# 68030/040 PECL to TTL Clock Driver #### **Description** The MC10H/100H640 generates the necessary clocks for the 68030, 68040 and similar microprocessors. It is guaranteed to meet the clock specifications required by the 68030 and 68040 in terms of part-to-part skew, within-part skew and also duty cycle skew. The user has a choice of using either TTL or PECL (ECL referenced to +5.0 V) for the input clock. TTL clocks are typically used in present MPU systems. However, as clock speeds increase to 50 MHz and beyond, the inherent superiority of ECL (particularly differential ECL) as a means of clock signal distribution becomes increasingly evident. The H640 also uses differential PECL internally to achieve its superior skew characteristic. The H640 includes divide-by-two and divide-by-four stages, both to achieve the necessary duty cycle skew and to generate MPU clocks as required. A typical 50 MHz processor application would use an input clock running at 100 MHz, thus obtaining output clocks at 50 MHz and 25 MHz (see Logic Diagram). #### **Features** - Generates Clocks for 68030/040 - Meets 030/040 Skew Requirements - TTL or PECL Input Clock - Extra TTL and PECL Power/Ground Pins - · Asynchronous Reset - Single +5.0 V Supply - Pb-Free Packages are Available\* #### **Function** Reset (R): LOW on RESET forces all Q outputs LOW and all $\overline{Q}$ outputs HIGH. Power-Up: The device is designed to have the POS edges of the $\pm \Box 2$ and $\pm \Box 4$ outputs synchronized at power up. Select (SEL): LOW selects the ECL input source ( $\overline{DE}/\overline{DE}$ ). HIGH selects the TTL input source (DT). The H640 also contains circuitry to force a stable state of the ECL input differential pair, should both sides be left open. In this case, the DE side of the input is pulled LOW, and $\overline{\text{DE}}$ goes HIGH. #### ON Semiconductor® http://onsemi.com PLCC-28 FN SUFFIX CASE 776 #### **MARKING DIAGRAM\*** xxx = 10 or 100 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. <sup>\*</sup>For additional marking information, refer to Application Note AND8002/D. <sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Pinout: PLCC-28 (Top View) Figure 2. Logic Diagram #### **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GT<br>VT<br>VE<br>GE<br>DE, DE<br>V <sub>BB</sub><br>DT<br>Qn, Qn<br>SEL<br>R | TTL Ground (0 V) TTL V <sub>CC</sub> (+5.0 V) ECL V <sub>CC</sub> (+5.0 V) ECL Ground (0 V) ECL Signal Input (positive ECL) V <sub>BB</sub> Reference Output TTL Signal Input Signal Outputs (TTL) Input Select (TTL) Reset (TTL) | Table 2. DC CHARACTERISTICS ( $V_T = V_E = 5.0 \text{ V} \pm [5\%)$ | | | | | 0°C | | 25°C | | 85°C | | | |------------------|----------------------|-----|-------------------|-----|-----|------|-----|------|-----|------| | Symbol | Characteristic | | Condition | Min | Max | Min | Max | Min | Max | Unit | | I <sub>EE</sub> | Power Supply Current | ECL | VE Pin | | 57 | | 57 | | 57 | mA | | I <sub>CCH</sub> | | TTL | Total all VT pins | | 30 | | 30 | | 30 | mA | | I <sub>CCL</sub> | | | | | 30 | | 30 | | 30 | mA | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 3. 10H PECL DC CHARACTERISTICS ( $V_T = V_E = 5.0 \text{ V} \pm 5\%$ ) | | | | 0°C | | °C 25°C | | 85°C | | | |----------------------------------------|-----------------------------------------|------------------------|--------------|--------------|--------------|--------------|--------------|---------------|------| | Symbol | Characteristic | Condition | Min | Max | Min | Max | Min | Max | Unit | | I <sub>INH</sub><br>I <sub>INL</sub> | Input HIGH Current<br>Input LOW Current | | 0.5 | 255 | 0.5 | 175 | 0.5 | 175 | μΑ | | V <sub>IH</sub> 1<br>V <sub>IL</sub> 1 | Input HIGH Voltage<br>Input LOW Voltage | V <sub>E</sub> = 5.0 V | 3.83<br>3.05 | 4.16<br>3.52 | 3.87<br>3.05 | 4.19<br>3.52 | 3.94<br>3.05 | 4.28<br>3.555 | V | | V <sub>BB</sub> 1 | Output Reference Voltage | | 3.62 | 3.73 | 3.65 | 3.75 | 3.69 | 3.81 | V | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 4. 