Distinctive Characteristics

- Single 5-volt power supply
- Input diodes for prevention of line ringing
- Low output skew between NAND and AND propagation delays.
- Clamped outputs for reduction in positive and negative voltage transients.
- 100% reliability assurance testing in compliance with MIL-STD-883.

Am78/8830

- T	-65°C to +150°C		
Storage Temperature	-55°C to +125°C		
Temperature (Ambient) Under Bias Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7V		
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max.		
DC Input Voltage	-0.5V to +5.5V		
Output Current, Into Outputs	100 mA		
DC Input Current	-30mA to +5.0mA		
Output Short Circuit Duration at 125°C	1 sec		

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am8830

 $V_{CC} = 5.0V \pm 5\%$

Am7830

 $T_A = 0^{\circ} C \text{ to } +75^{\circ} C$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$

V_{CC} = 5.0V ± 10%

m7830 Parameters	$T_A = -55^{\circ} \text{C to } + 125^{\circ} \text{C}$ Description	Test Conditions		Min.	Typ. (Note 1)	Max.	DataS
v _{OH}	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -40 mA		1.8	2.9		Volts
		$V_{IN} = 0.8V$ $I_{OH} = -0.8 \text{ mA}$	I _{OH} = -0.8mA	2.4	3.3]
v _{OL}	Output LOW Voltage	V _{CC} = MIN., V _{IN} = 0.8V I _{OL} = 40 mA		0.22	0.5	Volts	
			I _{OL} = 32 mA		0,2	0.4	
v _{IH}	Input HIGH Level Voltage	Guaranteed input logical HIGH voltage for all inputs		2.0			Volts
V _{IL}	Input LOW Level Voltage	Guaranteed input logical LOW voltage for all inputs				8,0	Volts
IIL	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.4V			-3.0	-4.8	mA
	Input HIGH Current	VCC = MAX., VII	N = 2.4V			120	μА
LiH	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V				2.0	mA
ISC (Note 2)) Output Short Circuit Current	V _{CC} = 5.0 V, V _{OUT} = 0.0 V		-40	-100	-120	mA
Icc	Power Supply Current	V _{CC} = MAX. (Each Driver)			11	18	mA

Note 1. Typical limits are at $V_{CC} = 5.0V$, $25^{\circ}C$ ambient and maximum loading.

Note 2. Limits for TA = +125°C only.

Switching Characteristics (TA = 25°C)

Parameters	Description	Conditions	Min.	Тур.	Max.	Units
tPLH	Delay from Inputs to Output of AND Gate	V _{CC} = 5.0V, C _L = 15pF See Figure 1		8	12	ns
PLH				11	18	ns
tPHL					12	ns
tPLH	Control NAND soto			8		
neet4thcom	Delay from Inputs to Output of NAND gate			5 WW	w.DataSh	eet40°.com
tı	Differential Delay	V_{CC} = 5.0V, C_L = 5000pF R_L = 100 Ω , See Figure 2		12	16	ns
				12	16	ns
to				i		

et4U.com

Am78/8830

APPLICATIONS

LIC-531

TYPICAL TWISTED PAIR DIFFERENTIAL COMMUNICATION SYSTEM

The Am78/8830 drives a twisted pair line which is terminated at the receiving end by an RC network. The R is approximately equal to the line impedance (170 Ω) and is part of the Am78/8820A differential receiver. The C_B is a blocking capacitor which stops DC current flow, land for low duty cycles reduces power consumption. The value of this capacitor depends upon the data rate, C_B must be large compared to $\frac{1}{10}$ where fd is the data rate. The capacitor C_R is used to control the response time of the receiver and limit high frequency noise. C_R $\sim 4 \times 10^3 \frac{1}{10}$ where C is in pF and fn is the lowest noise frequency expected in MHz.

DataSneet4U.com

Metallization and Pad Layout

DIE SIZE 0.050" x 0.063"

www.DataSheet4U.com

DataSheet4U.com