# RENESAS

# M52461GP SERVO MOTER MOTROL FOR RADIO CONTROL

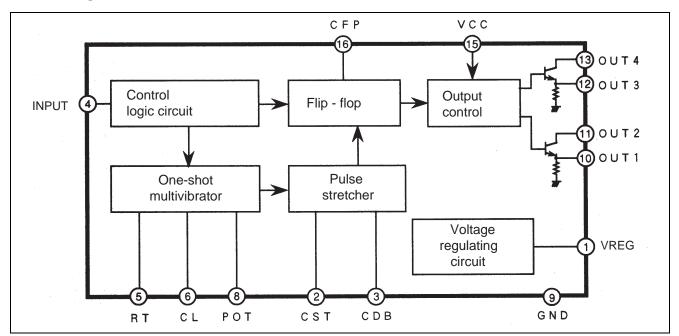
REJ03F0006-0100Z Rev.1.00 Jul.25.2003

#### Description

The M52461GP is a semiconductor integrated circuit for servo control applications.

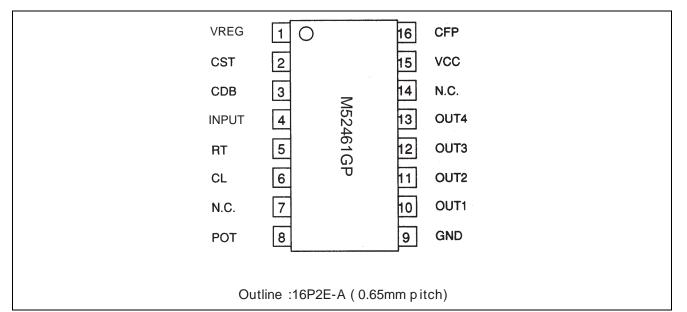
#### Features

- Excellent power supply stability and temperature stability
- Simple setting of dead of band range
- Small outline (16pin SSOP)


#### Applications

• Digital proportional systems for radio control, servo motor control, etc

#### **Recommended Operating Conditions**


- Supply Voltage range : 2.8 to 7.5 V
- Operating temperature : -20 to 75°C
- Input rise time : 500 nS max.
- Input fall time : 500 nS max.

