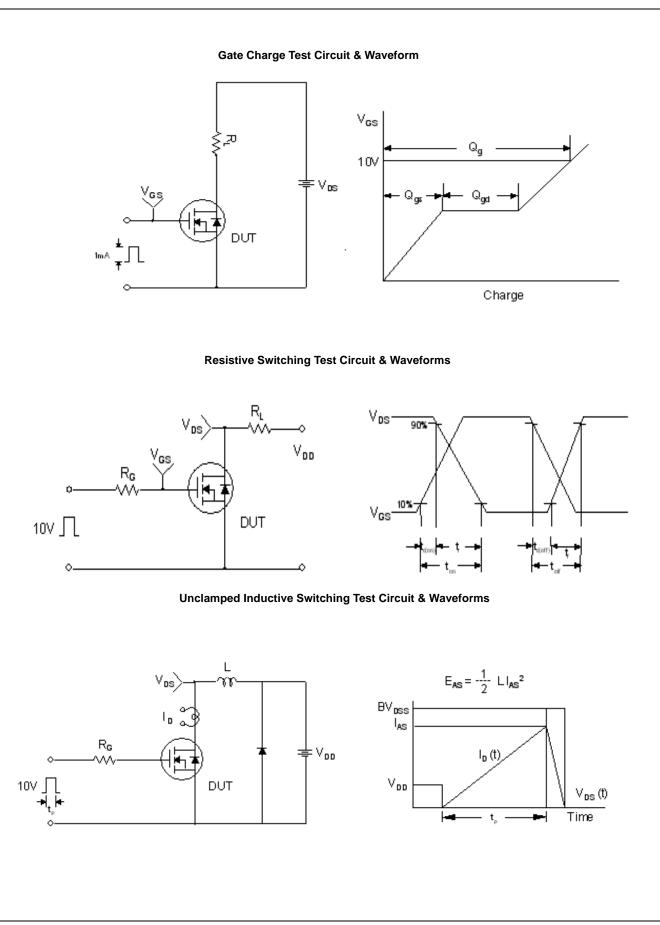
10

1 **0.01**

STARTING T_J = 150°C

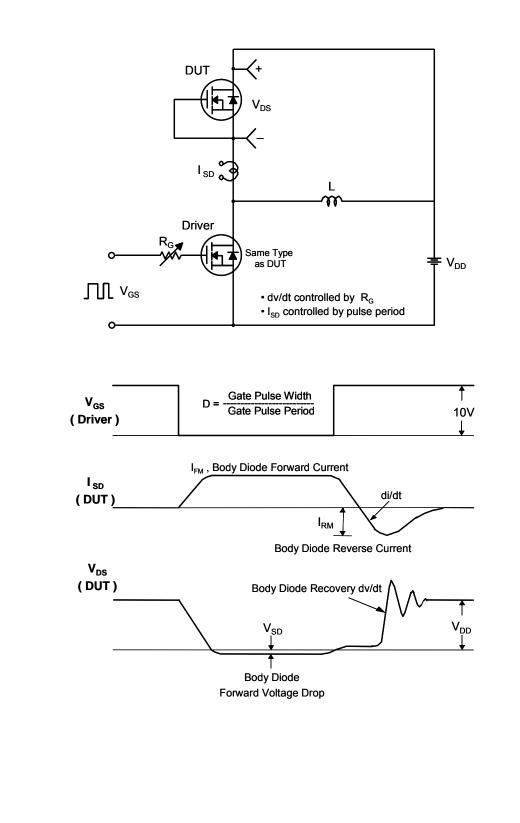
0.1

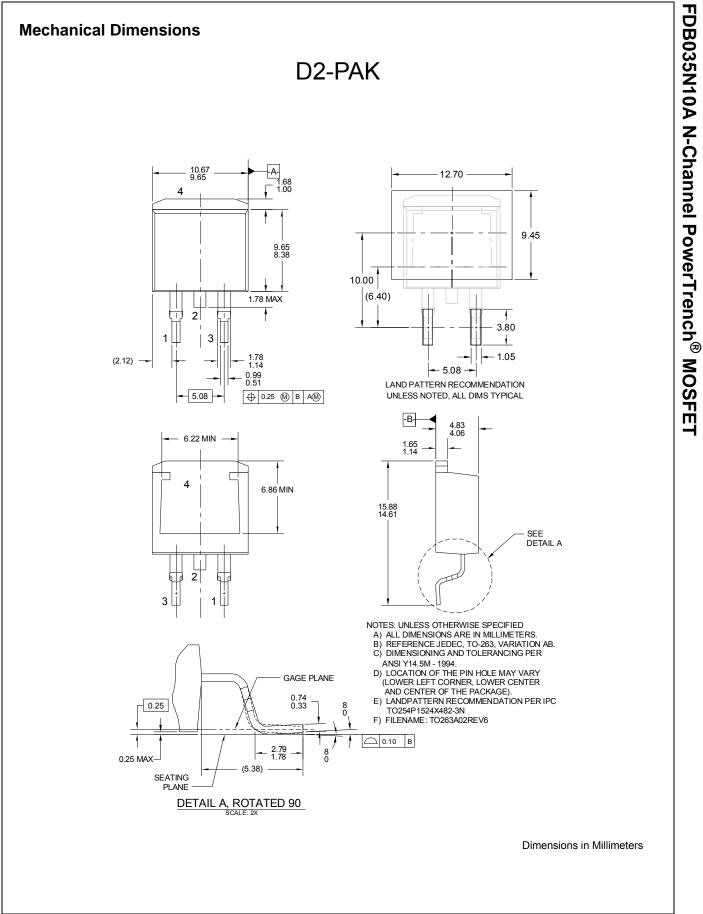

1 t_{AV}, TIME IN AVALANCHE (ms)



1000

10


100



FDB035N10A N-Channel PowerTrench[®] MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

FDB035N10A Rev. C0