100H PECL DC CHARACTERISTICS ( $V_T = V_E = 5.0 \text{ V} \pm 5\%$ ) | | | | 0°C | | 25°C | | 85°C | | | |----------------------------------------|-----------------------------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|------| | Symbol | Characteristic | Condition | Min | Max | Min | Max | Min | Max | Unit | | I <sub>INH</sub><br>I <sub>INL</sub> | Input HIGH Current<br>Input LOW Current | | 0.5 | 255 | 0.5 | 175 | 0.5 | 175 | μΑ | | V <sub>IH</sub> 2<br>V <sub>IL</sub> 2 | Input HIGH Voltage<br>Input LOW Voltage | V <sub>E</sub> = 5.0 V | 3.835<br>3.19 | 4.12<br>3.525 | 3.835<br>3.19 | 4.12<br>3.525 | 3.835<br>3.19 | 4.12<br>3.525 | V | | V <sub>BB</sub> 2 | Output Reference Voltage | | 3.62 | 3.74 | 3.62 | 3.74 | 3.62 | 3.74 | V | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. PECL levels are referenced to $V_{CC}$ and will vary 1:1 with the power supply. The values shown are for $V_{CC} = 5.0V$ . Table 5. TTL DC CHARACTERISTICS ( $V_T = V_E = 5.0 \text{ V } \pm 5\%$ ) | | | | 0°C | | 25°C | | 85°C | | | |------------------------------------|-----------------------------------------|-------------------------------------------------------|------------|-----------|------------|-----------|------------|-----------|------| | Symbol | Characteristic | Condition | Min | Max | Min | Max | Min | Max | Unit | | V <sub>IH</sub><br>V <sub>IL</sub> | Input HIGH Voltage<br>Input LOW Voltage | | 2.0 | 0.8 | 2.0 | 0.8 | 2.0 | 0.8 | V | | I <sub>IH</sub> | Input HIGH Current | V <sub>IN</sub> = 2.7 V<br>V <sub>IN</sub> = 7.0 V | | 20<br>100 | | 20<br>100 | | 20<br>100 | μΑ | | I <sub>IL</sub> | Input LOW Current | V <sub>IN</sub> = 0.5 V | | -0.6 | | -0.6 | | -0.6 | mA | | V <sub>OH</sub> | Output HIGH Voltage | I <sub>OH</sub> = -3.0 mA<br>I <sub>OH</sub> = -15 mA | 2.5<br>2.0 | | 2.5<br>2.0 | | 2.5<br>2.0 | | V | | V <sub>OL</sub> | Output LOW Voltage | I <sub>OL</sub> = 24 mA | | 0.5 | | 0.5 | | 0.5 | V | | V <sub>IK</sub> | Input Clamp Voltage | I <sub>IN</sub> = -18 mA | | -1.2 | | -1.2 | | -1.2 | V | | Ios | Output Short Circuit Current | V <sub>OUT</sub> = 0 V | -100 | -225 | -100 | -225 | -100 | -225 | mA | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. <sup>1.</sup> PECL levels are referenced to $V_{CC}$ and will vary 1:1 with the power supply. The values shown are for $V_{CC} = 5.0V$ . Table 6. AC CHARACTERISTICS ( $V_T = V_E = 5.0 \text{ V} \pm [5\%)$ | | | | | 0 | 0°C | | 25°C | | 85°C | | |----------------------------------|-----------------------------------------|------------------------|------------|------|------------|------|------------|------|------------|------| | Symbol | Characteristic | | Condition | Min | Max | Min | Max | Min | Max | Unit | | t <sub>PLH</sub> | Propagation Delay ECL<br>D to Output | Q0 – Q3 | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.2 | 6.2 | ns | | t <sub>PLH</sub> | Propagation Delay TTL<br>D to Output | | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.3 | 6.3 | ns | | tskwd* | Within-Device Skew | | CL = 25 pF | | 0.5 | | 0.5 | | 0.5 | ns | | t <sub>PLH</sub> | Propagation Delay ECL<br>D to Output | <u>Q</u> 0, <u>Q</u> 1 | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.2 | 6.2 | ns | | t <sub>PLH</sub> | Propagation Delay TTL<br>D to Output | | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.3 | 6.3 | ns | | t <sub>PLH</sub> | Propagation Delay ECL<br>D to Output | Q4, Q5 | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.2 | 6.2 | ns | | t <sub>PLH</sub> | Propagation Delay TTL<br>D to Output | | CL = 25 pF | 4.0 | 6.0 | 4.0 | 6.0 | 4.3 | 6.3 | ns | | t <sub>PD</sub> | Propagation Delay<br>R to Output | All Outputs | CL = 25 pF | 4.3 | 6.3 | 4.3 | 6.3 | 5.0 | 7.0 | ns | | t <sub>R</sub><br>t <sub>F</sub> | Output Rise/Fall Time<br>0.8 V to 2.0 V | All Outputs | CL = 25 pF | | 2.5<br>2.5 | | 2.5<br>2.5 | | 2.5<br>2.5 | ns | | f <sub>max</sub> | Maximum Input Frequency | • | CL = 25 pF | 135 | | 135 | | 135 | | MHz | | t <sub>pw</sub> | Minimum Pulse Width | | | 1.50 | | 1.50 | | 1.50 | | ns | | t <sub>rr</sub> | Reset Recovery Time | | | 1.25 | | 1.25 | | 1.25 | | ns | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. Table 7. $V_{CC}$ and $C_L$ RANGES TO MEET DUTY CYCLE REQUIREMENTS (0°C $\leq$ $T_{A} \leq$ 85°C Output Duty Cycle Measured Relative to 1.5 V) | Symbol | Characteristic | | Condition | Min | Nom | Max | Unit | |--------|----------------------------------------------------------------------------------------------------------|-----------------------|--------------------|-------------|-----|-------------|---------| | | Range of $V_{CC}$ and CL to meet minimum pulse width (HIGH or LOW) = 11.5 ns at $f_{out} \le 40$ MHz | V <sub>CC</sub><br>CL | Q0 - Q3<br>Q0 - Q1 | 4.75<br>10 | 5.0 | 5.25<br>50 | V<br>pF | | | Range of $V_{CC}$ and CL to meet minimum pulse width (HIGH or LOW) = 9.5 ns at 40 < $f_{out} \le 50$ MHz | V <sub>CC</sub><br>CL | Q0 – Q3 | 4.875<br>15 | 5.0 | 5.125<br>27 | V<br>pF | <sup>3.</sup> Within-Device Skew defined as identical transitions on similar paths through a device. #### 10/100H640 DUTY CYCLE CONTROL To maintain a duty cycle of £5% at 50MHz, limit the load capacitance and/or power supply variation as shown in Figures 3 and 4. For a £2.5% duty cycle limit, see Figures 5 and 6. Figures 7 and 8 show duty cycle variation with temperature. Figure 9 shows typical TPD versus load. Figure 10 shows reset recovery time. Figure 11 shows output states after power up. Best duty cycle control is obtained with a single μP load and minimum line length. http://onsemi.com for MC100H640 @ 50 MHz and $V_{CC}$ = +5.0 V for 100H640 at 50 MHz and $V_{CC}$ = +5.0 V Figure 9. $t_{PD}$ versus Load Typical at $T_A = 25^{\circ}C$ Figure 10. MC10H/100H640 Clock Phase and Reset Recovery Time After Reset Pulse OUTPUTS $Q_4$ & $Q_5$ WILL SYNC WITH POSITIVE EDGES OF $Q_1$ & $Q_2$ A NEGATIVE EDGES OF $\overline{Q}_3$ & $\overline{Q}_1$ Figure 11. Output Timing Diagram #### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |----------------|----------------------|-----------------------| | MC10H640FN | PLCC-28 | 37 Units / Rail | | MC10H640FNG | PLCC-28<br>(Pb-Free) | 37 Units / Rail | | MC10H640FNR2 | PLCC-28 | 500 / Tape & Reel | | MC10H640FNR2G | PLCC-28<br>(Pb-Free) | 500 / Tape & Reel | | MC100H640FN | PLCC-28 | 37 Units / Rail | | MC100H640FNG | PLCC-28<br>(Pb-Free) | 37 Units / Rail | | MC100H640FNR2 | PLCC-28 | 500 / Tape & Reel | | MC100H640FNR2G | PLCC-28<br>(Pb-Free) | 500 / Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices #### PACKAGE DIMENSIONS #### PLCC-28 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 776-02 #### NOTES: - DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS - WHERE TOP OF LÉAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE - (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST DELEMMINED ALTHE OUTEHMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE - PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OF INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635). | | _ | HES | | ETERS | |-----|-------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.485 | 0.495 | 12.32 | 12.57 | | В | 0.485 | 0.495 | 12.32 | 12.57 | | С | 0.165 | 0.180 | 4.20 | 4.57 | | E | 0.090 | 0.110 | 2.29 | 2.79 | | F | 0.013 | 0.019 | 0.33 | 0.48 | | G | 0.050 | BSC | 1.27 | BSC | | Н | 0.026 | 0.032 | 0.66 | 0.81 | | J | 0.020 | | 0.51 | | | K | 0.025 | | 0.64 | | | R | 0.450 | 0.456 | 11.43 | 11.58 | | U | 0.450 | 0.456 | 11.43 | 11.58 | | ٧ | 0.042 | 0.048 | 1.07 | 1.21 | | W | 0.042 | 0.048 | 1.07 | 1.21 | | X | 0.042 | 0.056 | 1.07 | 1.42 | | Υ | | 0.020 | | 0.50 | | Z | 2° | 10° | 2 ° | 10° | | G1 | 0.410 | 0.430 | 10.42 | 10.92 | | K1 | 0.040 | | 1.02 | | ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). MECL 10H is a trademark of Motorola, Inc. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative