

1.5A Low Dropout Voltage Regulator

B1086 Advance Information

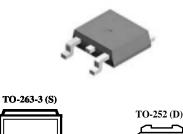
Adjustable & Fix Output

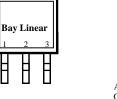
Description

The Bay Linear B1086 is Monolithic low power 1.5A Adjustable and fixed NPN voltage regulator that are easy to use with minimum external components. It is suitable for applications requiring a well-regulated positive output voltage with low input-output differential voltage requirements and output voltage 3.3V, 2.9V, or 2.5V.

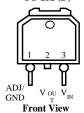
The B1086 Outstanding features include full power usage up to 1.5Amp of load current internal current limiting and thermal shutdown. Other fixed versions are also available V_{out} =2.0 to 4.0V.

The B1086 is offered in a 3-pin TO-220, TO-263 & TO-252 packages compatible with other 3 terminal regulators. For 3A Low dropout Regulator refer to the B1085 data sheet.


Features


- Adjustable Output Down to 1.2V
- Fixed Output Voltages 2.5V, 3.3V, and 5.0V
- Output Current of 1.5A
- Low Dropout Voltage 1.1V Typ.
- Current & Thermal Limiting
- Standard 3-Terminal Low Cost TO-220, D², D Packages
- Similar to industry Standard LT1086/LT1586

Applications


- 3.3V to 2.5V for Pentium Processor
- SMPS Post Regulator
- High Efficiency "Green" Computer Systems
- High Efficiency Linear Power Supplies
- 5V to 3.XXV fro Pentium Processor
- Battery Charger

Pin Connection

Top View

Ordering Information

Devices	Package	Temp.
B1086T	TO-220	0 °C to 70 °C
B1086S	TO-263	0 °C to 70 °C
B1086D	TO-252	0 °C to 70 °C

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Maximum Input Voltage	V_{IN}	6	V
Power Dissipation	Po	Internally Limited	W
Thermal Resistance Junction to Case	$\theta_{\rm JC}$	3	°C/W
Thermal Resistance Junction to Ambient	θ_{JA}	50	
Operating Junction Temperature Range Control Section Power Transistor	TJ	0 to 125 0 to 150	°C
Storage Temperature Range	T _{STG}	-65 to 150	
Lead Temperature (Soldering 10 Sec.)	T _{LEAD}	260	

Electrical Characteristics

 $(V_{IN} = 4.75V \text{ to } 5.25V; I_0 = 10\text{mA to } 1.5\text{Amp, unless otherwise specified})$

Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
Output Voltage	V_0 $V_0 = 3.3V, I_0 = 10mA, V_{IN} = 5V, T = 25 °C$		3.267	3.3	3.333	V
		$V_0 = 3.3V$, $I_0 = 10mA$, $V_{IN} = 5V$, Over Temp.	3.234		3.366	
		$V_0 = 2.9V, I_0 = 10mA, V_{IN} = 5V, T = 25 \text{ °C}$	2.871	2.9	2.929	
		$V_0 = 2.9V$, $I_0 = 10mA$, $V_{IN} = 5V$, Over Tamp.	2.842		2.958	
		$V_0 = 2.5V, I_0 = 10mA, V_{IN} = 5V, T = 25 \text{ °C}$	2.475	2.5	2.525	
		$V_0 = 2.5V$, $I_0 = 10mA$, $V_{IN} = 5V$, Over Temp.	2.450		2.550	
Line Regulation (1) REG _(line) I		$I_0 = 10mA$, $V_{IN} = 5V$, $T = 25 \text{ °C}$		0.015	0.2	%
		$I_0 = 10$ mA, $V_{IN} = 5$ V, Over Temperature		0.035		
Load Regulation (1)	REG (LOAD)	$I_0 = 10mA$, $V_{IN} = 5V$, $T = 25 \ ^{\circ}C$				
		$I_0 = 10$ mA, $V_{IN} = 5V$, Over Temperature				
Dropout Voltage	VD	T= 25 °C		1.0		V
		Over Temperature		1.1	1.3	
Current Surge Limit	Is			2.5		А
Quiescent Current	Io	V _{IN} =5V		10	16	mA
Temperature Coefficient	T _C	$V_{IN} = 5V$		0.005		%/°C
Temperature Stability	Ts	$I_0 = 10 \text{mA}, V_{IN} = 5 \text{V}$		0.5		%
RMS Output Noise	V _N	T= 25 °C, 10Hz to 10khz		0.003		%Vo
Ripple Rejection	R _A	$T=25 \text{ °C}, V_{IN}=5V$	60	70		dB
Thermal Resistance	-	TO-220 Junction to Tab		3.0	3.0	°C/W
		Junction to Ambient		60	60	
		DD Package Junction to Tab		3.0	3.0	
		Junction to Ambient		60	60	

Note: Output Switch tests are performed under pulsed conditions to minimize power dissipation

Advance Information- These data sheets contain descriptions of products that are in development. The specifications are based on the engineering calculations, computer simulations and/ or initial prototype evaluation.

Preliminary Information- These data sheets contain minimum and maximum specifications that are based on the initial device characterizations. These limits are subject to change upon the completion of the full characterization over the specified temperature and supply voltage ranges.

The application circuit examples are only to explain the representative applications of the devices and are not intended to guarantee any circuit design or permit any industrial property right to other rights to execute. Bay Linear takes no responsibility for any problems related to any industrial property right resulting from the use of the contents shown in the data book. Typical parameters can and do vary in different applications. Customer's technical experts must validate all operating parameters including "Typical" for each customer application.

LIFE SUPPORT AND NUCLEAR POLICY

Bay Linear products are not authorized for and should not be used within life support systems which are intended for surgical implants into the body to support or sustain life, in aircraft, space equipment, submarine, or nuclear facility applications without the specific written consent of Bay Linear President.