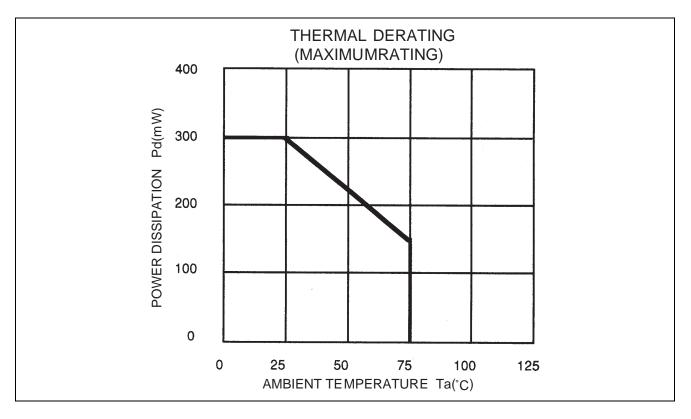
#### **Block Diagram**





## **Pin Arrangement**




### **Pin Description**

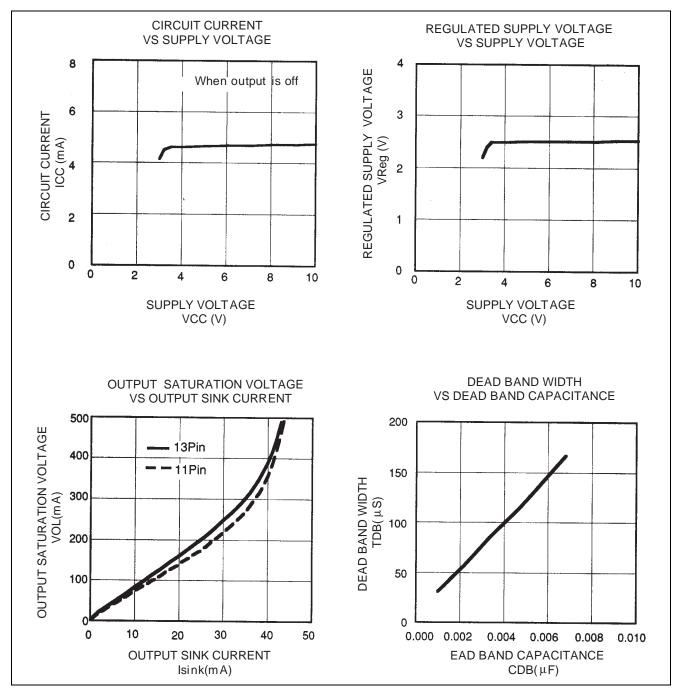
| Pin<br>No. | Symbol | Function                         | Descriptions                                                                                                                                                         |  |  |  |  |
|------------|--------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1          | VREG   | Regulated voltage source         | This is output of the internal regulated supply voltage. Make<br>connections from this pin to pot-entiometer and pulse<br>stretcher resister.                        |  |  |  |  |
| 2          | CST    | Stretcher pin                    | Connect the capacitor and resistor of the pulse stretcher section.                                                                                                   |  |  |  |  |
| 3          | CDB    | Dead band setting pin            | Connect the capacitor and band can be changed according the value of this capacitor.                                                                                 |  |  |  |  |
| 4          | INPUT  | Input pin                        |                                                                                                                                                                      |  |  |  |  |
| 5          | RT     | Constant setting pin             | Connect a capacitor that will determine the constant current value of pin 6. Constant current will became 100 $\mu$ A at the time of the resistance of 18 k $\Omega$ |  |  |  |  |
| 6          | CL     | Local pulse setting pin          | Connect a capacitor that will adjust a triangular wave made by charging of constant current.                                                                         |  |  |  |  |
| 7          | N.C.   | No connection                    |                                                                                                                                                                      |  |  |  |  |
| 8          | POT    | Servo position voltage input pin | Connect to the potentiometer for the position detection connected with the output axis.                                                                              |  |  |  |  |
| 9          | GND    | Grounding pin                    | Grounding                                                                                                                                                            |  |  |  |  |
| 10         | OUT1   | Output 1                         | Connect to the base of the external NPN transistor                                                                                                                   |  |  |  |  |
| 11         | OUT2   | Output 2                         | Connect to the base of the external PNP transistor                                                                                                                   |  |  |  |  |
| 12         | OUT3   | Output 3                         | Connect to the base of the external NPN transistor                                                                                                                   |  |  |  |  |
| 13         | OUT4   | Output 4                         | Connect to the base of the external PNP transistor                                                                                                                   |  |  |  |  |
| 14         | N.C.   | No connection                    |                                                                                                                                                                      |  |  |  |  |
| 15         | VCC    | Supply voltage                   | Connect a capacitor of more than 10 µF.                                                                                                                              |  |  |  |  |
| 16         | CFT    | Fixed driving pulse setting pin  | Connect a capacitor that will determine the fixed driving pulse width.                                                                                               |  |  |  |  |



### **Absolute Maximum Ratings**

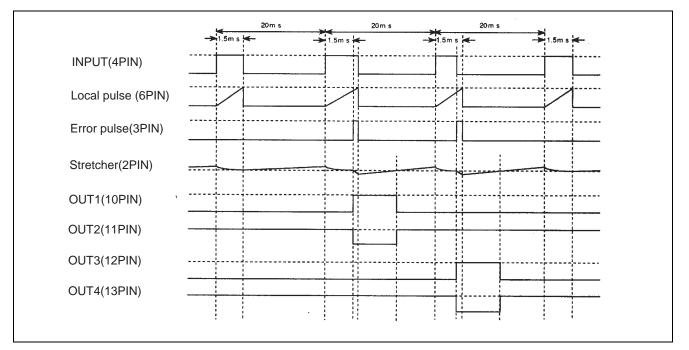
|        |                        |                 | $(VCC = 5V, Ta = 25^{\circ}C, unless otherwise noted)$ |       |  |
|--------|------------------------|-----------------|--------------------------------------------------------|-------|--|
| Symbol | Parameter              | Test conditions | Ratings                                                | Unit  |  |
| VCC    | Supply voltage         |                 | 9.0                                                    | V     |  |
| IO     | Output current         | OUT1 to OUT4    | 40                                                     | mA    |  |
| PD     | Power dissipation      |                 | 300                                                    | mW    |  |
| Кθ     | Thermal derating range | Ta≥25°C         | -3.0                                                   | mW/°C |  |
| Tstg   | Storage temperature    |                 | -40 to 125                                             | °C    |  |



