High Reliability Coupled Inductors ML612PND

The ML612PND series of coupled inductors was designed for high temperature applications — up to 155°C. The excellent coupling coefficient (k \geq 0.98) makes it ideal for use in SEPIC applications. In SEPIC topologies, the required inductance for each winding in a coupled inductor is half the value needed for two separate inductors, allowing selection of a part with lower DCR and higher current handling.

These inductors provide high inductance, high efficiency, excellent current handling and 500 V isolation in a very rugged part. They are well suited for use as VRM inductors in high-current DC-DC and VRM/VRD controllers.

They can also be used as two single inductors connected in series or parallel, as a common mode choke or as a 1:1 transformer.

Typical SEPIC schematic

Refer to Application Note, Document 639,
"Selecting Coupled Inductors for SEPIC Applications"

Core material Ferrite

Terminations Matte tin over nickel over phos bronze.

Weight: 3.8 g - 4.6 g

Ambient temperature -55° C to $+105^{\circ}$ C with Irms current, $+105^{\circ}$ C to $+155^{\circ}$ C with derated current

Storage temperature Component: -55C to +155°C. Tape and reel packaging: -55°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at $<30^{\circ}\text{C}$ / 85% relative humidity)

Winding-to-winding and winding-to-core isolation 500 Vrms

Enhanced crush-resistant packaging 500/13" reel; Plastic tape: 24 mm wide, 0.4 mm thick, 16 mm pocket spacing, 8.1 mm pocket depth

Coilcraft CPS
CRITICAL PRODUCTS & SERVICES

Specifications subject to change without notice. Please check our website for latest information.

Document ML704-1 Revised 07/13/12

ML612PND Series (1278)

						Coupling Leakage		Isat (A)⁵			Irms(A)	
Death would and	Inductance ²		DCR max ³	SRF(coefficient	Ltyp	10%	20%	30%	both	one
Part number ¹	(μ	H)	(Ohms)	min	typ	typ	(µH)	drop	drop	drop	windings ⁶	winding/
ML612PND472MLZ	4.7 ±20%		0.040	26.0	33.0	0.98	0.22	13.90	15.20	16.36	3.16	4.47
ML612PND562MLZ	5.6 ±20%		0.046	24.0	30.0	0.98	0.23	13.38	14.86	15.74	2.87	4.06
ML612PND682MLZ	6.8 ±20%		0.048	18.0	23.0	0.98	0.22	12.10	13.56	14.20	2.81	3.98
ML612PND822MLZ	8.2 ±20%		0.055	16.0	20.0	0.98	0.34	10.30	11.52	12.20	2.76	3.90
ML612PND103MLZ	10	±20%	0.058	14.0	17.0	0.98	0.34	8.80	10.00	10.66	2.56	3.62
ML612PND123MLZ	12	±20%	0.062	12.0	15.0	0.98	0.36	8.20	9.18	9.74	2.48	3.50
ML612PND153MLZ	15	±20%	0.072	10.0	13.0	0.99	0.41	7.40	8.36	9.03	2.30	3.25
ML612PND183MLZ	18	±20%	0.080	9.6	12.0	0.99	0.37	6.50	7.38	7.86	2.18	3.08
ML612PND223MLZ	22	±20%	0.096	8.8	11.0	0.99	0.41	6.00	6.80	7.26	1.99	2.81
ML612PND273MLZ	27	±20%	0.120	8.0	10.0	0.99	0.43	5.80	6.56	7.02	1.78	2.52
ML612PND333MLZ	33	±20%	0.150	7.6	9.5	0.99	0.56	5.50	6.10	6.52	1.59	2.25
ML612PND393MLZ	39	±20%	0.161	6.8	8.5	0.99	0.64	4.70	5.26	5.60	1.54	2.18
ML612PND473MLZ	47	±20%	0.180	6.0	7.5	0.99	0.70	3.70	4.34	4.60	1.45	2.05
ML612PND563MLZ	56	±20%	0.190	5.6	7.0	0.99	0.76	3.60	4.18	4.50	1.41	2.00
ML612PND683MLZ	68	±20%	0.210	5.2	6.5	0.99	0.88	3.50	4.04	4.32	1.35	1.90
ML612PND823MLZ	82	±20%	0.280	4.0	5.0	0.99	0.85	3.30	3.72	4.02	1.16	1.65
ML612PND104MLZ	100	±20%	0.300	3.6	4.5	>0.99	0.90	2.80	3.24	3.46	1.13	1.59
ML612PND124KLZ	120	±10%	0.410	3.4	4.3	0.99	1.31	2.60	2.94	3.16	0.96	1.36
ML612PND154KLZ	150	±10%	0.460	3.3	4.1	>0.99	1.46	2.20	2.54	2.70	0.91	1.29
ML612PND184KLZ	180	±10%	0.510	3.2	4.0	>0.99	0.93	2.10	2.42	2.58	0.86	1.22
ML612PND224KLZ	220	±10%	0.690	2.7	3.4	>0.99	1.54	1.90	2.16	2.28	0.74	1.05
ML612PND274KLZ	270	±10%	0.900	2.5	3.1	>0.99	1.17	1.70	1.94	2.10	0.65	0.92
ML612PND334KLZ	330	±10%	1.02	2.3	2.9	0.99	4.14	1.50	1.70	1.84	0.61	0.86
ML612PND394KLZ	390	±10%	1.12	2.2	2.7	>0.99	1.64	1.40	1.60	1.70	0.58	0.82
ML612PND474KLZ	470	±10%	1.53	1.8	2.2	>0.99	0.25	1.30	1.50	1.60	0.50	0.70
ML612PND564KLZ	560	±10%	1.69	1.6	2.0	>0.99	2.68	1.20	1.34	1.46	0.47	0.67
ML612PND684KLZ	680	±10%	2.29	1.4	1.7	>0.99	2.11	1.00	1.08	1.22	0.41	0.58
ML612PND824KLZ	820	±10%	2.55	1.1	1.4	>0.99	2.39	0.900	1.04	1.18	0.39	0.55
ML612PND105KLZ	1000	±10%	2.87	1.0	1.3	>0.99	4.28	0.850	0.948	1.05	0.37	0.52

