NPN Silicon Oscillator and Mixer Transistor The NSF2250WT1 NPN silicon epitaxial bipolar transistor is intended for use in general purpose UHF oscillator and mixer applications. It is suitable for automovtive keyless entry and TV tuner designs. The device features stable oscillation and small frequency drift during changes in the supply voltage and over the ambient temperature range. #### **Features** • High Gain Bandwidth Product: f_T = 2000 MHz Minimum • Tightly Controlled h_{FE} Range: $h_{FE} = 120$ to 250 • Low Feedback Capacitance: C_{RE} = 0.45 pF Typical #### **MAXIMUM RATINGS** | Parameters | Symbol | Units | Ratings | |------------------------------|------------------|--------------------------------|---------| | Collector to Base Voltage | V _{CBO} | V | 30 | | Collector to Emitter Voltage | V _{CEO} | V | 15 | | Emitter to Base Voltage | VE _{BO} | V | 3.0 | | Collector Current | I _C | mA | 50 | | Electrostatic Discharge | ESD | HBM – Class 1C
MM – Class A | | ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------------------------|--|-------------| | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D | 202 (Note 1)
310 (Note 2)
1.6 (Note 1)
2.5 (Note 2) | mW
mW/°C | | Thermal Resistance –
Junction-to-Ambient | $R_{\theta JA}$ | 618 (Note 1)
403 (Note 2) | °C/W | | Thermal Resistance –
Junction-to-Lead | $R_{ heta JL}$ | 280 (Note 1)
332 (Note 2) | °C/W | | Junction and Storage
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | - 1. FR-4 @ Minimum Pad - 2. FR-4 @ 1.0 x 1.0 inch Pad ### ON Semiconductor™ #### http://onsemi.com #### MARKING DIAGRAM SOT-323/SC-70 CASE 419 STYLE 3 3M = Specific Device Code W = Date Code #### **ORDERING INFORMATION** | Device | Package | Shipping | | |------------|---------|------------------|--| | NSF2250WT1 | SOT-323 | 3000/Tape & Reel | | ### **ELECTRICAL CHARACTERISTICS** $(T_A = 25^{\circ}C)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |--|----------------------------------|-----|------|-----|------| | Collector Cutoff Current, V _{CB} = 12 V, I _E = 0 | I _{CBO} | - | _ | 0.1 | μΑ | | DC Current Gain, V _{CE} = 10 V, I _C = 5.0 mA | h _{FE} | 120 | _ | 250 | _ | | Collector Saturation Voltage, I _C = 10 mA, I _B = 1.0 mA | V _{CE(sat)} | - | _ | 0.5 | V | | Gain Bandwidth Product, V _{CE} = 3 V, I _E = -5.0 mA | f _T | 2.0 | 2.3 | _ | GHz | | Output Capacitance, V _{CB} = 3 V, I _E = 0 mA, f = 1.0 MHz | C _{OB} | - | 0.7 | 1.2 | pF | | Collector to Base Time Constant, $V_{CE} = 3 \text{ V}, I_{E} = -5.0 \text{ mA}, f = 31.9 \text{ MHz}$ | C _C •r _{b′b} | _ | 3.5 | 8.0 | ps | | Feedback Capacitance, $V_{CB} = 10 \text{ V}$, $I_E = 0 \text{ mA}$, $f = 1.0 \text{ MHz}$ | C _{RE} | _ | 0.45 | _ | pF | Figure 1. Derating Curve Figure 2. DC Current Gain versus Collector Current Figure 3. DC Current Gain versus Collector Current Figure 4. Gain Bandwidth Product versus Collector Current Figure 5. Device Capacitance versus Collector Base Voltage Figure 6. Output Capacitance TYPICAL COMMON EMITTER SCATTERING PARAMETER $(T_A = 25^{\circ}C)$ | Freq | 5 | S11 Mag Ang | | 21 | S | 12 | S | 22 | |--------------------------|-------------------------|-------------|-------|---------|-------|--------|-------|---------| | MHz | Mag | | | Ang | Mag | Ang | Mag | Ang | | / _{CE} = 2.5 V, | I _C = 2.5 mA | | | | | | | | | 50 | 0.926 | -14.124 | 6.803 | 162.639 | 0.018 | 82.792 | 0.973 | -7.062 | | 100 | 0.855 | -26.794 | 6.224 | 148.649 | 0.034 | 73.296 | 0.921 | -12.818 | | 200 | 0.667 | -47.287 | 5.033 | 126.317 | 0.058 | 62.292 | 0.807 | -19.210 | | 300 | 0.513 | -60.931 | 4.072 | 110.981 | 0.074 | 58.641 | 0.736 | -21.979 | | 400 | 0.411 | -70.342 | 3.326 | 100.524 | 0.090 | 57.333 | 0.694 | -23.695 | | 500 | 0.342 | -77.461 | 2.831 | 92.771 | 0.104 | 56.067 | 0.670 | -25.311 | | 600 | 0.297 | -84.335 | 2.445 | 86.222 | 0.117 | 55.166 | 0.651 | -27.095 | | 700 | 0.261 | -90.986 | 2.154 | 80.493 | 0.131 | 53.800 | 0.637 | -29.095 | | 800 | 0.236 | -97.798 | 1.935 | 75.382 | 0.144 | 52.087 | 0.627 | -31.026 | | 900 | 0.218 | -104.905 | 1.755 | 70.672 | 0.155 | 50.745 | 0.617 | -33.167 | | 1000 | 0.205 | -112.449 | 1.617 | 66.258 | 0.168 | 49.386 | 0.608 | -35.352 | | 1500 | 0.190 | -147.224 | 1.200 | 48.079 | 0.219 | 42.418 | 0.575 | -46.016 | | 2000 | 0.215 | -171.677 | 1.011 | 33.299 | 0.258 | 35.910 | 0.544 | -58.267 | | 2500 | 0.230 | -172.291 | 0.889 | 20.271 | 0.294 | 31.024 | 0.510 | -68.713 | | 3000 | 0.236 | -155.125 | 0.866 | 10.984 | 0.340 | 28.868 | 0.450 | -81.517 | ### TYPICAL COMMON EMITTER SCATTERING PARAMETER ($T_A = 25^{\circ}C$) | Freq | | 511 | S | 21 | S | 512 | s | 22 | |---------------------------------------|--------|----------|--------|---------|-------|--------|-------|---------| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | V _{CE} = 3 V, I _C | = 5 mA | | | | | | | | | 50 | 0.858 | -20.126 | 12.065 | 156.269 | 0.017 | 78.802 | 0.945 | -10.278 | | 100 | 0.733 | -36.552 | 10.452 | 139.116 | 0.029 | 69.100 | 0.850 | -16.656 | | 200 | 0.493 | -58.358 | 7.472 | 115.678 | 0.047 | 62.893 | 0.712 | -20.497 | | 300 | 0.362 | -69.976 | 5.544 | 103.053 | 0.062 | 62.188 | 0.653 | -21.545 | | 400 | 0.288 | -78.272 | 4.337 | 94.866 | 0.075 | 61.876 | 0.621 | -22.551 | | 500 | 0.242 | -85.666 | 3.582 | 88.592 | 0.090 | 61.259 | 0.603 | -23.975 | | 600 | 0.212 | -93.237 | 3.048 | 83.504 | 0.103 | 59.861 | 0.590 | -25.526 | | 700 | 0.190 | -101.308 | 2.656 | 78.785 | 0.116 | 58.802 | 0.580 | -27.405 | | 800 | 0.177 | -109.656 | 2.375 | 74.561 | 0.128 | 57.017 | 0.573 | -29.334 | | 900 | 0.167 | -118.336 | 2.145 | 70.348 | 0.141 | 55.629 | 0.563 | -31.402 | | 1000 | 0.163 | -127.188 | 1.968 | 66.700 | 0.153 | 53.851 | 0.555 | -33.301 | | 1500 | 0.176 | -164.287 | 1.435 | 50.083 | 0.203 | 47.574 | 0.528 | -43.164 | | 2000 | 0.210 | -174.155 | 1.187 | 35.998 | 0.246 | 41.767 | 0.501 | -54.213 | | 2500 | 0.226 | -159.754 | 1.034 | 23.227 | 0.288 | 36.614 | 0.469 | -63.689 | | 3000 | 0.239 | -144.224 | 0.995 | 14.088 | 0.340 | 34.458 | 0.413 | -74.387 | TYPICAL COMMON EMITTER SCATTERING PARAMETER $(T_A = 25^{\circ}C)$ | Freq | S | S11 | | 21 | S | 12 | S | 22 | |---------------------------------------|---------|----------|--------|---------|-------|--------|-------|---------| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | V _{CE} = 3 V, I _C | = 10 mA | | | | | | | | | 50 | 0.643 | -35.313 | 15.384 | 140.063 | 0.015 | 69.823 | 0.864 | -14.048 | | 100 | 0.459 | -53.013 | 11.650 | 121.580 | 0.024 | 63.636 | 0.738 | -17.013 | | 200 | 0.289 | -70.035 | 7.214 | 104.714 | 0.040 | 65.531 | 0.647 | -17.265 | | 300 | 0.225 | -80.644 | 5.260 | 96.934 | 0.053 | 66.205 | 0.618 | -18.444 | | 400 | 0.192 | -91.607 | 4.122 | 91.266 | 0.068 | 66.344 | 0.598 | -20.216 | | 500 | 0.172 | -102.488 | 3.419 | 86.447 | 0.082 | 64.574 | 0.584 | -22.273 | | 600 | 0.161 | -113.748 | 2.929 | 82.212 | 0.096 | 63.206 | 0.572 | -24.418 | | 700 | 0.156 | -125.151 | 2.575 | 78.231 | 0.107 | 61.822 | 0.561 | -26.828 | | 800 | 0.155 | -135.549 | 2.313 | 74.282 | 0.119 | 60.606 | 0.553 | -28.821 | | 900 | 0.156 | -145.469 | 2.099 | 70.461 | 0.131 | 59.154 | 0.543 | -31.132 | | 1000 | 0.163 | -153.718 | 1.925 | 67.004 | 0.141 | 57.409 | 0.536 | -33.247 | | 1500 | 0.201 | -175.526 | 1.415 | 50.535 | 0.193 | 52.024 | 0.505 | -43.365 | | 2000 | 0.237 | -159.398 | 1.173 | 36.726 | 0.240 | 46.396 | 0.477 | -54.652 | | 2500 | 0.247 | -147.097 | 1.021 | 24.113 | 0.289 | 41.529 | 0.444 | -64.094 | | 3000 | 0.259 | -133.925 | 0.982 | 15.023 | 0.346 | 38.491 | 0.382 | -75.243 | ### TYPICAL COMMON EMITTER SCATTERING PARAMETER ($T_A = 25^{\circ}C$) | Freq | 8 | S11 | | 21 | 8 | 512 | S22 | | |-------------------------|-----------------------|----------|--------|---------|-------|--------|-------|---------| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | V _{CE} = 10 V, | I _C = 5 mA | • | | • | | • | | 1 | | 50 | 0.877 | -17.278 | 11.972 | 157.707 | 0.012 | 81.580 | 0.972 | -7.268 | | 100 | 0.765 | -31.274 | 10.386 | 140.944 | 0.022 | 72.099 | 0.900 | -12.126 | | 200 | 0.539 | -49.213 | 7.575 | 118.277 | 0.037 | 66.849 | 0.803 | -14.944 | | 300 | 0.406 | -57.758 | 5.678 | 105.478 | 0.049 | 66.104 | 0.757 | -16.182 | | 400 | 0.334 | -63.347 | 4.464 | 97.467 | 0.062 | 65.473 | 0.729 | -17.508 | | 500 | 0.286 | -68.461 | 3.698 | 91.347 | 0.073 | 64.460 | 0.717 | -19.007 | | 600 | 0.252 | -73.828 | 3.159 | 86.264 | 0.085 | 63.014 | 0.706 | -20.874 | | 700 | 0.227 | -79.612 | 2.766 | 81.745 | 0.095 | 62.100 | 0.697 | -22.551 | | 800 | 0.208 | -86.135 | 2.474 | 77.803 | 0.106 | 60.785 | 0.690 | -24.442 | | 900 | 0.190 | -93.121 | 2.237 | 73.571 | 0.116 | 59.532 | 0.682 | -26.405 | | 1000 | 0.179 | -100.507 | 2.047 | 70.150 | 0.125 | 57.905 | 0.674 | -28.385 | | 1500 | 0.162 | -139.494 | 1.495 | 53.949 | 0.169 | 52.604 | 0.652 | -37.411 | | 2000 | 0.185 | -167.453 | 1.242 | 40.156 | 0.207 | 47.697 | 0.631 | -47.834 | | 2500 | 0.200 | -175.534 | 1.082 | 27.306 | 0.247 | 44.045 | 0.609 | -55.962 | | 3000 | 0.208 | -159.130 | 1.050 | 18.234 | 0.296 | 42.716 | 0.557 | -65.696 | ### $V_{CE} = 2.5 \text{ V}, I_{C} = 2.5 \text{ mA}$ Figure 7. Input Reflection Coefficient Figure 8. Reverse Transmission Coefficient Figure 9. Output Reflection Coefficient Figure 10. Forward Transmission Coefficient ### V_{CE} = 3.0 V, I_{C} = 10 mA **Figure 11. Input Reflection Coefficient** Figure 12. Reverse Transmission Coefficient Figure 13. Output Reflection Coefficient Figure 14. Forward Transmission Coefficient ### TYPICAL COMMON BASE SCATTERING PARAMETER $(T_A = 25^{\circ}C)$ | Freq | S ² | 11 | S | 21 | S12 | | S22 | | | | | |----------------------------|--|---------|--------|---------|-------|--------|-------|---------|--|--|--| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | | | | V _{CE} = 2.5 V, I | $I_{CE} = 2.5 \text{ V}, I_{C} = 2.5 \text{ mA}$ | | | | | | | | | | | | 50 | 0.627 | 176.455 | 1.6218 | -3.3808 | 0.003 | 81.692 | 1.006 | -1.7455 | | | | | 100 | 0.626 | 172.821 | 1.6153 | -6.8404 | 0.008 | 87.954 | 1.002 | -3.5734 | | | | | 200 | 0.622 | 165.583 | 1.6042 | -13.205 | 0.014 | 92.620 | 1.005 | -6.7806 | | | | | 400 | 0.608 | 151.867 | 1.5630 | -26.289 | 0.031 | 96.834 | 1.006 | -13.779 | | | | | 600 | 0.589 | 138.455 | 1.5099 | -39.579 | 0.052 | 96.285 | 1.016 | -21.141 | | | | | 800 | 0.566 | 126.103 | 1.4461 | -52.382 | 0.076 | 94.675 | 1.022 | -28.553 | | | | | 1000 | 0.541 | 114.811 | 1.3613 | -65.315 | 0.102 | 90.577 | 1.026 | -36.519 | | | | | 1500 | 0.476 | 89.445 | 1.1404 | -98.892 | 0.170 | 78.774 | 1.014 | -57.448 | | | | | 2000 | 0.397 | 68.206 | 0.8928 | -133.58 | 0.233 | 68.003 | 0.922 | -77.708 | | | | ### TYPICAL COMMON BASE SCATTERING PARAMETER $(T_A = 25^{\circ}C)$ | Freq | S | 11 | S | S21 | | S12 | | S22 | | | |--|-------|---------|--------|---------|-------|--------|-------|---------|--|--| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | | | $V_{CE} = 3 \text{ V}, I_C = 5 \text{ mA}$ | | | | | | | | | | | | 50 | 0.781 | 176.95 | 1.7732 | -3.0425 | 0.004 | 85.472 | 1.006 | -1.6658 | | | | 100 | 0.780 | 174.093 | 1.7625 | -5.9870 | 0.006 | 88.871 | 1.002 | -3.5604 | | | | 200 | 0.776 | 168.012 | 1.7622 | -11.733 | 0.013 | 94.408 | 1.004 | -6.7723 | | | | 400 | 0.759 | 156.688 | 1.7285 | -23.541 | 0.029 | 100.70 | 1.006 | -13.627 | | | | 600 | 0.743 | 145.893 | 1.6911 | -35.161 | 0.047 | 100.93 | 1.015 | -20.799 | | | | 800 | 0.725 | 135.660 | 1.6441 | -46.886 | 0.071 | 98.938 | 1.024 | -28.057 | | | | 1000 | 0.709 | 126.241 | 1.5817 | -58.697 | 0.095 | 95.803 | 1.031 | -35.921 | | | | 1500 | 0.674 | 103.465 | 1.4275 | -90.316 | 0.172 | 85.633 | 1.037 | -56.915 | | | | 2000 | 0.620 | 81.3686 | 1.1968 | -123.89 | 0.249 | 73.589 | 0.957 | -77.953 | | | ### TYPICAL COMMON BASE SCATTERING PARAMETER (T_A = 25° C) | Freq | Freq S11 | | S | S21 | | S12 | | 22 | | | | |-------------------------------|---|---------|--------|---------|-------|--------|-------|---------|--|--|--| | MHz | Mag | Ang | Mag | Ang | Mag | Ang | Mag | Ang | | | | | $V_{CE} = 3 \text{ V, I}_{C}$ | $I_{CE} = 3 \text{ V, I}_{C} = 10 \text{ mA}$ | | | | | | | | | | | | 50 | 0.867 | 176.898 | 1.8601 | -3.2938 | 0.004 | 88.195 | 1.006 | -1.7132 | | | | | 100 | 0.863 | 173.941 | 1.8432 | -6.3479 | 0.007 | 90.044 | 1.001 | -3.6916 | | | | | 200 | 0.851 | 167.942 | 1.8370 | -12.359 | 0.014 | 91.598 | 1.003 | -6.9503 | | | | | 400 | 0.821 | 157.527 | 1.7814 | -23.95 | 0.029 | 96.128 | 1.003 | -13.909 | | | | | 600 | 0.795 | 148.933 | 1.7303 | -34.993 | 0.045 | 97.955 | 1.011 | -21.082 | | | | | 800 | 0.782 | 139.487 | 1.6831 | -46.443 | 0.067 | 98.521 | 1.018 | -28.456 | | | | | 1000 | 0.773 | 131.501 | 1.6327 | -57.916 | 0.091 | 96.532 | 1.024 | -36.296 | | | | | 1500 | 0.765 | 110.253 | 1.4975 | -89.11 | 0.169 | 88.005 | 1.031 | -57.462 | | | | | 2000 | 0.730 | 87.937 | 1.2711 | -123.21 | 0.253 | 76.070 | 0.950 | -78.777 | | | | ### $V_{CE} = 2.5 \text{ V}, I_{C} = 2.5 \text{ mA}$ **Figure 15. Input Reflection Coefficient** Figure 16. Reverse Transmission Coefficient Figure 17. Output Reflection Coefficient Figure 18. Forward Transmission Coefficient ## INFORMATION FOR USING THE SC-70/SOT-323 SURFACE MOUNT PACKAGE #### MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process. #### SC-70/SOT-323 POWER DISSIPATION The power dissipation of the SC–70/SOT–323 is a function of the pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R\theta_{JA}$, the thermal resistance from the device junction to ambient; and the operating temperature, T_A . Using the values provided on the data sheet, P_D can be calculated as follows. $$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$ The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 200 milliwatts. $$P_D = \frac{150^{\circ}C - 25^{\circ}C}{0.625^{\circ}C/W} = 200 \text{ milliwatts}$$ The 0.625°C/W assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 200 milliwatts. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[®]. Using a board material such as Thermal Clad, a higher power dissipation of 300 milliwatts can be achieved using the same footprint. #### **SOLDERING PRECAUTIONS** The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. - Always preheat the device. - The delta temperature between the preheat and soldering should be 100°C or less.* - When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C. - The soldering temperature and time should not exceed 260°C for more than 10 seconds. - When shifting from preheating to soldering, the maximum temperature gradient should be 5°C or less. - After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. - Mechanical stress or shock should not be applied during cooling - * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. ### **PACKAGE DIMENSIONS** SC-70 (SOT-323) CASE 419-04 ISSUE L - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INC | HES | MILLIM | ETERS | | |-----|-----------|-------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | | В | 0.045 | 0.053 | 1.15 | 1.35 | | | C | 0.032 | 0.040 | 0.80 | 1.00 | | | D | 0.012 | 0.016 | 0.30 | 0.40 | | | G | 0.047 | 0.055 | 1.20 | 1.40 | | | Н | 0.000 | 0.004 | 0.00 | 0.10 | | | J | 0.004 | 0.010 | 0.10 | 0.25 | | | K | 0.017 | REF | 0.425 | REF | | | Г | 0.026 BSC | | 0.650 BSC | | | | N | 0.028 REF | | 0.700 REF | | | | S | 0.079 | 0.095 | 2 00 | 2 40 | | Thermal Clad is a registered trademark of the Bergquist Company. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### PUBLICATION ORDERING INFORMATION #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.