300-MHz, 2.5- Ω, Dual SPDT Analog Switches

DESCRIPTION

The DG787 are dual SPDT analog switches which operate from 1.8 V to 5.5 V single rail power supply. They are design for audio, video, and USB switching applications.
The devices have 2.5Ω on-resistance and 300 MHz 3 dB bandwidth. 0.2Ω on-resistance matching and 1Ω flatness make the device high linearity. The devices are 1.6 V logic compatible within the full operation voltage range.
These switches are built on a sub-micron high density process that brings low power consumption and low voltage performance.
The switch is package in MSOP 10 package.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. DG787 is offered in a MSOP package. The MSOP package uses 100% matte tin device termination and is represented by the lead (Pb)-free "-E3" suffix. Both the matte tin device terminations meet all JEDEC standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V operation
- 2.5Ω at $2.7 \mathrm{~V} \mathrm{R}_{\mathrm{ON}}$
- $300 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth
- ESD per MIL-STD-883 method $3015.7>2 \mathrm{kV}$
- Latch-up current 200 mA (JESD 78)
- 1.6 V logic compatible
- Compliant to RoHS directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition

BENEFITS

- Space saving MSOP-10 package
- High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range

APPLICATIONS

- Cellular phones
- MP3
- Media players
- Modems
- Hard drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC1 and NC2	NO1 and NO2
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP-10	DG787DQ-T1-E3

Vishay Siliconix

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. Refer to IPC/JEDEC (J-STD-020).
c. All leads welded or soldered to PC board.
d. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V} \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$		Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$				Full	0		V+	V
On-Resistance ${ }^{\text {d }}$	R_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}$	Room Full		2.5	$\begin{aligned} & 3.5 \\ & 3.8 \end{aligned}$	Ω	
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$	R_{ON} Flatness		$\mathrm{V}_{\text {COM }}=1,1.5,2 \mathrm{~V}$	Room		0.52	1.0		
On-Resistance Match Between Channels ${ }^{\text {d }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$		$\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}$	Room			0.25		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC}(\text { off })}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	nA	
	$\mathrm{I}_{\text {COM (off) }}$			Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} 1 \\ 20 \end{gathered}$		
Channel-On Leakage Current	$\mathrm{I}_{\text {COM(on) }}$	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$		Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} 1 \\ 20 \end{gathered}$		
Digital Control									
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.4			V	
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			Full			0.5		
Input Capacitance	$\mathrm{C}_{\text {in }}$			Full		5		pF	
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		Full	1		1	$\mu \mathrm{A}$	

SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$									
Parameter	Symbol	Test ConditionsOtherwise Unless Specified$\mathrm{V}+=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ or 1.4 V e		Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$			
Dynamic Characteristics									
Turn-On Time	${ }^{\text {ton }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$			Room Full		21	$\begin{aligned} & 51 \\ & 52 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full		15	$\begin{aligned} & \hline 45 \\ & 46 \end{aligned}$		
Break-Before-Make Time	t_{d}			Full	1				
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=$	$\mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		1		pC	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		-74		dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-54			
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		$\mathrm{f}=1 \mathrm{MHz}$	Room		- 76			
			$\mathrm{f}=10 \mathrm{MHz}$	Room		-56			
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$		Room		12		pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room		12			
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room		40			
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			Room		40			
Power Supply									
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$		Room Full			$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	

Vishay Siliconix

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V testing, not production tested.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\text {ON }}$ vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^0]
MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

1. Die thickness allowable is 0.203 ± 0.0127.
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.
3.

Dimensions " D " and " E_{1} " do not include mold flash or protrusions, and are measured at Datum plane $-\mathrm{H}^{-}$, mold flash or protrusions shall not exceed 0.15 mm per side.
4.
5.
6.

Dimension is the length of terminal for soldering to a substrate
Terminal positions are shown for reference only.
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm . See detail "B" and Section "C-C".
8. Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
9. Controlling dimension: millimeters
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
11. Datums -A- and -B- to be determined Datum plane -H-

Exposed pad area in bottom side is the same as teh leadframe pad size.

Detail "B" (Scale: 30/1) Dambar Protrusion

End View
$\mathrm{N}=10 \mathrm{~L}$

Dim	MILLIMETERS			Note
	Min	Nom	Max	
A	-	-	1.10	
A_{1}	0.05	0.10	0.15	
A_{2}	0.75	0.85	0.95	
b	0.17	-	0.27	8
b_{1}	0.17	0.20	0.23	8
c	0.13	-	0.23	
C_{1}	0.13	0.15	0.18	
D	3.00 BSC			3
E	4.90 BSC			
E_{1}	2.90	3.00	3.10	3
e	0.50 BSC			
e_{1}	2.00 BSC			
L	0.40	0.55	0.70	4
N	10			5
\propto	0°	4°	6°	
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867				

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?65369.