1. When ordering, please specify testing code:

ML612PND105KLZ

Testing: Z = COTS

H = Screening per Coilcraft CP-SA-10001

N = Screening per Coilcraft CP-SA-10004

- Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0
 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are
 connected in parallel, inductance is the same value. When leads are
 connected in series, inductance is four times the value.
- 3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.
- 4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.
- Typical DC current, at which the inductance drops the specified amount from its value without current. It is the sum of the current flowing in both windings.
- Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- 7. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- 8. Electrical specifications at 25°C.

Refer to Doc 639 "Selecting Coupled Inductors for SEPIC Applications." Refer to Doc 362 "Soldering Surface Mount Components" before soldering.

Temperature rise calculation based on specified Irms

Winding power loss = $(I_{L1}^2 + I_{L2}^2) \times DCR$ in Watts (W)

Temperature rise (Δt) = Winding power loss $\times \frac{52.6^{\circ}C}{W}$

$$\Delta t = (I_{L1}^2 + I_{L2}^2) \times DCR \times \frac{52.6^{\circ}C}{W}$$

Example 1. MSD1278T-153ML (Equal current in each winding) Winding power loss = $(2.3^2 + 2.3^2) \times 0.072 = 0.761$ W

$$\Delta t = 0.761 \text{ W} \times \frac{52.6^{\circ}\text{C}}{\text{W}} = 40^{\circ}\text{C}$$

Example 2. MSD1278T-153ML ($I_{L1} = 2.4 \text{ A}$, $I_{L2} = 1.3 \text{ A}$)

Winding power loss = $(2.4^2 + 1.3^2) \times 0.072 = 0.536 \text{ W}$

$$\Delta t = 0.536 \text{ W} \times \frac{52.6^{\circ}\text{C}}{\text{W}} = 28.2^{\circ}\text{C}$$

ML612PND Series (1278)

Typical L vs Current

Typical L vs Frequency

Current Derating

