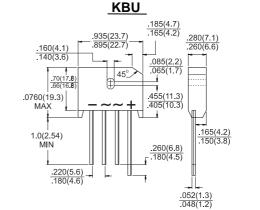


KBU401 THRU KBU407


Single Phase 4.0 AMPS. Silicon Bridge Rectifiers

Voltage Range 50 to 1000 Volts Current 4.0 Amperes

Features

- ♦ UL Recognized File # E-96005
- → High surge current capability
- ♦ Ideal for printed circuit board
- Reliable low cost construction technique results in inexpensive product
- → High temperature soldering guaranteed: 260°C / 10 seconds / 0.375" (9.5mm) lead length at 5 lbs., (2.3 kg) tension
- ♦ Weight: 8 grams

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

Symbol	KRII	KRII	KRII	KRII	KRII	KRII	KRII	Units
Cymbol	401	402	403	404	405	406	407	UTIILS
V_{RRM}	50	100	200	400	600	800	1000	V
V_{RMS}	35	70	140	280	420	560	700	V
V_{DC}	50	100	200	400	600	800	1000	V
I _(AV)	4.0							Α
I _{FSM}	200							Α
V_{F}	1.0							>
10						uA		
^{IR} 500							uA	
$R\theta_{JA}$	19							°C/W
$R heta_{JL}$	4.0							
TJ	-55 to +125						$^{\circ}$	
T _{STG}	-55 to +150							ပ္
	$\begin{tabular}{c} Symbol \\ V_{RRM} \\ V_{RMS} \\ V_{DC} \\ I_{(AV)} \\ I_{FSM} \\ V_{F} \\ I_{R} \\ R_{\theta_{JL}} \\ T_{J} \\ T_{STG} \\ \end{tabular}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol KBU 401 KBU 402 V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _(AV)	Symbol KBU 401 KBU 402 KBU 403 V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _(AV)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note: 1. Units Mounted on P.C.B. with 0.5 x 0.5" (12 x 12mm) Copper Pads and 0.375" (9.5mm) Lead Length.

2. Units Mounted on a 2" x 3" x 0.25" Al-Plate.

RATINGS AND CHARACTERISTIC CURVES (KBU401 THRU KBU407)

FIG.1- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PER BRIDGE ELEMENT PEAK FORWARD SURGE CURRENT. (A) Tj=25°C 8.3ms Single Half Sine Wave 150 125 100 75 50 25 2 10 20 50 100 NUMBER OF CYCLES AT 60Hz

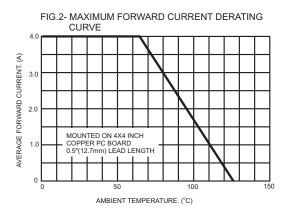
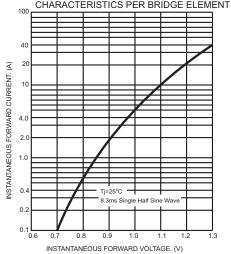
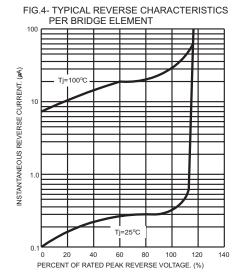




FIG.3- TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER BRIDGE ELEMENT