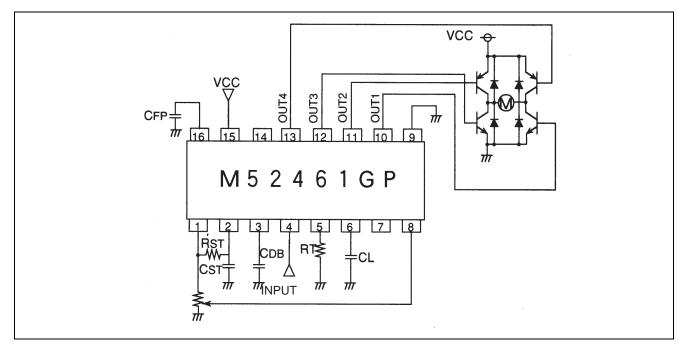



## **Electrical Characteristics**

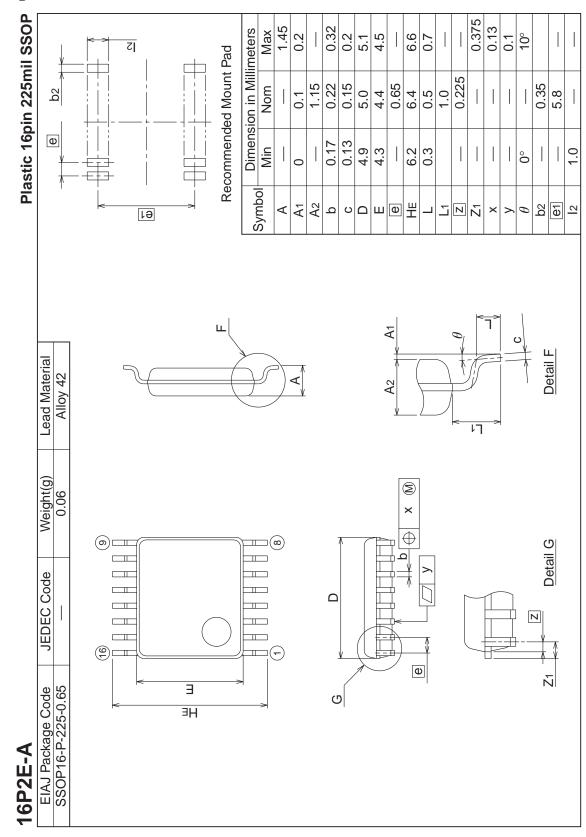
|        |                               |                                          | $(VCC = 5.0 \text{ V}, \text{ Ta} = 25^{\circ}\text{C})$ |      |      |       |
|--------|-------------------------------|------------------------------------------|----------------------------------------------------------|------|------|-------|
| Symbol | Parameter                     | Test conditions                          | Limits                                                   |      |      | Unit  |
|        |                               |                                          | Min                                                      | Тур  | Max  | _     |
| VCC    | Supply voltage                |                                          | 2.8                                                      | 5.0  | 7.5  | V     |
| ICC1   | Circuit Current 1             | Output off                               | _                                                        | 5.0  | 10.0 | mA    |
| ICC2   | Circuit Current 2             | Output on                                | _                                                        | 6.0  | 11.0 | mA    |
| Vreg   | Regulated voltage             | No load                                  | 2.35                                                     | 2.5  | 2.65 | V     |
| dVreg  | Regulated voltage precision   | VCC = 3.5 to 6.5 V                       | _                                                        | 0.2  | _    | %/V   |
| Iref   | Reference current             | RT = 18 k $\Omega$ , Pin 5 current value | 90                                                       | 100  | 110  | μΑ    |
| Vih    | High input voltage            | Pin4                                     | 2.0                                                      | _    | Vcc  | V     |
| WL     | Standard local pulse width    | RT = 18 kΩ, CL = 0.1 $\mu$ F             | 1.4                                                      | 1.5  | 1.6  | ms    |
| dWL    | Supply voltage dependence     | VCC = 3.5 to 6.5 V                       | _                                                        |      | 2.0  | μs/V  |
|        | of the local pulse width      | VCC = 2.5 to 7.5 V                       | _                                                        | _    | 15.0 | _     |
| Wdb1   | Minimum dead bandwidth        | CFP = 0.01µF                             | _                                                        | _    | 1.0  | μs    |
|        |                               | Not connect CDB                          |                                                          |      |      |       |
| Wdb2   | Standard driving band width   | Not connect CFP and CDB                  | _                                                        | 2.5  | 6.0  | μs    |
| AST    | Stretcher gain                | RT = 18 kΩ                               | _                                                        | 100  | _    | times |
|        |                               | RST = 120 kΩ                             |                                                          |      |      |       |
|        |                               | CST = 0.1 μF                             |                                                          |      |      |       |
| WKP    | Fixed driving pulse width     | $CFP = 0.01 \mu F$                       | 0.7                                                      | 1.0  | 1.3  | ms    |
|        |                               | Not connect CDB                          |                                                          |      |      |       |
| WCP    | Standard driving pulse width  | Not connect CFP and CDB                  | 0.3                                                      | 0.5  | 0.8  | ms    |
| Wout   | Output pulse width            | CST = 0.1 μF                             | 8.0                                                      | 10.0 | 12.0 | ms    |
|        |                               | RST = 120 kΩ                             |                                                          |      |      |       |
|        |                               | Pulse width 100µs (3pin)                 |                                                          |      |      |       |
| Vosat  | Output pin saturation voltage | ISINK = 20 mA                            | _                                                        | 0.2  | 0.4  | V     |




### **Typical Characteristics**




RENESAS


### **Timing Diagram**



### **Application Example**



### **Package Dimensions**





#### RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

#### Keep safety first in your circuit designs!

- The party inst in your circuit designs:
  1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
  Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
  Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
  All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product.
  4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to eva use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.



http://www.renesas.com

## **RENESAS SALES OFFICES**

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

#### Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001